李博 高曉紅 張文通 王天宇 金寶昌
摘要:通過(guò)射頻磁控濺射ZnO薄膜的方法制備了以ZnO為有源層的薄膜晶體管器件。研究了H2O2處理ZnO薄膜的不同位置對(duì)TFT器件的影響。采用PL測(cè)試表征材料的缺陷密度,用SEM表征了氧化處理前后的ZnO薄膜材料的表面形貌。結(jié)果表明利用H2O2處理ZnO薄膜與源漏電極的接觸界面會(huì)使器件的關(guān)態(tài)電流降低2個(gè)數(shù)量級(jí),氧化處理后的ZnO薄膜具有較低的缺陷密度和較好的結(jié)晶狀態(tài),TFT器件的電流開(kāi)關(guān)比為7.5×105,閾值電壓Vth為9V,亞閾值擺幅為2V/decade,場(chǎng)效應(yīng)遷移率為0.85cm·V-1·s-1。
關(guān)鍵詞:射頻磁控濺射;ZnO薄膜;H2O2氧化處理
中圖分類(lèi)號(hào):G642 文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1009-3044(2019)12-0250-03
開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Effect of H2O2 Oxidation Treatment of ZnO Channel Layer on Properties of Thin Film Transistors
LI Bo, GAO Xiao-hong, ZHANG Wen-tong, WANG Tian-yu, JIN Bao-chang
(Jilin Jianzhu University, College of Electrical and Computer Engineering, Changchun 130118, China)
Abstract: A thin film transistor device with ZnO as active layer was fabricated by RF magnetron sputtering of ZnO thin film. The effects of different positions of H2O2 treated ZnO thin films on TFT devices were investigated. The defect density of the material was characterized by PL test. The surface morphology of the ZnO thin film material before and after oxidation treatment was characterized by SEM. The results show that the contact interface between the ZnO thin film and the source-drain electrode treated with H2O2 reduces the off-state current of the device by two orders of magnitude. The oxidized ZnO film has lower defect density and better crystal state, and the current switching of the TFT device. The ratio is 7.5×105, the threshold voltage Vth is 9V, the subthreshold swing is 2V/decade, and the field effect mobility is 0.85cm·V-1·s-1.
Key words: RF magnetron sputtering; ZnO film; H2O2 oxidation treatment
1引言
近年來(lái)由于市場(chǎng)對(duì)柔性透明和超高分辨率顯示技術(shù)的需求,金屬氧化物的薄膜晶體管(MOTFT)因具有高遷移率、高電流開(kāi)關(guān)比、良好的光學(xué)透明性和可低溫大面積制備等優(yōu)秀的材料特性而廣受關(guān)注[1-3]。ZnO作為一種環(huán)保的低成本寬帶隙半導(dǎo)體,具有非常穩(wěn)定的電學(xué),化學(xué)和光學(xué)性能,并已被廣泛用作TFT的有源層材料[4-6]。但是在ZnO溝道層薄膜制備的過(guò)程中,尤其是在低溫環(huán)境下沉積,ZnO薄膜很容易發(fā)生存在大量晶體缺陷的現(xiàn)象,通常認(rèn)為ZnO薄膜材料內(nèi)主要的晶體缺陷是氧空位(Vo)和鋅間隙(Zni)[7,8],這讓使用ZnO薄膜作為溝道層的TFT器件難以得到并保持優(yōu)良的器件性能,例如發(fā)生閾值電壓的漂移、偏壓不穩(wěn)定性、滯回不穩(wěn)定性等[9-11]。雖然有大量研究利用離子摻雜、熱處理等方法降低了薄膜中的氧缺陷[12,13],使薄膜的結(jié)晶質(zhì)量有所提高,但熱處理的方法無(wú)法使器件在柔性襯底上大面積制備,并且有些稀土元素如Ga、In等價(jià)格昂貴,不利于在工業(yè)生產(chǎn)中大量使用,更會(huì)破壞自然環(huán)境。我們?cè)谥暗难芯恐邪l(fā)現(xiàn)采用H2O2氧化處理ZnO薄膜的方法,可以在避免高溫制備,又不必引入其他雜質(zhì)離子的情況下,降低ZnO薄膜的缺陷密度,提高薄膜的結(jié)晶質(zhì)量。本研究又對(duì)比了ZnO薄膜作為T(mén)FT器件溝道層時(shí)H2O2氧化處理源漏電極接觸界面和氧化處理溝道對(duì)TFT器件的電學(xué)性能影響。
2實(shí)驗(yàn)
通過(guò)頻磁控濺射的方法在p-Si襯底上沉積ZnO薄膜,p-Si襯底上有100nm熱氧化的SiO2作為柵介電層,薄膜制備過(guò)程在室溫下進(jìn)行。首先,將清洗好的3片Si襯底放入襯底放入Kurt J.Lesker公司的PVD75 型磁控濺射設(shè)備中,使用射頻磁控濺射方法沉積ZnO薄膜,靶材是純度為99.99%的高純ZnO陶瓷靶。先將真空度抽至5×10-5Torr,然后通入純度為99.999%的Ar氣,將氣壓保持在20mTorr,射頻功率設(shè)定在50W對(duì)Ar氣進(jìn)行啟輝。接著將Ar:O2設(shè)置為95%:5%,沉積時(shí)ZnO靶射頻功率為100W,濺射壓強(qiáng)為8 mTorr,薄膜厚度35nm,整個(gè)沉積過(guò)程在室溫下進(jìn)行,詳細(xì)實(shí)驗(yàn)條件見(jiàn)表1。濺射結(jié)束后取出3片樣本進(jìn)行濕法光刻,取其中一片樣本S2進(jìn)行H2O2氧化處理,由于光刻膠的保護(hù),器件的溝道未于H2O2接觸,僅處理溝道層與源漏電極接觸界面。接著3片樣本通過(guò)電子束蒸發(fā)(E-Beam)蒸鍍50nm金屬Al源漏電極,取其中一片樣本S3進(jìn)行H2O2氧化處理,由于金屬Al的保護(hù),器件ZnO溝道層僅有溝道處與H2O2接觸,S1為未進(jìn)行H2O2氧化處理的TFT器件。溝道寬為300um長(zhǎng)為10um,TFT結(jié)構(gòu)如圖1。兩次H2O2氧化處理均使用3%濃度的H2O2水溶液浸泡30s,處理部位見(jiàn)圖2。使用Keysight B1500A半導(dǎo)體參數(shù)測(cè)試儀測(cè)試TFT器件的電學(xué)性能;使用JEOL JSM-7610F拍攝掃描電子顯微鏡(SEM)圖像;采用日本 HORIBA 公司的光致發(fā)光/拉曼( PL /Raman)光譜儀在室溫下對(duì)ZnO薄膜的光學(xué)特性進(jìn)行表征,其中PL光譜使用波長(zhǎng)為 325 nm的He-Cd激光器激發(fā)。
3結(jié)果與討論
圖3給出了ZnO TFT的轉(zhuǎn)移特性曲線。S3為僅溝道被H2O2氧化處理的TFT器件喪失了器件性能無(wú)法通過(guò)加大柵壓開(kāi)啟,這可能是因?yàn)闇系辣籋2O2氧化處理后晶體缺陷被修復(fù)而導(dǎo)致溝道處的載流子濃度過(guò)低。亞閾值擺幅反映了有源層與柵介電層界面的缺陷密度,缺陷越少則亞閾值擺幅越低,器件的響應(yīng)速度越快。通過(guò)對(duì)比S1和S2可以看出溝道層與源漏電極接觸界面被處理后的TFT器件亞閾值擺幅(SS)有所降低,器件的關(guān)態(tài)電流降低,電流開(kāi)關(guān)比升高近2個(gè)數(shù)量級(jí),場(chǎng)效應(yīng)遷移率也隨之升高,S2器件的電流開(kāi)關(guān)比為7.5×105,閾值電壓Vth為9V,亞閾值擺幅為2V/decade,場(chǎng)效應(yīng)遷移率為0.85cm·V-1·s-1,詳細(xì)器件性能見(jiàn)表2。
這是由于H2O2氧化處理降低了ZnO薄膜的缺陷密度,雖然使薄膜的載流子濃度略有降低,導(dǎo)致電流整體下降,但由于電荷陷阱的減少,使得載流子在傳輸過(guò)程中被捕獲的幾率大大降低,所以TFT器件的閾值電壓被大大降低,亞閾值擺幅也因缺陷密度的降低而降低。
圖4是H2O2氧化處理前后ZnO薄膜在室溫下的光致發(fā)光光譜(PL),激發(fā)光源為325nm的激光器??梢钥闯鎏幚砬昂蟊∧さ谋菊靼l(fā)光峰均在380nm,而處理后的ZnO薄膜處在可見(jiàn)光區(qū)范圍內(nèi)的缺陷發(fā)光峰強(qiáng)度大幅降低,這也符合之前的推論,被H2O2氧化處理后的薄膜缺陷密度降低,結(jié)晶質(zhì)量變好。
4結(jié)論
使用射頻磁控濺射的方法在p-Si襯底上沉積ZnO薄膜并進(jìn)行H2O2氧化處理,以此為溝道層制成TFT器件。研究了H2O2氧化處理ZnO薄膜的不同位置對(duì)TFT器件的電學(xué)性能影響及薄膜的缺陷密度、表面形貌。H2O2氧化處理后的ZnO薄膜缺陷密度降低,結(jié)晶質(zhì)量提高。僅處理溝道的器件因溝道處載流子濃度過(guò)低而無(wú)法開(kāi)啟;僅處理溝道層與源漏電極接觸界面的TFT器件的電流開(kāi)關(guān)比升高為7.5×105,亞閾值擺幅降低為2V/decade,閾值電壓變優(yōu)為9V,場(chǎng)效應(yīng)遷移率升高為0.85cm·V-1·s-1。
參考文獻(xiàn):
[1] Kumomi H, Kamiya T, Hosono H. Advances in oxide thin-film transistors in recent decade and their future[J]. ECS Transactions, 2015, 67(1): 3-8.
[2] Park S H K, Hwang C S, Jeong H Y, et al. Transparent ZnO-TFT arrays fabricated by atomic layer deposition[J]. Electrochemical and Solid-State Letters, 2008, 11(1): H10-H14.
[3] Marette A, Poulin A, Besse N, et al. Flexible zinc–tin oxide thin film transistors operating at 1 kV for integrated switching of dielectric elastomer actuators arrays[J]. Advanced Materials, 2017, 29(30): 1700880.
[4] Kaltenbrunner, M., T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer and T. Someya (2013). "An ultra-lightweight design for imperceptible plastic electronics." Nature 499(7459): 458-463.
[5] Rogers, J. A., T. Someya and Y. Huang (2010). "Materials and mechanics for stretchable electronics." Science 327(5973): 1603-1607.
[6] Du, X. and G. S. Herman (2018). "Transparent In-Ga-Zn-O field effect glucose sensors fabricated directly on highly curved substrates." Sensors & Actuators B Chemical 268: 123-128.
[7] Fan, J. C., K. M. Sreekanth, Z. Xie, S. L. Chang and K. V. Rao (2013). "p-Type ZnO materials: Theory, growth, properties and devices." Progress in Materials Science 58(6): 874-985.
[8] Chen, W. T., S. Y. Lo, S. C. Kao, H. W. Zan, C. C. Tsai, J. H. Lin, C. H. Fang and C. C. Lee (2011). "Oxygen-Dependent Instability and Annealing/Passivation Effects in Amorphous In-Ga-Zn-O Thin-Film Transistors." IEEE Electron Device Letters 32(11): 1552-1554.
[9] Cross R B M, De Souza M M, Deane S C, et al. A comparison of the performance and stability of ZnO-TFTs with silicon dioxide and nitride as gate insulators[J]. IEEE Transactions on electron devices, 2008, 55(5): 1109-1115.
[10] Nomura K, Kamiya T, Ohta H, et al. Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing[J]. Applied Physics Letters, 2008, 93(19): 192107.
[11] Jo J W, Kim K H, Kim J, et al. High-mobility and hysteresis-free flexible oxide thin-film transistors and circuits by using bilayer sol–gel gate dielectrics[J]. ACS applied materials & interfaces, 2018, 10(3): 2679-2687.
[12] Ding X, Qin C, Song J, et al. The influence of hafnium doping on density of states in zinc oxide thin-film transistors deposited via atomic layer deposition[J]. Nanoscale research letters, 2017, 12(1): 63.
[13] Teng L F, Liu P T, Lo Y J, et al. Effects of microwave annealing on electrical enhancement of amorphous oxide semiconductor thin film transistor[J]. Applied Physics Letters, 2012, 101(13): 132901.
【通聯(lián)編輯:王力】