• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis and Improvement of Steganography Protocol Based on Bell States in Noise Environment

    2019-05-10 03:59:50ZhiguoQuShengyaoWuWenjieLiuandXiaojunWang
    Computers Materials&Continua 2019年5期

    Zhiguo Qu ,Shengyao Wu,Wenjie Liu and Xiaojun Wang

    Abstract:In the field of quantum communication,quantum steganography is an important branch of quantum information hiding.In a realistic quantum communication system,quantum noises are unavoidable and will seriously impact the safety and reliability of the quantum steganographic system.Therefore,it is very important to analyze the influence of noise on the quantum steganography protocol and how to reduce the effect of noise.This paper takes the quantum steganography protocol proposed in 2010 as an example to analyze the effects of noises on information qubits and secret message qubits in the four primary quantum noise environments.The results show that when the noise factor of one quantum channel noise is known,the size of the noise factor of the other quantum channel can be adjusted accordingly,such as artificially applying noise,so that the influence of noises on the protocol is minimized.In addition,this paper also proposes a method of improving the efficiency of the steganographic protocol in a noisy environment.

    Keywords:Quantum steganography,quantum noise,noise channel,fidelity,efficiency.

    1 Introduction

    Quantum information hiding is a combination of classical information hiding and quantum cryptography and quantum communication technology.In the information age,information security involves all aspects of people’s daily life.With the rapid development of network research [Qu,Keeney and Robitzsch (2016)],information security has become crucial and has triggered a lot of research on it [Pradeep,Mridula and Mohana (2016)].As an important branch of information security,information hiding also plays an indispensable role.Quantum information hiding is based on the design philosophy of classical information hiding,and secret communication between communicators is realized by establishing a covert quantum channel in quantum cryptography or quantum communication technology.In 2001,Terhal et al.[Terhal,Divincenzo and Leung (2000)] proposed the first quantum information hiding protocol.Subsequently,quantum information hiding has developed rapidly.

    Quantum steganography is an important sub-discipline of quantum information hiding.It hides secret information by embedding secret information in an ordinary quantum carrier.In recent years,a variety of quantum steganographic protocols have emerged in which different carrier media is used,such as Zhou et al.[Zhou,Qiu,Li et al.(2018)],image[Meng,Rice,Wang et al.(2018); Cao,Zhou,Sun et al.(2018); Qu,Zheng,Luo et al.(2017)],video [Nie,Xu,Feng et al.(2018); Qu,Chen and Ji (2017)],audio [Shamneed and Maya (2014)],etc.In 2002,Geabanacloche [Geabanacloche (2002)] used quantum error-correcting codes to hide secret information.In this protocol,secret information can also be used as watermark to authenticate the security and integrality of data.In 2003,Guo et al.[Guo and Guo (2012)] proposed a quantum-hidden protocol that based on the Bell state’s preparation of uncertainty characteristics.In 2007,Matin [Martin (2007)]proposed a novel quantum steganography protocol based on the BB84 protocol [Bennett(1984)],analyzed the transparency and security of the protocol,and calculated the protocol's capacity in detail.In 2010,Shaw et al.[Shaw and Brun (2010,2011)] proposed a quantum steganography protocol by sharing random quantum (or classical) keys.In 2012,Mihara [Mihara (2012)] proposed a quantum steganography protocol that embeds secret information in the phase of a quantum state in the process of quantum Fourier transform.Wei et al.[Wei,Chen,Niu et al.(2013,2015)] proposed two quantum steganographic protocols based on quantum probability measurement.In 2015,Mihara[Mihara (2015)] proposed a quantum steganographic protocol that combines quantum error correction codes with pre-entanglement.In 2016,based on the novel enhanced quantum representation (NEQR),we proposed a quantum steganography algorithm [Qu,He and Ma (2016)] that embeds secret information in the second least significant bit and has better concealment.

    Quantum noise is inevitable in the implementation of actual quantum systems,and it will seriously affect the security and reliability of quantum systems.In recent years,there have been more and more studies on the influence of quantum noise on quantum communication protocols [Qu,Chen and Ji (2017); Qu,Cheng,Luo et al.(2017); Qu,Wu,Wang et al.(2017); Qu,Chen,Ji et al.(2018)].For example,Wang et al.[Wang and Qu(2016)] studied the effect of noise on the deterministic joint remote preparation of a single qubit state algorithm through GHZ channels.Guan et al.[Guan,Chen,Wang et al.(2014)] calculated the output state and fidelity of the JRSP algorithm under amplitude damping and phase damping noise and analyzed the effect of noise on the algorithm in detail.Ma et al.[Ma,Gao,Zhang et al.(2017)] proposed an algorithm for deterministic remotely preparing quantum states by Brown states and analyzed the effects of noise on the algorithm.Wang et al.[Wang,Qu,Wang et al.(2017)] studied the effect of noise on the deterministic joint remote preparation of arbitrary two-qubit state schemes by GHZ states.Although,there are many researches about the effects of quantum noise on quantum remote preparation schemes.We want to know what effect quantum noise will have on a quantum steganography protocol and how to counter the effect of noise on the protocol.Therefore,this paper uses the steganographic protocol [Qu,Chen,Zhou et al.(2010)] proposed in 2010 as an example to study the effects of the four main quantum noises on the protocol and how to improve the protocol in a noisy environment so that the protocol has a better performance in a noisy environment.This article is organized as follows.In Section 2,we briefly review the steganographic protocol we proposed in 2010.In Section 3,four main quantum noise models are introduced,and the effect of noise on steganographic protocols is analyzed.In Section 4,the effects of noise channels on steganography are calculated under several possible realistic communication conditions.Finally,Section 5 summarizes the work of this paper and proposes a possible method to improve the efficiency of steganographic protocols in noisy environments.

    2 Quantum steganography protocol

    In the original quantum steganography protocol [Qu,Chen,Zhou et al.(2010)],the sender Alice wishes to send to the receiver Bob an information bits sequence in which two bits of secret information are hidden.The concrete steps of the quantum steganography protocol are as follows:

    S1) Bob firstly prepares a large amount ofstates,then sends eachAparticles to Alice through quantum channel.Alice obtains the particle setSA=[A1,A2,...,An],and Bob possesses the particle setSB=[B1,B2,...,Bn].

    S2) After gettingSA,Alice randomly enter the control mode S3 or the information transmission mode S4.

    S3) Control mode:Alice and Bob conduct eavesdropping detection.If there is an eavesdropping,Bob stops communicating with Alice.Otherwise,enter the information transmission mode S4.

    S4) Information transmission mode:(a) According to the information bits sequence,Alice performs the corresponding unitary operations onSAand then getsS′A=[A′1,A′2,...,A′n]and sends it back to Bob.After Bob receivesS′A,he can decode the information bits sequence by performing Bell measurements onS′AandS′B.(b) Alice selects two particles and enters secret information hiding mode.

    S5) Secret message hiding mode:Alice selects theA′mandA′m+1fromS′Aaccording to the secret information.The two Bell states formed byA′m-1B′m-1andA′mB′mmust be consistent with the secret information,mcan be sent to Bob through the classic channel using IBF or one-time pad.Later,Alice copies the informationA′m-1B′m-1carried toA′m+1B′m+1by doing a same unitary operationUijonA′m+1.Finally,Alice measuresA′mA′m+1under the Bell-basis for entanglement swapping and sends them back to Bob.

    S6) Secret message decoding mode:After Bob obtains the valuem,he performs Bellbasis measurements onA′mA′m+1andB′mB′m+1,respectively.Bob can decode the hidden secret information through the secret information encoding rules.

    3 The noisy quantum steganography protocol

    In this section,we describe the four main quantum channel noises,as well as a model for analyzing the effect of noise on the steganography protocol.

    3.1 Quantum channel noises

    This section will introduce the four main noise environments in the quantum channel,i.e.,amplitude-damping,phase-damping,bit-flip and depolarizing noise.

    3.1.1 Amplitude damping

    Amplitude damping noise describes the effect on the system caused by the loss of energy in the quantum system.The Kraus operator of amplitude damping noise is expressed as follows.

    whereλdenotes the noise factor and satisfies 0≤λ≤1.

    3.1.2 Phase dampingCompared with amplitude damping,phase damping describes the loss of quantum information,which does not include loss of information due to energy loss.The Kraus operator of phase damping noise is described as follows.

    where the noise factor satisfies the condition 0≤λ≤1.

    3.1.3 Bit flip

    The bit-flip noise changes a qubit fromor fromwith the probabilityλ.The Kraus operator of bit-flip noise is described as follows.

    In whichλdenotes the noise factor and satisfies0≤λ≤1.

    3.1.4 Depolarizing

    The depolarizing noise will replace one qubit with a completely maximal mixed stateI/2in the probabilityλin the system.The Kraus operator is expressed as:

    whereσx,σy,σzare standard Pauli matrixes and the noise factor satisfies 0≤λ≤1.

    3.2 The steganography protocol under quantum noises

    For ease of analysis,we study the effect of noise on each Bell state with transmission information.

    In Step S1,when Bob transmits particleAto Alice,particleAwill be affected by quantum noise.The initial state of quantum can be written as

    After Bob particles are transferred to Alice,the quantum state shared by Alice and Bob becomes

    in whichEAdenotes the noise operator acting on qubitA,superscript denotes theitransmitted particle.

    Since this article mainly analyzes the influence of noise on the steganographic protocol,it is assumed that the eavesdropping detection has passed,skipping the Step S3:control mode and entering the Step S4:information transmission mode.

    Alice performs corresponding unitary operationsUijonAparticles according to the information bits sequence,the quantum system becomes

    Then,Alice sendsAparticle back to Bob through noisy quantum channel,the quantum system becomes

    In a noise-free environment,the quantum state Bob receives should be

    To describe the quantum noise effect on the quantum state,the fidelity is defined as follow.

    The valueFrepresents the degree of similarity between the two quantum states.The value of 1 indicates that the two quantum states are the same.The smaller the valueF,the smaller the similarity of the two quantum states.Therefore,for the information bits sequence,the effect of noise can be measured by Eq.(10).

    For secret messages,assume that the quantum noises are described aswhen transmittingAmandAm+1,respectively.And the initial state of the quantum system that carries the secret messages is represented by

    After transmitting the particlesAmandAm+1,the quantum system becomes

    Alice performs an entanglement swapping onρs1,i.e.a Bell-basis measurement onAm′Am+1′,msatisfies the consistency condition.After that,the quantum becomesρs1′,and then Alice sendsAmAm+1back to Bob through noisy quantum channel.Finally,Bob gets the quantum state as follow.

    Bob performs Bell-basis measurements onAm′Am+1′andBm′Bm+1′,respectively.According to the measurement results,the secret message can be decoded.

    4 The analyses of noise effects

    This section will discuss the effects of noise on the quantum steganographic protocol in several possible scenarios.It should be pointed out that,in the steganography protocol,the carrier of the secret information is based on the carrier of the transmitted information.Therefore,we will analyze the impact of noise on the transmitted information,and then analyze the influence of noise on the secret information.

    4.1 Effect on transmitted information

    a) Considering Bob’s quantum channel is in a noisy environment (λBC≠0) while Alice’s quantum channel is protected from noise (λAC=0).The fidelity for each type of noise can be written as

    The subscripts in the left of Eq.(14) to Eq.(17) represent the noise scenarios,ADdenotes amplitude damping,Phsdenotes phase damping,BFdenotes bit flip andDdenotes depolarizing.The fidelity in the scenario that Bob’s quantum channel is affected by noiseX(X=?,AD,Phs,BF,D),while Alice's quantum channel is not affected by noise is described asFX,?.

    Figure1:Fidelity of the transmitted information when only Bob’s quantum channel is affected by a noisy environment

    According to Fig.1,we can see that the phase damping noise has less effect than the other three quantum noises whatever valueλBCis.In addition,it is not difficult to find that the quantum state that carries information suffers from phase damping,bit flip and depolarizing noises have the same effect,and as the increase ofλBC,the fidelity decreases linearly.

    b) The quantum channel that Bob transmits particle and the quantum channel that Alice transmits particle are both affected by quantum noises (λBC≠0andλAC≠0).

    In the case that the quantum channel of Bob transmits particle is subjected to the amplitude damping noise and the quantum channel of Alice transmits particle is affected by one of the four different quantum noises,the fidelities in these four cases are calculated as follows.

    Figure2:Fidelity of the transmitted information when Bob’s quantum channel is affected by amplitude damping (AD) noise and Alice's quantum channel is affected by one of four noisy environments.The dash line denotes the situation only Bob’s quantum channel is affected by amplitude damping (AD) noisy environment

    In Fig.2,we can see that whenλBCis fixed,in other words,Bob’s channel is affected by amplitude damping noise of the same intensity,the effect of noise of amplitude damping noise acted on Alice’s channel is less than the other three quantum noises.WhenλBCis small (λBC≤0.1),phase damping,bit flip and depolarizing noise have a very close influence on transmission information.With the increase ofλBC,the fidelity of bit flip noise is gradually higher than the depolarizing noise,and the depolarization noise is gradually higher than the phase damping noise.In addition,asλBCincreases,the fidelity atλAC=0gradually decreases,but the fidelity atλAC=1increases gradually.It can be found that whenλACis large,the fidelity increases asλBCincreases.Which means that when one channel is affected by strong noise,the greater the noise that other channel is subjected to,the higher the fidelity of transmitted information is.

    Figure3:Fidelity of the transmitted information when Bob’s quantum channel is affected by phase damping (Phs) noise and Alice's quantum channel is affected by one of four noisy environments.The dash line denotes the situation only Bob’s quantum channel is affected by phase damping (Phs) noisy environment

    In the case where the quantum channel of Bob transmits particle is subjected to the phase damping noise while the quantum channel of Alice transmits particle is affected by one of the four different quantum noises,the fidelities under the four cases are

    In Fig.3,we plot Eq.(22) to Eq.(25) as a function ofλACfor several values ofλBC.It can be seen that whenλBCis small (λBC≤0.3),the effect of phase damping acting on Alice's quantum channel is less than phase damping,phase damping is less than depolarizing noise,depolarizing noise is less than bit flip noise,and fidelity in the four noises decreases with increasing noise intensity.With the increase ofλBC,the phase damping noise acting on Alice’s channel is gradually smaller than the depolarizing noise,the depolarizing noise is smaller than the phase damping noise,and the phase damping noise is smaller than the bit flip noise.WhenλBCis large,the fidelity of transmitted information when Alice’s channel subjected to phase damping or depolarizing noise increases with increasingλAC.Another interesting result is that,more phase damping noise or more depolarizing noise acting on Alice’s channel can increase the fidelity of the transmitted information compared to the situation that Alice’s channel is protected from noise whenλBC≥0.8.Hence,if quantum noise is inevitable and Alice can choose different noisy communication channels,she can effectively improve the fidelity of transmitted information by selecting the right noise channel.

    Next,we study the scene that Bob’s quantum channel is subjected to the bit flip noise while the Alice’s quantum channel is affected by one of the four different quantum noises.The fidelities are given as follows.

    In Fig.4 we plot Eq.(26) to Eq.(29) as a function ofλACfor several values ofλBC.In this case,we can find similar conclusions as when Bob’s channel is subjected to phase damping noise.WhenλBCis small,amplitude damping noise acting on Alice’s channel has the least influence compared to other three noises.With the increase ofλBC,bit flip noise acting on Alice’s channel has the least influence on transmission information.WhenλBCis large,bit flipping,depolarizing noise and phase damping noise all increase with the increase ofλAC.When Bob's quantum channel suffers from strong bit flip noise(λBC>0.75),more bit flip noise,depolarizing noise,or phase damping noise acting on Alice’s channel can increase the fidelity of the transmitted information.

    Figure4:Fidelity of the transmitted information when Bob’s quantum channel is affected by bit flip (BF) noise and Alice’s quantum channel is affected by one of four noisy environments.The dash line denotes the situation only Bob’s quantum channel is affected by bit flip (BF) noisy environment

    Another important case is where the quantum channel of Bob transmits particle is subjected to the depolarizing noise while the quantum channel of Alice transmits particle is affected by one of the four different quantum noises,the fidelities under the four cases are calculated as follows.

    In Fig.5 we plot Eq.(30) to Eq.(33) as a function ofλACfor several values ofλBC.It can be found that phase damping noise,bit flip noise,and depolarizing noise acting on Alice's channel have the same effect on transmission information.And whenλBCis small(λBC≤0.7),amplitude damping noise acting on Alice’s channel has less effect on transmission information than the other three quantum noises.With the increase ofλBC,the fidelity of the phase damping,bit flip and depolarizing noise acting on Alice’s channel is gradually greater than the amplitude damping noise.WhenλBCis large,the fidelity of the transmitted information increases gradually with the increase ofλAC.Analyzing Eq.(18) to Eq.(33),it can be found thatFAD,X=FX,AD,X=?,AD,Phs,BF,FPhs,X=FX,Phs,X=?,AD,Phs,BF,D,FBF,X=FX,BF,X=?,AD,Phs,BF,D,FD,X=FX,D,X=?,Phs,BF,D.It shows that some noise has good symmetry.But such symmetry is not forFAD,DbecauseFAD,D≠FD,AD.In addition,FPhs,Phs=FBF,BF,which means that when two channels are simultaneously subjected to phase damping or bit flip,noise has the same effect on transmission information.

    Figure5:Fidelity of the transmitted information when Bob’s quantum channel is affected by depolarizing (D) noise and Alice’s quantum channel is affected by one of four noisy environments.The dash line denotes the situation only Bob’s quantum channel is affected by depolarizing (D) noisy environment.

    Figure6:Efficiency of the secret message when only Bob’s quantum channel is affected by a noisy environment

    4.2 Effect on secret message

    Taking the transmission of secret information00as an example,assume that in an ideal environment,the quantum system containing secret information is

    Considering that Bob sends his two qubits through a quantum channel simultaneously(λBC1=λBC2),and Alice sends her two qubits through a quantum channel at the same time (λAC1=λAC2).For convenient,the noise intensity of Bob’s channel is expressed byλBC,and the noise intensity of Bob’s channel is expressed byλAC.

    Assuming Bob’s quantum channel is affected by quantum noise while Alice’s quantum channel is protected from quantum noise.In each type of noisy environment,the fidelity of secret information will be

    In Fig.6,we can see that the tendency of fidelity is similar to the fidelity of transmitted information (Fig.1).The difference is that due to the superposition of noises of two transmitted information carriers,the middle part of the curve is concave,the fidelity of secret information is lower than transmitted information.

    Next,we discuss the situation that both Alice and Bob’s quantum channel is subjected to noise.If Bob’s quantum channel is in amplitude damping noise and Alice’s channel is affected by one of four quantum noises.The fidelities of secret information in these four cases are

    It can be seen,the effect of noise on a quantum system with secret message (Fig.7) is similar to the quantum system with transfer information (Fig.2).As to the transmission information,the first qubit in the Bell state is affected by noise.As to the secret message,it is based on the carrier of transmission information and only extended to two Bell states.And the entanglement swap does not change the effect of noise on the transmitted qubits.

    Figure7:Efficiency of the secret message when Bob’s quantum channel is affected by amplitude damping noise (AD) and Alice’s quantum is affected by one of four quantum noises.Dash line denotes the fidelity of secret message when there is only Bob’s quantum channel is affected by quantum noise

    Therefore,in this case,the impact of noise on the secret message contains the same conclusion as the transmitted information.

    5 Conclusions

    In this paper,we investigate how the steganography protocol in Qu et al.[Qu,Chen,Zhou et al.(2010)] is affected by quantum noise and establish a noise impact model.After that,we analyzed the impact of noise on information bits and secret information bits,respectively.The results show that when the quantum channel of only one of Bob and Alice is affected by noise,amplitude-damping noise has the least impact on the protocol compared to the other three noises.When the quantum channels of both Bob and Alice are affected by noise,the fidelity of the quantum state that contains information can be improved by adjusting the size of noise factors of the two parties,thereby improving the efficiency of the protocol.

    In order to resist the influence of noise,we consider that in Fortes et al.[Fortes and Rigolin (2015)],the author proposed that a qubit in the transmission is affected by quantum noise and another qubit is not affected by noise,if the second qubit is also affected by quantum noise,the efficiency of quantum teleportation will increase.This means that the superposition of quantum noises may reduce the effect of quantum noise on the quantum state.Based on this idea,we can consider that the quantum channels used by Alice and Bob is suffered a noise that is a combination of different quantum noises to reduce the influence of noise on the steganographic protocol and improve the efficiency of the protocol in a noisy environment.

    Therefore,the protocol can improve the efficiency of transmitting information by artificially applying additional quantum noise in a noisy environment.The invisibility and security of the noisy protocol is based on the invisibility and security of the original protocol,and therefore,it also has good invisibility and security.

    制服诱惑二区| 啦啦啦韩国在线观看视频| 女人被狂操c到高潮| 69精品国产乱码久久久| 国产精品久久视频播放| 黑丝袜美女国产一区| 十八禁网站免费在线| 国产欧美日韩精品亚洲av| 日韩三级视频一区二区三区| 亚洲五月色婷婷综合| 精品久久久久久久人妻蜜臀av | 在线观看舔阴道视频| 国产99久久九九免费精品| 国产精品一区二区在线不卡| 欧美成人免费av一区二区三区| 久久草成人影院| 在线av久久热| 亚洲av电影不卡..在线观看| 久久伊人香网站| 久久伊人香网站| 日本三级黄在线观看| 亚洲精品国产一区二区精华液| 亚洲成国产人片在线观看| 日本撒尿小便嘘嘘汇集6| 两人在一起打扑克的视频| e午夜精品久久久久久久| 操出白浆在线播放| 好男人在线观看高清免费视频 | 亚洲精华国产精华精| 高清黄色对白视频在线免费看| 大型av网站在线播放| 电影成人av| 18禁裸乳无遮挡免费网站照片 | 久久狼人影院| 国产在线观看jvid| 久久婷婷人人爽人人干人人爱 | 人妻久久中文字幕网| 午夜久久久在线观看| 制服人妻中文乱码| 脱女人内裤的视频| 男男h啪啪无遮挡| 在线国产一区二区在线| 女人爽到高潮嗷嗷叫在线视频| 男男h啪啪无遮挡| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜躁狠狠躁天天躁| 成人18禁高潮啪啪吃奶动态图| 黄片播放在线免费| 国产精品电影一区二区三区| 亚洲 欧美一区二区三区| 两个人看的免费小视频| 最近最新中文字幕大全电影3 | 午夜精品在线福利| 可以在线观看的亚洲视频| 精品国产一区二区久久| 国产亚洲欧美精品永久| 久久影院123| 免费观看精品视频网站| 怎么达到女性高潮| 国产1区2区3区精品| 亚洲中文日韩欧美视频| 亚洲午夜理论影院| 熟妇人妻久久中文字幕3abv| 女同久久另类99精品国产91| 欧美日本视频| 女性被躁到高潮视频| 亚洲欧美日韩另类电影网站| 少妇粗大呻吟视频| 最好的美女福利视频网| 免费少妇av软件| 国产主播在线观看一区二区| avwww免费| 亚洲男人天堂网一区| 久久久国产精品麻豆| 国产精品爽爽va在线观看网站 | 日本五十路高清| 午夜影院日韩av| 国产又爽黄色视频| 国产精品,欧美在线| 亚洲精品国产精品久久久不卡| 国产一区二区三区在线臀色熟女| а√天堂www在线а√下载| 午夜福利在线观看吧| 91国产中文字幕| 午夜精品久久久久久毛片777| 一进一出抽搐动态| 成人国语在线视频| 熟女少妇亚洲综合色aaa.| 久久人妻av系列| 精品久久久久久久人妻蜜臀av | 色在线成人网| 一进一出好大好爽视频| 国产午夜精品久久久久久| 久久久精品欧美日韩精品| 欧美日韩亚洲综合一区二区三区_| 日日干狠狠操夜夜爽| 桃红色精品国产亚洲av| 黄色片一级片一级黄色片| x7x7x7水蜜桃| 91麻豆av在线| 国产在线精品亚洲第一网站| 91在线观看av| 一级黄色大片毛片| 亚洲国产精品合色在线| 久久久精品国产亚洲av高清涩受| 精品国产一区二区久久| 麻豆av在线久日| 真人一进一出gif抽搐免费| 老司机午夜十八禁免费视频| 少妇的丰满在线观看| 国产片内射在线| 91精品国产国语对白视频| 香蕉久久夜色| 国产精品乱码一区二三区的特点 | 国产高清有码在线观看视频 | 丰满人妻熟妇乱又伦精品不卡| av天堂久久9| 色综合婷婷激情| 岛国在线观看网站| 亚洲熟女毛片儿| 99国产极品粉嫩在线观看| 一区福利在线观看| 国产欧美日韩精品亚洲av| 久久久精品欧美日韩精品| a级毛片在线看网站| 人人妻人人澡人人看| 欧美日韩亚洲国产一区二区在线观看| 中文字幕最新亚洲高清| 亚洲国产欧美网| 少妇 在线观看| 神马国产精品三级电影在线观看 | 色av中文字幕| 成人18禁高潮啪啪吃奶动态图| 色播在线永久视频| 国语自产精品视频在线第100页| 精品国产超薄肉色丝袜足j| 亚洲精品在线观看二区| 婷婷六月久久综合丁香| АⅤ资源中文在线天堂| 18禁美女被吸乳视频| 99riav亚洲国产免费| 性少妇av在线| 最近最新中文字幕大全电影3 | 欧美黄色淫秽网站| 亚洲第一电影网av| 中文字幕高清在线视频| 97人妻天天添夜夜摸| 日韩欧美国产一区二区入口| 在线永久观看黄色视频| 亚洲熟妇熟女久久| 久久久久久久精品吃奶| 真人一进一出gif抽搐免费| 大码成人一级视频| 亚洲精品av麻豆狂野| 在线十欧美十亚洲十日本专区| 侵犯人妻中文字幕一二三四区| 国产三级在线视频| 精品乱码久久久久久99久播| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品久久久久久亚洲av鲁大| 欧美在线黄色| 韩国精品一区二区三区| 美女大奶头视频| 国产一区二区三区综合在线观看| 亚洲男人天堂网一区| 国产一卡二卡三卡精品| 精品乱码久久久久久99久播| 久久天堂一区二区三区四区| 久久久久久久午夜电影| 夜夜爽天天搞| 国内精品久久久久久久电影| 亚洲精品国产色婷婷电影| 成人欧美大片| 在线观看免费视频日本深夜| 久久久国产欧美日韩av| 欧美午夜高清在线| 少妇裸体淫交视频免费看高清 | 国产日韩一区二区三区精品不卡| 熟妇人妻久久中文字幕3abv| 老司机靠b影院| 国产主播在线观看一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 90打野战视频偷拍视频| 色精品久久人妻99蜜桃| 精品无人区乱码1区二区| 久久久久久久久免费视频了| 熟妇人妻久久中文字幕3abv| 日韩免费av在线播放| 一区二区日韩欧美中文字幕| 女性生殖器流出的白浆| av超薄肉色丝袜交足视频| 欧美色欧美亚洲另类二区 | 午夜福利一区二区在线看| 国产一区二区激情短视频| 免费观看人在逋| 黄色片一级片一级黄色片| 制服人妻中文乱码| 曰老女人黄片| av天堂在线播放| 久久中文看片网| 人成视频在线观看免费观看| 国产精品秋霞免费鲁丝片| 国产精品一区二区免费欧美| 在线视频色国产色| 国产精品,欧美在线| cao死你这个sao货| 免费不卡黄色视频| 午夜久久久久精精品| 欧美日韩瑟瑟在线播放| 99国产极品粉嫩在线观看| 一二三四社区在线视频社区8| 色精品久久人妻99蜜桃| 中文字幕色久视频| 午夜日韩欧美国产| 国产一级毛片七仙女欲春2 | 亚洲欧美日韩无卡精品| 女性生殖器流出的白浆| 男人的好看免费观看在线视频 | 久久精品国产亚洲av香蕉五月| 国产亚洲欧美在线一区二区| 禁无遮挡网站| 法律面前人人平等表现在哪些方面| 国产伦一二天堂av在线观看| 亚洲一区二区三区色噜噜| 一区福利在线观看| 欧美激情高清一区二区三区| 国产av又大| 亚洲男人的天堂狠狠| 在线观看舔阴道视频| 每晚都被弄得嗷嗷叫到高潮| av视频免费观看在线观看| 少妇裸体淫交视频免费看高清 | 91在线观看av| 18禁观看日本| 一二三四社区在线视频社区8| 亚洲精华国产精华精| 久久久久国产一级毛片高清牌| 男男h啪啪无遮挡| 亚洲电影在线观看av| 国产男靠女视频免费网站| 日本精品一区二区三区蜜桃| 亚洲精华国产精华精| 狂野欧美激情性xxxx| 日韩欧美在线二视频| 高潮久久久久久久久久久不卡| 超碰成人久久| 最好的美女福利视频网| 亚洲人成77777在线视频| 久久久国产成人免费| 午夜成年电影在线免费观看| www日本在线高清视频| 午夜免费成人在线视频| 99国产精品免费福利视频| 桃红色精品国产亚洲av| 最近最新中文字幕大全电影3 | 夜夜夜夜夜久久久久| 在线观看舔阴道视频| av中文乱码字幕在线| 午夜福利免费观看在线| 欧美日韩一级在线毛片| 可以在线观看毛片的网站| 老司机靠b影院| 亚洲av成人av| 给我免费播放毛片高清在线观看| 亚洲欧洲精品一区二区精品久久久| 天天一区二区日本电影三级 | 欧美成狂野欧美在线观看| 国内久久婷婷六月综合欲色啪| 天天一区二区日本电影三级 | 夜夜夜夜夜久久久久| 成人欧美大片| 欧美一区二区精品小视频在线| 19禁男女啪啪无遮挡网站| 一级作爱视频免费观看| 久久青草综合色| 亚洲熟女毛片儿| 少妇被粗大的猛进出69影院| 最近最新免费中文字幕在线| 国内久久婷婷六月综合欲色啪| 亚洲色图av天堂| 中文字幕人成人乱码亚洲影| 日韩欧美免费精品| 欧美一级毛片孕妇| 久久精品亚洲熟妇少妇任你| 日本欧美视频一区| 免费搜索国产男女视频| 国内久久婷婷六月综合欲色啪| 夜夜看夜夜爽夜夜摸| 国产免费av片在线观看野外av| 国产精华一区二区三区| 日韩大尺度精品在线看网址 | 男人的好看免费观看在线视频 | 国产一区二区三区综合在线观看| 国产av又大| 麻豆一二三区av精品| 免费看a级黄色片| 两个人视频免费观看高清| 午夜福利成人在线免费观看| 九色亚洲精品在线播放| 黄片小视频在线播放| 这个男人来自地球电影免费观看| 50天的宝宝边吃奶边哭怎么回事| 一进一出抽搐gif免费好疼| av在线天堂中文字幕| 熟女少妇亚洲综合色aaa.| 在线观看免费视频日本深夜| 国产精品一区二区三区四区久久 | 黑丝袜美女国产一区| 欧美中文日本在线观看视频| 老司机在亚洲福利影院| 宅男免费午夜| 欧美日韩福利视频一区二区| 香蕉久久夜色| 巨乳人妻的诱惑在线观看| a在线观看视频网站| 怎么达到女性高潮| 色在线成人网| av超薄肉色丝袜交足视频| 国产成人av激情在线播放| 日韩欧美国产一区二区入口| 欧美激情久久久久久爽电影 | 99久久精品国产亚洲精品| 又黄又爽又免费观看的视频| 久久精品国产清高在天天线| 国产亚洲av嫩草精品影院| 免费一级毛片在线播放高清视频 | 欧美色欧美亚洲另类二区 | 99国产综合亚洲精品| 精品日产1卡2卡| 一边摸一边做爽爽视频免费| 亚洲精品美女久久av网站| 国产欧美日韩一区二区精品| 一级毛片高清免费大全| 免费少妇av软件| 丝袜人妻中文字幕| 免费看a级黄色片| 午夜福利一区二区在线看| 亚洲精华国产精华精| 一级毛片女人18水好多| 亚洲av成人不卡在线观看播放网| 变态另类丝袜制服| 国产精品秋霞免费鲁丝片| 又黄又爽又免费观看的视频| 黄片小视频在线播放| 三级毛片av免费| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区三| 人人妻人人澡人人看| 少妇熟女aⅴ在线视频| 免费在线观看完整版高清| 免费在线观看黄色视频的| 久久国产亚洲av麻豆专区| 色在线成人网| av网站免费在线观看视频| 精品久久久久久久久久免费视频| 亚洲 欧美 日韩 在线 免费| 亚洲精品粉嫩美女一区| 免费在线观看亚洲国产| 美女国产高潮福利片在线看| 久久久久亚洲av毛片大全| 视频区欧美日本亚洲| 精品久久蜜臀av无| 日本黄色视频三级网站网址| 宅男免费午夜| 久久久精品国产亚洲av高清涩受| 女人爽到高潮嗷嗷叫在线视频| 在线观看一区二区三区| 国产av又大| 国产熟女xx| 国产一卡二卡三卡精品| 精品国产一区二区久久| 不卡av一区二区三区| 两个人免费观看高清视频| 在线观看免费午夜福利视频| 欧美性长视频在线观看| 欧美黑人欧美精品刺激| 国产亚洲欧美98| 午夜两性在线视频| 成人免费观看视频高清| 亚洲男人的天堂狠狠| 午夜视频精品福利| 18禁美女被吸乳视频| 九色国产91popny在线| 村上凉子中文字幕在线| 国产精品久久久久久人妻精品电影| 啦啦啦韩国在线观看视频| 日韩 欧美 亚洲 中文字幕| 黄片大片在线免费观看| 精品卡一卡二卡四卡免费| 一级a爱片免费观看的视频| 午夜免费激情av| 欧美日本视频| 国产91精品成人一区二区三区| 一进一出抽搐动态| 老司机深夜福利视频在线观看| 国产高清激情床上av| bbb黄色大片| 侵犯人妻中文字幕一二三四区| 亚洲狠狠婷婷综合久久图片| 正在播放国产对白刺激| 亚洲 欧美 日韩 在线 免费| 国产一区二区三区在线臀色熟女| 免费在线观看亚洲国产| 夜夜看夜夜爽夜夜摸| 日本免费a在线| 看免费av毛片| 日韩精品免费视频一区二区三区| 中文字幕人妻熟女乱码| 成人国产综合亚洲| 亚洲无线在线观看| 精品久久久久久成人av| 999久久久精品免费观看国产| 国产精品av久久久久免费| 精品第一国产精品| 久9热在线精品视频| netflix在线观看网站| 国产主播在线观看一区二区| 欧美日韩福利视频一区二区| 在线十欧美十亚洲十日本专区| 国产欧美日韩精品亚洲av| 老司机福利观看| 日韩免费av在线播放| 免费人成视频x8x8入口观看| 看片在线看免费视频| 黄色女人牲交| 精品熟女少妇八av免费久了| 不卡av一区二区三区| 亚洲精品国产精品久久久不卡| 色尼玛亚洲综合影院| 好男人电影高清在线观看| 一个人观看的视频www高清免费观看 | 97人妻精品一区二区三区麻豆 | 亚洲av日韩精品久久久久久密| 熟女少妇亚洲综合色aaa.| 韩国精品一区二区三区| 久久精品成人免费网站| 亚洲专区字幕在线| www.999成人在线观看| 亚洲男人的天堂狠狠| 好男人电影高清在线观看| 电影成人av| 欧美乱色亚洲激情| 国产精品九九99| 欧美大码av| av在线播放免费不卡| 非洲黑人性xxxx精品又粗又长| 国产精品亚洲一级av第二区| 国产高清有码在线观看视频 | 黄色女人牲交| 国产一区在线观看成人免费| 久久午夜亚洲精品久久| 欧美日韩精品网址| 亚洲成人国产一区在线观看| 日韩三级视频一区二区三区| 可以在线观看的亚洲视频| 99国产精品一区二区三区| 深夜精品福利| 狂野欧美激情性xxxx| 老汉色∧v一级毛片| 制服丝袜大香蕉在线| 成人18禁高潮啪啪吃奶动态图| 日韩欧美国产一区二区入口| 麻豆av在线久日| 精品高清国产在线一区| av欧美777| 18禁黄网站禁片午夜丰满| 国产精品1区2区在线观看.| 极品教师在线免费播放| 国产精品一区二区在线不卡| 色在线成人网| 好男人在线观看高清免费视频 | 老司机福利观看| 欧美亚洲日本最大视频资源| 亚洲av电影在线进入| 精品第一国产精品| av欧美777| 欧美一级毛片孕妇| 无遮挡黄片免费观看| 国产成人av教育| 每晚都被弄得嗷嗷叫到高潮| 成年人黄色毛片网站| 黑人巨大精品欧美一区二区mp4| 日日干狠狠操夜夜爽| 精品高清国产在线一区| 一二三四社区在线视频社区8| 精品久久蜜臀av无| 欧美日本亚洲视频在线播放| 人人妻人人澡人人看| 亚洲国产欧美日韩在线播放| 18美女黄网站色大片免费观看| 亚洲一区二区三区不卡视频| 亚洲片人在线观看| 18禁黄网站禁片午夜丰满| 妹子高潮喷水视频| 日韩高清综合在线| 亚洲最大成人中文| 一区福利在线观看| 视频在线观看一区二区三区| 免费久久久久久久精品成人欧美视频| 日韩欧美国产在线观看| 少妇熟女aⅴ在线视频| 午夜影院日韩av| 99热只有精品国产| 国产伦人伦偷精品视频| 黄片大片在线免费观看| 国产单亲对白刺激| 精品高清国产在线一区| 久久精品影院6| 99精品在免费线老司机午夜| 大香蕉久久成人网| 在线十欧美十亚洲十日本专区| 极品教师在线免费播放| 久久久久久久久中文| www.999成人在线观看| 两个人看的免费小视频| 在线观看免费视频网站a站| 亚洲男人的天堂狠狠| 久久国产精品男人的天堂亚洲| 首页视频小说图片口味搜索| 久久久久亚洲av毛片大全| 亚洲人成伊人成综合网2020| 久久久久久人人人人人| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三区视频在线观看免费| 色播亚洲综合网| 老熟妇乱子伦视频在线观看| 精品国产乱码久久久久久男人| netflix在线观看网站| videosex国产| 中文字幕久久专区| 久久久水蜜桃国产精品网| 最新美女视频免费是黄的| 亚洲视频免费观看视频| 伦理电影免费视频| 男人舔女人下体高潮全视频| 十分钟在线观看高清视频www| 涩涩av久久男人的天堂| 国产区一区二久久| 国产男靠女视频免费网站| 女人精品久久久久毛片| 午夜福利18| 精品欧美一区二区三区在线| 欧美在线黄色| 免费久久久久久久精品成人欧美视频| 一a级毛片在线观看| www.精华液| 一区福利在线观看| 国产激情久久老熟女| 国产精品影院久久| 国产麻豆成人av免费视频| 嫩草影视91久久| 性少妇av在线| 欧美av亚洲av综合av国产av| 老司机午夜十八禁免费视频| 人人妻,人人澡人人爽秒播| 夜夜夜夜夜久久久久| 一级a爱片免费观看的视频| 欧美另类亚洲清纯唯美| 久久婷婷人人爽人人干人人爱 | 亚洲国产精品sss在线观看| 老司机福利观看| 男人舔女人下体高潮全视频| 欧洲精品卡2卡3卡4卡5卡区| 一进一出好大好爽视频| 9色porny在线观看| 国产一区二区三区综合在线观看| 欧美最黄视频在线播放免费| 美女高潮到喷水免费观看| 日日爽夜夜爽网站| 成人亚洲精品一区在线观看| 韩国av一区二区三区四区| 亚洲七黄色美女视频| 国产精品99久久99久久久不卡| 在线观看午夜福利视频| 日本黄色视频三级网站网址| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩精品青青久久久久久| 女人精品久久久久毛片| 日本欧美视频一区| 高清在线国产一区| 美女高潮喷水抽搐中文字幕| 国产激情欧美一区二区| 国产精品自产拍在线观看55亚洲| 一本综合久久免费| 两个人视频免费观看高清| 变态另类成人亚洲欧美熟女 | 国产精品1区2区在线观看.| 男人的好看免费观看在线视频 | 十分钟在线观看高清视频www| 丁香欧美五月| 国产成人啪精品午夜网站| 午夜免费观看网址| 国内精品久久久久精免费| 91成年电影在线观看| 超碰成人久久| 日韩高清综合在线| 每晚都被弄得嗷嗷叫到高潮| 非洲黑人性xxxx精品又粗又长| 12—13女人毛片做爰片一| 99久久国产精品久久久| 久久人人精品亚洲av| 国产单亲对白刺激| av欧美777| 91老司机精品| 琪琪午夜伦伦电影理论片6080| 精品国产国语对白av| 国产高清videossex| 欧美老熟妇乱子伦牲交| 日日摸夜夜添夜夜添小说| 精品国产乱码久久久久久男人| 在线十欧美十亚洲十日本专区| 日韩av在线大香蕉| 妹子高潮喷水视频| 老司机午夜十八禁免费视频| 涩涩av久久男人的天堂|