• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    有雙重固硫作用的PEDOT包覆MnO2納米管陰極用于高性能的鋰硫電池

    2019-05-07 07:27:58潘沛鋒劉瑞卿朱紅麗馮曉苗沈清明黃鎮(zhèn)東馬延文
    關(guān)鍵詞:朱紅郵電大學(xué)納米管

    葛 優(yōu) 潘沛鋒 彭 霞 劉瑞卿 朱紅麗 馮曉苗 沈清明 黃鎮(zhèn)東 馬延文

    (南京郵電大學(xué)有機(jī)電子與信息顯示重點(diǎn)實(shí)驗(yàn)室暨先進(jìn)材料研究所(IAM),南京 210023)

    0 Introduction

    At present,among the rechargeable batteries,lithium-sulfur batteries are expected to satisfy various energy storage and conversion demands because of high theoretical specific capacity of sulfur element(1 675 mAh·g-1)and specific energy density of Li-S batteries (2 600 Wh·kg-1),abundant resources in natural,low cost,and environmentally friendly[1-7].However,the practical application of lithium-sulphur batteries is still hindered by some drawbacks.For instance,(a)large volumetric change of sulfur cathode during charge and discharge process leading poor cycling performance[8];(b)the excessive dissolution of polysulfides and subsequent “shuttle effect” resulting in specific capacity decline rapidly[9-15];(c)insulative sulfur and lithium polysulfide with low electronic conductivity reducing the rate capacities of Li-S batteries[16-17].

    In order to solve the above problems,a number of strategies have been developed to optimize the composition and the structure of the sulfur cathode.Most host materials for sulfur are carbonous materials,such as micro-/mesoporous carbon[18],carbon spheres[19],carbon nanotubes/nanofibers[20],and graphene[21].These hostmaterials notonly improve the electronic conductivity ofsulfur-based electrodes,butalso capture the polysulfides to retard the shuttling of soluble polysulfides.On the other hand,conducting polymers,such as poly(3,4-ethylenedioxythiophene)(PEDOT)[22-23],polyaniline (PANI)[24]and poly(acrylic acid)(PAA)[25],have also been used as host materials forsulfurattributing to theirhigh conductivity,flexibility and thermal stability.However,the intermolecular interactions between lithium polysulfides(LiPSs) and carbonous materials or conducting polymers are weak because of physically confining LiPSs due to their non-polar characteristic,the LiPSs diffuse out of the cathode and eventually migrate to the anode easily.

    Recently,sulfur host materials exhibiting strong chemical interactions with LiPSs have been studied and appeared to be an effective approach to stabilizing the capacity,including modified carbonaceous materials[26],functional polymeric materials[27].Introduction of electronegative N atoms into the carbon lattice,such as mesoporous N-doped carbon,induces asymmetric charge distribution.This affects the net polarity,creating sites for binding LiPSs[28-29].Moreover,metal oxides such as MnO2[30],TiO2[31],TiO[32],V2O5[33]and Al2O3[34],and metal sulfides including TiS2[35],WS2[36]and CoS2[37]have been proposed as effective lithium polysulfides trappers by utilizing the strong chemical adsorption.As a polar oxide,MnO2has high binding energy between MnO2and LiPSs because of the presence of stronger polar chemical bond.Extensive efforts have been devoted to the development of nanostructures for trapping LiPSs,such as MnO2nanowires[38],MnO2nanosheets[39]and MnO2nanoparticles[40].However,these solid structures restrict the content of sulfur loading and cannot solve the large volumetric change ofsulfurcathode.Meantime,conductivities of metal oxides are low,leading to low sulfur utilization and poor rate performance.Therefore,the combination ofpolarhollow materials and conducting matrix with rationally designed structures is a desired strategy to enhance the electrochemical properties of sulfur cathode.So far,the research of hollow MnO2nanotubes for sulfur host is comparatively rare.Only the PPy-MnO2coaxial nanotubes have been synthesized to solve the above problems due to the high conductivity of PPy,the strong chemical adsorption and hollow structure of MnO2nanotubes[41].However,in the preparation procedure,the MnO2nanowires were used as template and the hollow MnO2nanotubes were prepared by acid etching.The complex preparation process significantly affected the manufacturability of the sulfur cathode.Therefore,there is still a challenge to design innovative method and nanostructures for efficaciously encapsulation of sulfur.

    Herein,the hollow α-MnO2-PEDOT nanotubes were prepared through a facile template-free hydrothermalself-assembly in situ polymerization to immobilize sulfur.In the composite structure,the MnO2hollow nanotubes not only enhance the sulfur loading and accommodate volumetric change of sulfur,but also provide combined role of chemical and physicaladsorption forlithium polysulfides.The chemical adsorption attribute to Mn-S bond which is conducive to limit lithium polysulfides.The physical adsorption is produced by hollow nanotube morphology.Besides,S@MnO2combiningwithPEDOT could enhance the conductive of S@α-MnO2-PEDOT and reduce the excessive dissolution of polysulfides.After combining with the conductive polymer PEDOT,the S@MnO2-PEDOT nanocomposites electrode revealed the excellent discharge specific capacity of 774.8 mAh·g-1at 1.0C after 200 cycles,which effectively perfects the electrochemical properties of Li-S batteries.

    1 Experimental

    1.1 Synthesis of urchin-like α-MnO2nanotubes

    All the reactants and solvents were analytical grade and used without further purification.Urchinlike α-MnO2nanotubes were produced by hydrothermal method.In a typical process,0.17 g of KMnO4was dispersed in 18 mL of deionized water(DI)to form a clear solution under magnetic stirring for 30 min.Subsequently,2 mL of HCl(2 mol·L-1)was added to the clear solution dropwise under magnetic stirring.It was then transferred into an autoclave and heated to 120℃for 12 h.The hydrothermal product was collected by centrifugation and rinsed several times with DI and ethanol.

    1.2 Synthesis of S@α-MnO2composites

    The mixtures of prepared urchin-like α-MnO2nanotubes and sulfur were sealed and heated to 155℃for 10 hours.Then,the mixtures were heated to 250℃under argon flow for 30 min in tube furnace to eliminate the sulfur on the outside surface of the α-MnO2nanotubes by evaporation.The resulting S@α-MnO2composites with the sulfur loading of 71.09%(w/w)were obtained,according to the thermogravimetric analysis(TGA).

    1.3 Synthesis of S@α-MnO2-PEDOT

    A simple in situ polymerization process was used to coat the PEDOTs on the surface of S@α-MnO2composite.Typically,50 mg S@α-MnO2composites were dispersed into the different quantity(4,2,1 mg)of 3,4-ethylenedioxythiophene(EDOT)solution at room temperature.Then different quantity(12.50,6.25,3.12 mg)of oxidant FeCl3solution was added dropwise sequencingly.After stirring for 6 hours,the final product was collected by centrifugation,washed by distilled water several times,and then dried at 60℃overnight.

    1.4 Characterization

    XRD measurements were carried out on a Philip XRD X′PERT PRO X-ray diffractometer operating at 40 kV and 40 mA,and using Cu Kα radiation(λ=0.154 18 nm).The diffraction patterns were performed in the 2θ range of 10°~80°.The structure and morphology were characterized by SEM (Hitachi S-4800 at 10 kV)and TEM (Hitachi 7700 at 100 kV).High-resolution TEM(HRTEM)images were recorded on FEITalosF200X field-emission transmission electron microscope operated at 200 kV.Raman spectroscopy was carried out using a Renishaw inVia Raman microscope with a 532 nm laser with exposure time of 10 s,the laser power was reduced to 1%to minimize the sublimation of sulfur due to the laser heating.Chemical bonding nature was analyzed by X-ray photoelectron spectroscopy(PHI 5000 Versa Probe).Thermogravimetric analysis was used to determine the sulfur content of the material on a TGA instrument(NETZSCH STA-449 C)employing a heating rate of 10℃·min-1from room temperature to 700℃ under a nitrogen flow.

    CR2032-type coin cells were assembled in a glovebox filled with argon.The working electrodes were prepared by mixing 70%(w/w)active materials,20%(w/w)acetylene black and 10%(w/w)polyvinylidene fluoride (PVDF)binder in N-methyl pyrrolidinone(NMP).The slurries were homogeneously coated on to aluminum foil current collectors.The electrodes were dried at 60℃for 12 h under vacuum.Subsequently,the electrodes were cut into disks with a diameter of 13 mm.A piece of lithium foil was used for the combined counter and reference electrodes.1.0 mol·L-1lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)in 1,3-dioxolane and 1,2-dimethoxyethane(volume ratio,1∶1)with 1%(w/w)LiNO3as an additive was used as the electrolyte.The LiNO3was added to help passivate the surface of the lithium anode and reduce the “shuttle effect”.Celgard 2400 was used as a separatorfilm.The cycle performances,rate capability and galvanostatic charge/discharge tests were carried out on LAND CT2001A in a potential range of 1.5~2.8 V (vs Li/Li+).The specific capacity was calculated based on the weight of sulfur.Cyclic voltammetry (scan rate:0.2 mV·s-1,cut-off voltage:1.5~2.8 V)and electrochemical impedance spectra(frequency range from 100 kHz to 10 mHz)were measured with an electrochemical workstation VMP3.

    2 Results and discussion

    2.1 Structure characterization

    The formation mechanism of hollow urchin-like morphology of manganese dioxide can be explained by the process ofOstwald maturation.In general,permanganic acidradical is unstable on thermodynamics and it is easy to be reduced to manganese dioxide.Therefore,the reaction occurred rapidly in an acidic environment and at a high temperature under hydrothermal condition.Atthebeginningofthe reaction,a large number of MnO2crystal nuclei condensed into MnO2microspheres and MnO2nanorods grew outwards along the surface of the microsphere,the formation of the hollow urchin-like structure was attributed to the gradual disappearance of the core.The formation of MnO2nanotubes was mainly due to the etching of MnO2nanorods by hydrochloric acid.In the hydrothermal condition,hollow urchin-like morphology of MnO2can be reflected in the intensification of the etching.The redox reaction can be described by Equation(1)as follows.

    The scanning electron microscopy (SEM)images of α-MnO2(Fig.1(a~c),Fig.S1,Supporting Information)exhibit the 3D structure of urchin-like morphology at different magnifications.The urchin-like microspheres assembled by a large number of short-sized nanotubes of manganese dioxide dispersed from the center to the outside can be observed from Fig.1(a,b).From Fig.1c,the manganese dioxide nanotubes with hollow structure can be seen clearly as green ellipses shown.TEM images(Fig.1(d~e))also revealed that the obvious hollow structure ofα-MnO2nanotubes and the nanotubes had a diameter of approximately 120 nm.The lattice fringe with an interplanar spacing of about 0.31 nm that corresponded to the (310)plane of α-MnO2was further identified from the inset of Fig.1e.The high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM)image and elemental mappings of MnO2nanotubes exhibit the element distribution of Mn and O along the length of nanotube in Fig.2f.

    After the melt-diffusion stage,the S@α-MnO2nanotubes morphology (Fig.2a)was maintained well except for the rough surface compared with the pristine MnO2nanotubes (Fig.1c).To give further insight into the morphology and structure of the S@α-MnO2,TEM analysis has been carried out.Fig.2b reveals that the solid rods,indicating the sulfur was successfully encapsulated in hollow tubes of MnO2.After the solid rods of S@α-MnO2were coated by PEDOT,there was obviously cladding on the outer surface as shown in Fig.2c,and the enlarged image(Fig.S2)shows the wrapped nanotube of S@α-MnO2-PEDOT with a diameter of approximately 140 nm.Fig.2d further reveals the presence of PEDOT and the thickness was approximately 10 nm under the mass ratio of S@α-MnO2composites and EDOT with 50∶2.For comparison,other different mass ratios(50∶1,50∶4)were also carried out,their thicknesses were 5 and 20 nm,respectively (Fig.S3).Moreover,the HAADFSTEM and TEM elemental mappings confirmed the existence and homogeneous distribution of Mn,O,S and C elements in S@α-MnO2(Fig.2e)and S@α-MnO2-PEDOT (Fig.2f),respectively.The high voltage and volatilization of some sulfur during TEM testing resulted in the hollow structure to some extent.

    The X-ray diffraction (XRD)pattern indicates tetragonal crystal system of hollow urchin-like α-MnO2.The α-MnO2had tunnel structures which was one of five known mineral polymorphs of manganese oxide.The crystal structure of α-MnO2was tunnel structures of[1×1]and [2×2]which being composed by singleordouble chain according to[MnO6]octahedral along public edges[42].As shown in the Fig.3a,the main diffraction peaks of α-MnO2at around 12.9°,17.9°,28.6°,37.5°,42.0°,49.8°,56.3°,60.1°,65.4°,69.4°and 73.2°,which was consistent with the diffraction peaks of the tetragonal crystal system of α-MnO2(PDF No.44-0141)reported in the literature[43].The product had good crystallization because all diffraction peaks were sharp in Fig.3a.Also,the XRD patterns of S@α-MnO2and S@α-MnO2-PEDOT were almost the same to that of elemental sulfur with preponderant peaks at 23.02°,26.26°,27.65°,and 28.61°,indicating sublimed sulfur was successfully infiltrated into α-MnO2nanotubes and α-MnO2-PEDOT composites,and the diffraction peaks were in good agreement with the standard cards of sulfur(PDF No.08-0247)and manganese dioxide.Because of the existence of PEDOT,the diffraction peak intensity was weak compared with pure MnO2.The sulfur contents of S@α-MnO2-PEDOT composites with different mass ratio of S@α-MnO2composites and EDOT were demonstrated by thermogravimetric analysis(TGA)in Fig.S4.In the TGA,the sulfur volatilized when temperature reached~160℃ showing steep weight loss and the slight weight loss around 500℃could be attributed to the pyrolysis of PEDOT.In the control sample,the residualmoisture content was about 3%(w/w).The TGA reveals that the sulfur contents(mass percentage)of S@α-MnO2-PEDOT nanocomposites are 69.75%(50∶1),70.40%(50∶2)and 71.91%(50∶4).The Raman spectrum of S@α-MnO2-PEDOT composites was as provided to investigate the structural information(Fig.3b).The intensive peak at 1 443 cm-1was chiefly due to the C-C stretching vibration of the thiophene ring,rooting in the neutral parts existing between the localized elementary excitationssuch aspositive polarons or bipolarons generated upon doping[44-46].The peaks consisted in 1 502 and 1 565 cm-1were put down to the C=C asymmetric stretching vibrations of the thiophene rings in the middle and at the end of the chains,respectively[47].The peak at 635 cm-1was attributed to MnO2.Moreover,There were obvious Raman spectra of pure sulfur at 152.9,218.4 and 471.6 cm-1,which corresponded to the vibration of S-S bond in S@α-MnO2-PEDOT composites[48].To prove the interaction of polysulfides with α-MnO2nanotubes,the XPS analysis of pristine α-MnO2,the polysulfide and α-MnO2nanotubes were carried out.The XPS spectra of the whole spectrum of S@α-MnO2-PEDOT and Li2S6@α-MnO2-PEDOT are shown in Fig.S5.In Fig.3c,the Mn2p3/2spectrum showed two deconvoluted peaks at 641 and 642.3 eV,corresponding to Mn3+and Mn4+of pristine α-MnO2,respectively[49].As evident from Fig.3d,the oxidation of Li2S6resulted in the partial reduction of Mn4+to Mn3+and Mn2+.The peak intensity of Mn3+significantly enhanced,and the new peak located at 640~641 eV,which could be assigned to the Mn2+oxidation states.The results can be clearly seen further confirming the strong interaction of polysulfides with MnO2nanotubes,which can load more sulfur species around the Mn ion and trap more soluble polysulfides[50].

    Fig.3 (a)X-ray diffraction patterns of pristine sulfur,α-MnO2,S@α-MnO2andS@α-MnO2-PEDOT;(b)Raman spectra of S@α-MnO2-PEDOT;XPS spectra of(c)S@α-MnO2-PEDOT and(d)Li2S6@α-MnO2-PEDOT for Mn2p3/2

    2.2 Electrochemical performance

    Fig.4 CV curves of(a)S@α-MnO2electrode and(b)S@α-MnO2-PEDOT electrode for the first four cycles at a scan rate of 0.2 mV·s-1;(c)Nyquist plots of S@α-MnO2electrode and S@α-MnO2-PEDOT electrode before cycling;(d)Nyquist plots of S@α-MnO2-PEDOT electrode after cycling;(e)Initial discharge/charge voltage profiles of S@α-MnO2and S@α-MnO2-PEDOT electrodes(50∶2)at 1.0C;(f)Initial discharge/charge voltage profiles of S@α-MnO2-PEDOT electrodes with different PEDOT contents at 1.0C

    The electrochemical performances of the S@α-MnO2and S@α-MnO2-PEDOT composites were illustrated in the following research.The first four cycles of the CV curves of S@α-MnO2and S@α-MnO2-PEDOT nanocomposites are presented in Fig.4(a,b)in the potential range of 1.5~2.8 V at a scan rate of 0.2 mV·s-1.Unlike the CV curves of S@α-MnO2,the CV curves of S@α-MnO2-PEDOT had higher current,suggesting the betterconductivity ofS@α-MnO2-PEDOT by introduction of PEDOT.However,both of CV curves showed representative reduction and oxidation characteristic peaks for the lithium-sulfur batteries,and the peaks were at almost the same positions.Two typical reduction peaks at around 2.0 and 2.24 V could be attributed to the multistep reduction reaction of sublimed sulfur[51].The former was attributed to the reduction of S8to S82-,and the latter was related to further transformation of soluble long-chain polysulfide (Li2Sn,n=4~6)to produce insoluble short-chain polysulfides (Li2S or Li2S2)[52].In the oxidation process,the main peak at around 2.45 V corresponded to the reverse reactions of polysulfides back to S8.There was a significant reduction peak of CV in the first circle between 1.5 and 1.8 V in Fig.4b,which may be attributed to the formation of SEI film.Obviously,as the cycle proceeds,the cathodic peaks were shifted to higher potentials and the anodic peaks were shifted to lower potentials,indicating an improvement of reversibility of S@α-MnO2.To further investigate the dynamics of S@α-MnO2and S@α-MnO2-PEDOT nanocomposite.As shown in the Fig.4c,the electrochemical impedance spectroscopy(EIS)measurement was emerged.It can be seen that the EIS spectra included a depressed semicircle in the high frequency region and a sloping line(Warburg impedance)in the low frequency region.The semicircle is attributed to the charge-transfer process,which corresponds to the resistance over Li+diffusion through the contacting interface between the electrolyte and active material electrode.The sloping line reflects a semi-infinite Warburg diffusion process[53].The semicircle in the high frequency region is due to the interfacial charge transfer resistance(Rct).It is obviously shown that S@α-MnO2-PEDOT exhibited a lower Rct(ca.160 Ω)than that of S@α-MnO2(ca.220 Ω),revealing thatthe S@α-MnO2-PEDOT composites electrode has excellent electrical conductivity during the charge and discharge process and the presence of PEDOT in favor of electrochemical reaction kinetics.Fig.4d shows the EIS spectra of S@α-MnO2-PEDOT electrode after cycling.After the 50th cycle,the resistance of S@α-MnO2-PEDOT electrode was more than 300 Ω,which was larger than that after the 1st cycle,indicating a lowerelectronic conductivity because of the generation of LiPSs during cycling process.

    Fig.4e showsinitialdischarge/charge voltage profiles of S@α-MnO2and S@α-MnO2-PEDOT electrodes(50∶2).It is observed that there were two plateaus at typical discharge process.The lower voltage plateau at ca.2.0 V reflected the further reduction of highorder polysulfides to low-order polysulfides(Li2Sn,n<4)and finally to insoluble lithium sulfides(Li2S2/Li2S).In addition,the upper voltage plateau conformed with the conversion from S8to long chain polysulfides(Li2S8,Li2S6,or Li2S4).However,the charge plateau is related to the transformation from Li2S2/Li2S to Li2S8/S8,which agreed well with the CV analysis.The S@α-MnO2-PEDOT composites electrode(50∶2)showed the higher initial specific discharge capacity(1 672.2 mAh·g-1)than that of S@α-MnO2electrode(868.1 mAh·g-1).Importantly,the smaller voltage platform difference(0.445 V)of S@α-MnO2-PEDOT electrode compared with the voltage platform difference(0.473 V)of S@α-MnO2electrode suggests that the electrochemical reaction reversibility of the S@α-MnO2-PEDOT is higher relative to S@α-MnO2because of the presence of PEDOT.Fig.4f shows initial discharge/charge voltage profiles of S@α-MnO2-PEDOT electrodes with different PEDOT contents.These S@α-MnO2-PEDOT composites electrodes with different PEDOT contents show the initial specific discharge capacity values of 1 487.7(50∶1),1 672.2(50∶2)and 1 465.7 mAh·g-1(50∶4).

    Fig.5 (a)Rate capabilities of S@α-MnO2-PEDOT electrodes with different PEDOT contents;(b)Cycling performances of S@α-MnO2electrode at different current densities;(c)Cycling performances of S@α-MnO2-PEDOT electrodes with different PEDOT contents at the current density of 1.0C

    As shown in Fig.5a,the rate capabilities of S@α-MnO2-PEDOT composite electrodeswith different PEDOT contents under different current densities.It was tested by varying current densities from 335(0.2C)to 3 350 mA·g-1(2.0C).The rate capabilities of S@α-MnO2-PEDOT composites electrodes are much higher than that of S@α-MnO2electrode.It was clearly visible that the composite with mass ratio of 50∶2 obtained the best rate performance.The discharge capacities were 1 582.8,1 209.4,1 000.1 and 854.1 mAh·g-1at the current densities of 0.2C,0.5C,1.0C and 2.0C,respectively.When the current density was reduced back to 0.2C,the capacity was recovered to 1 108.6 mAh·g-1,indicating that relatively good stability at different current densities.The cycling performance and coulombic efficiency of S@α-MnO2electrode at the different current densities(0.5C,1C,2C;1C=1 675 mA·g-1)are shown in Fig.5b.The initial discharge capacities were 1 248.7(0.5C),868.1(1.0C)and 529.2(2.0C)mAh·g-1,respectively.And after 150 cycles,the capacities decayed to 549.2,496.8 and 332.9 mAh·g-1at 0.5C,1.0C and 2.0C,respectively.The capacity retentions respectively are 44.0%,57.2%and 62.9%.The coulombic efficiencies were basically above 97%.Apparently,it was important that α-MnO2nanotubes structure could effectively physically restrain the produced polysulfides and also had valid chemicalbond ofMn-S to adsorb polysulfides efficiently,which promoting the utilization of the active material and the reaction kinetics.Fig.5c presents the cycle performances and coulombic efficiencies of S@α-MnO2-PEDOT composite electrodes with different contents of PEDOT at the current densities of 1.0C.Among them,the initial specific discharge capacity values were 1 465.7(50∶4),1 672.2(50∶2),1 487.7(50∶1)and 868.1(50∶0)mAh·g-1,respectively.Obviously,the S@α-MnO2-PEDOT composite(50∶2)has the most remarkable cycle performance.After testing 200 cycles,the specific capacity could still achieve 774.4 mAh·g-1,and the coulombic effciency curve was relatively stable.The excellent electrochemical properties of S@α-MnO2-PEDOT composites were attributed to dual function of MnO2nanotubes and conductive PEDOT buffer layer.In the hybrid composites,MnO2nanotubes and PEDOT layer not only could physically restrict the sulfur/polysulfides inside the inner hollow structure to prevent polysulfides from dissolving into the electrolyte and succedent shuttle effect,but also relieve the volume expansion of S during discharge/charge process and provided a convenient transport channel for ions[54].Moreover,the bonding interaction between polysulfides and MnO2inhibited the chronic seeping of polysulfides and maintained the relative integrity of the electrode.In addition,highly conducting PEDOT layer provided efficient pathways for electron transport.The thicker PEDOT coating,the stronger the conductivity of the composite and more effective at binding sulfur,which resulted in the better electrochemical performance.However,the cycle performances of the S@α-MnO2-PEDOT composite(50∶4)and(50∶1)were similar after 100 cycles.This may be ascribed to the fact that the thicker PEDOT coating has a slight effect on the migration of ions.Therefore,the most superior electrochemical properties of S@α-MnO2-PEDOT composite(50∶2)were presented.The presence of conductive PEDOT buffer layer,effective MnO2nanotubes matrix,bonding interaction between polysulfides and MnO2,and synergistic effect among them yield a robust architecture for enhancing the electrochemical performances of lithium sulfur batteries.

    3 Conclusions

    In summary,a sulfur cathode has been prepared using hollow α-MnO2nanotubes and exterior PEDOT coating as host materials to immobilize sulfur and capture polysulfides.The hollow α-MnO2nanotube structure not only can accommodate volumetric change ofsulfur,butalso can provide conveniention channels and physical constraint for sulfur/polysulfides.It also can effectively adsorb the polysulfides produced during charge-discharge process by the formation of chemical bond of Mn-S.Moreover,a buffer layer of PEDOT was covered on the surface of MnO2to further enhance the conductivity of the composite cathodes,accelerate electronic transmission,and boost stability of the composites.The S@α-MnO2-PEDOT composites exhibited excellent electrochemical performance.It could reach a capacity of 774.4 mAh·g-1at a current density of 1 675 mA·g-1(1C)after 200 cycles and 854.1 mAh·g-1at a current density of 3 350 mA·g-1(2C).The research provides an effective approach for the preparation of highperformance sulfur cathodes based on tubular transition metal oxides with functionalizing conducting polymer,manifesting a promising pattern to achieve perfect stability,excellent reversibility,fast kinetics,high energy density and long cycle life for Li-S batteries.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    朱紅郵電大學(xué)納米管
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    西安郵電大學(xué)設(shè)計(jì)作品
    包裝工程(2022年10期)2022-05-27 05:17:12
    抗疫聚云端 一起向未來(lái)
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    重慶郵電大學(xué)學(xué)報(bào)( 自然科學(xué)版》2016年第28卷第1-6期總第114-125期
    《周禮》大宰九式研究
    古代文明(2016年2期)2016-04-26 07:14:47
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    Sediment rarefaction resuspension and contaminant release under tidal currents*
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    日韩精品免费视频一区二区三区| 久久精品成人免费网站| 亚洲av美国av| 亚洲成人手机| 巨乳人妻的诱惑在线观看| 精品一区在线观看国产| 中文精品一卡2卡3卡4更新| 日韩制服骚丝袜av| 考比视频在线观看| 国产精品成人在线| 欧美成人午夜精品| 亚洲国产欧美网| 婷婷丁香在线五月| 亚洲专区中文字幕在线| 亚洲专区国产一区二区| av天堂久久9| 久久精品国产a三级三级三级| 丁香六月天网| 性色av一级| 水蜜桃什么品种好| 免费人妻精品一区二区三区视频| 亚洲国产精品成人久久小说| 亚洲中文字幕日韩| 国产亚洲av高清不卡| 日韩制服骚丝袜av| 日本vs欧美在线观看视频| 亚洲av美国av| 在线天堂中文资源库| 少妇粗大呻吟视频| 在线观看www视频免费| 久久久精品94久久精品| 美女高潮到喷水免费观看| 精品亚洲成国产av| 成年女人毛片免费观看观看9 | 欧美精品人与动牲交sv欧美| 美国免费a级毛片| av在线播放精品| 亚洲av成人精品一二三区| 最新在线观看一区二区三区 | 亚洲国产精品999| 脱女人内裤的视频| 伦理电影免费视频| 精品久久蜜臀av无| 大陆偷拍与自拍| 久久久久久久久久久久大奶| 尾随美女入室| 午夜免费男女啪啪视频观看| 亚洲图色成人| 91九色精品人成在线观看| 国产人伦9x9x在线观看| 男女无遮挡免费网站观看| 亚洲,欧美精品.| 精品福利观看| 亚洲中文日韩欧美视频| 精品国产一区二区久久| 大片电影免费在线观看免费| 又粗又硬又长又爽又黄的视频| 一级毛片 在线播放| 夫妻午夜视频| 国产1区2区3区精品| 搡老乐熟女国产| 亚洲精品久久久久久婷婷小说| 丝瓜视频免费看黄片| 亚洲精品第二区| 国产欧美日韩一区二区三区在线| 精品第一国产精品| 激情五月婷婷亚洲| 脱女人内裤的视频| 久久 成人 亚洲| 中国国产av一级| 亚洲 欧美一区二区三区| 久久热在线av| 色播在线永久视频| 国产男女内射视频| 99国产精品99久久久久| 多毛熟女@视频| 脱女人内裤的视频| 水蜜桃什么品种好| 十分钟在线观看高清视频www| 国产日韩一区二区三区精品不卡| 丰满少妇做爰视频| www.自偷自拍.com| 在线精品无人区一区二区三| 国产亚洲精品第一综合不卡| 热99久久久久精品小说推荐| 午夜福利视频在线观看免费| av在线app专区| 中文精品一卡2卡3卡4更新| 亚洲欧洲日产国产| 在线看a的网站| 18禁国产床啪视频网站| 国产精品久久久久久精品古装| 亚洲国产欧美日韩在线播放| 日韩一区二区三区影片| 纯流量卡能插随身wifi吗| 天天躁日日躁夜夜躁夜夜| 亚洲精品日本国产第一区| 日本欧美国产在线视频| 夫妻午夜视频| 丰满迷人的少妇在线观看| 成人国语在线视频| 男女免费视频国产| 日韩人妻精品一区2区三区| 久久av网站| 久热这里只有精品99| 一区二区三区四区激情视频| 成年人黄色毛片网站| 最近最新中文字幕大全免费视频 | 狂野欧美激情性xxxx| 90打野战视频偷拍视频| www.999成人在线观看| 欧美日韩亚洲综合一区二区三区_| 国产精品一区二区在线观看99| 国产一区二区三区综合在线观看| 黑丝袜美女国产一区| 在线精品无人区一区二区三| 久久鲁丝午夜福利片| 青春草视频在线免费观看| 国产精品国产av在线观看| 激情视频va一区二区三区| 乱人伦中国视频| 黄片播放在线免费| 日日夜夜操网爽| 看十八女毛片水多多多| 少妇裸体淫交视频免费看高清 | 三上悠亚av全集在线观看| 无限看片的www在线观看| 老司机影院成人| 久久国产亚洲av麻豆专区| 美女福利国产在线| 亚洲欧美一区二区三区国产| 亚洲欧美日韩高清在线视频 | 精品欧美一区二区三区在线| 五月开心婷婷网| 久热这里只有精品99| 一边摸一边做爽爽视频免费| 好男人电影高清在线观看| 日韩免费高清中文字幕av| 国产日韩欧美视频二区| 日韩制服丝袜自拍偷拍| 男女高潮啪啪啪动态图| 69精品国产乱码久久久| 亚洲精品乱久久久久久| 一区在线观看完整版| 人人妻人人澡人人看| 99精品久久久久人妻精品| 亚洲av国产av综合av卡| 在线观看免费视频网站a站| 十八禁网站网址无遮挡| 天天添夜夜摸| 精品国产一区二区三区四区第35| 欧美黄色片欧美黄色片| 免费在线观看完整版高清| www.自偷自拍.com| 首页视频小说图片口味搜索 | 搡老乐熟女国产| 欧美大码av| 人妻人人澡人人爽人人| 国产免费视频播放在线视频| 丰满少妇做爰视频| 久久热在线av| 91九色精品人成在线观看| 国产精品 欧美亚洲| 亚洲 欧美一区二区三区| 午夜免费成人在线视频| 亚洲人成网站在线观看播放| 亚洲精品久久成人aⅴ小说| 亚洲成av片中文字幕在线观看| 宅男免费午夜| 美女高潮到喷水免费观看| 国产成人精品久久二区二区91| 中国美女看黄片| 欧美日韩福利视频一区二区| 一级片'在线观看视频| 只有这里有精品99| xxx大片免费视频| xxxhd国产人妻xxx| 亚洲国产最新在线播放| 女性被躁到高潮视频| 多毛熟女@视频| 夫妻午夜视频| 免费av中文字幕在线| 伦理电影免费视频| 成人黄色视频免费在线看| 成人国产av品久久久| 黄色片一级片一级黄色片| 18禁黄网站禁片午夜丰满| 成人三级做爰电影| 后天国语完整版免费观看| 如日韩欧美国产精品一区二区三区| 欧美黄色淫秽网站| 中文字幕色久视频| 精品一区二区三区av网在线观看 | 99香蕉大伊视频| 麻豆国产av国片精品| 亚洲综合色网址| 国产一区二区三区av在线| 自拍欧美九色日韩亚洲蝌蚪91| 人成视频在线观看免费观看| 亚洲av成人精品一二三区| 国产精品香港三级国产av潘金莲 | 日日夜夜操网爽| 美女福利国产在线| 悠悠久久av| 伊人久久大香线蕉亚洲五| 亚洲国产日韩一区二区| 黑人巨大精品欧美一区二区蜜桃| 国产亚洲欧美在线一区二区| 黄色一级大片看看| 母亲3免费完整高清在线观看| 桃花免费在线播放| 女人精品久久久久毛片| 亚洲美女黄色视频免费看| 在线精品无人区一区二区三| 天天操日日干夜夜撸| cao死你这个sao货| 男女床上黄色一级片免费看| 亚洲,欧美,日韩| 久久人人97超碰香蕉20202| 久久天堂一区二区三区四区| 久久狼人影院| 纯流量卡能插随身wifi吗| 久久亚洲国产成人精品v| 日韩欧美一区视频在线观看| 亚洲人成77777在线视频| 女人久久www免费人成看片| 欧美精品一区二区大全| 美女国产高潮福利片在线看| 极品少妇高潮喷水抽搐| 日韩 欧美 亚洲 中文字幕| 欧美亚洲日本最大视频资源| 亚洲欧美一区二区三区国产| 飞空精品影院首页| 亚洲精品一区蜜桃| 亚洲 国产 在线| 考比视频在线观看| 国产精品二区激情视频| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 午夜免费鲁丝| 精品卡一卡二卡四卡免费| 一级毛片电影观看| 一本久久精品| av线在线观看网站| 免费看av在线观看网站| 成人国语在线视频| 久久热在线av| 一本色道久久久久久精品综合| xxxhd国产人妻xxx| 午夜激情av网站| 好男人视频免费观看在线| 建设人人有责人人尽责人人享有的| 国产精品一二三区在线看| 九色亚洲精品在线播放| 国产亚洲精品第一综合不卡| 国产欧美日韩精品亚洲av| 久久久精品国产亚洲av高清涩受| 黄色片一级片一级黄色片| 欧美黄色淫秽网站| 成年女人毛片免费观看观看9 | 国产高清视频在线播放一区 | 老司机亚洲免费影院| 捣出白浆h1v1| 亚洲欧美一区二区三区国产| 韩国精品一区二区三区| 免费一级毛片在线播放高清视频 | 男女边吃奶边做爰视频| 中文字幕精品免费在线观看视频| 免费在线观看日本一区| 日本av手机在线免费观看| 亚洲欧美日韩高清在线视频 | 一区二区三区激情视频| 久久精品久久久久久久性| 欧美日韩黄片免| 人妻一区二区av| 欧美在线黄色| 成人亚洲精品一区在线观看| 亚洲人成电影观看| 亚洲熟女精品中文字幕| 国产男人的电影天堂91| 一区二区三区四区激情视频| 精品少妇内射三级| 自线自在国产av| 亚洲国产日韩一区二区| 中文字幕人妻丝袜制服| 狂野欧美激情性xxxx| 下体分泌物呈黄色| 91精品三级在线观看| 国产麻豆69| 啦啦啦中文免费视频观看日本| 国产欧美日韩一区二区三区在线| 女性生殖器流出的白浆| 国产黄色免费在线视频| 亚洲国产中文字幕在线视频| 丰满少妇做爰视频| 国产在线一区二区三区精| 人体艺术视频欧美日本| 熟女少妇亚洲综合色aaa.| 亚洲国产精品一区三区| 好男人电影高清在线观看| 欧美激情 高清一区二区三区| 欧美日韩一级在线毛片| 色婷婷久久久亚洲欧美| 亚洲第一青青草原| 久久这里只有精品19| 99久久综合免费| 热re99久久精品国产66热6| 18禁国产床啪视频网站| 国产精品成人在线| 七月丁香在线播放| 啦啦啦在线观看免费高清www| 亚洲中文日韩欧美视频| 久久国产精品影院| 国产日韩欧美亚洲二区| 亚洲av美国av| 国产福利在线免费观看视频| 亚洲图色成人| 久久久欧美国产精品| 国产av精品麻豆| 色婷婷av一区二区三区视频| 色视频在线一区二区三区| 国产成人免费观看mmmm| 日日爽夜夜爽网站| av在线播放精品| 国产深夜福利视频在线观看| 亚洲精品美女久久久久99蜜臀 | 亚洲色图综合在线观看| 最近手机中文字幕大全| 啦啦啦在线免费观看视频4| 中文字幕制服av| 欧美黑人精品巨大| 美女脱内裤让男人舔精品视频| 看十八女毛片水多多多| 香蕉丝袜av| 丝袜人妻中文字幕| 少妇裸体淫交视频免费看高清 | 亚洲国产精品国产精品| tube8黄色片| 午夜两性在线视频| 两个人免费观看高清视频| 国产不卡av网站在线观看| 男女之事视频高清在线观看 | 国产精品久久久人人做人人爽| 男的添女的下面高潮视频| 久久久亚洲精品成人影院| 久久久久精品国产欧美久久久 | 母亲3免费完整高清在线观看| 婷婷色综合大香蕉| 真人做人爱边吃奶动态| 大片免费播放器 马上看| 国产欧美日韩一区二区三区在线| 在线亚洲精品国产二区图片欧美| 亚洲国产精品999| av在线播放精品| 一区二区三区激情视频| 午夜激情av网站| tube8黄色片| 少妇 在线观看| 日韩欧美一区视频在线观看| 狠狠婷婷综合久久久久久88av| 国产男人的电影天堂91| 啦啦啦在线观看免费高清www| 2018国产大陆天天弄谢| 女人爽到高潮嗷嗷叫在线视频| 男女午夜视频在线观看| 91麻豆精品激情在线观看国产 | 久久久久久久大尺度免费视频| 国产精品av久久久久免费| 青草久久国产| 操美女的视频在线观看| 久久国产亚洲av麻豆专区| 久热爱精品视频在线9| 尾随美女入室| 国产成人91sexporn| 国产精品久久久久久精品电影小说| h视频一区二区三区| 丝袜美腿诱惑在线| 少妇的丰满在线观看| 国产免费视频播放在线视频| 国产深夜福利视频在线观看| 国产真人三级小视频在线观看| 热99久久久久精品小说推荐| 女人久久www免费人成看片| 午夜免费男女啪啪视频观看| 麻豆av在线久日| 国产高清国产精品国产三级| 亚洲精品一卡2卡三卡4卡5卡 | 91国产中文字幕| 多毛熟女@视频| 久久国产精品影院| 精品亚洲乱码少妇综合久久| 中文字幕人妻丝袜一区二区| 欧美日韩视频精品一区| 青青草视频在线视频观看| 侵犯人妻中文字幕一二三四区| 热99久久久久精品小说推荐| 免费观看a级毛片全部| 国产精品一区二区免费欧美 | 国产男女超爽视频在线观看| 国产成人一区二区三区免费视频网站 | 久久久久网色| 精品一区二区三卡| 亚洲av欧美aⅴ国产| 久久ye,这里只有精品| 男人爽女人下面视频在线观看| 亚洲中文字幕日韩| 午夜福利一区二区在线看| 国产精品久久久久久人妻精品电影 | 国产精品久久久av美女十八| 人人妻人人澡人人看| av一本久久久久| 免费看av在线观看网站| 熟女av电影| 精品国产一区二区久久| 2021少妇久久久久久久久久久| 美女中出高潮动态图| 亚洲一区二区三区欧美精品| 亚洲欧洲精品一区二区精品久久久| 国产99久久九九免费精品| 亚洲精品在线美女| 亚洲,欧美,日韩| 视频区图区小说| 黄色毛片三级朝国网站| 久久精品国产a三级三级三级| 国产有黄有色有爽视频| 嫁个100分男人电影在线观看 | 国产野战对白在线观看| 91精品三级在线观看| 日韩伦理黄色片| 一区二区三区乱码不卡18| 国产亚洲av片在线观看秒播厂| 亚洲欧美色中文字幕在线| 人人妻人人澡人人爽人人夜夜| 最新在线观看一区二区三区 | 高潮久久久久久久久久久不卡| 国产在线观看jvid| 纵有疾风起免费观看全集完整版| 久久免费观看电影| 少妇的丰满在线观看| 2021少妇久久久久久久久久久| avwww免费| 日韩伦理黄色片| 日韩 亚洲 欧美在线| 丝袜美腿诱惑在线| 视频区图区小说| 亚洲欧美精品综合一区二区三区| 国产三级黄色录像| 日韩制服骚丝袜av| 性色av一级| 久久中文字幕一级| 国产日韩一区二区三区精品不卡| 午夜精品国产一区二区电影| 女性生殖器流出的白浆| 成人国产av品久久久| 999精品在线视频| 国产亚洲欧美在线一区二区| 操美女的视频在线观看| 亚洲精品国产区一区二| 黄色视频不卡| 国产精品亚洲av一区麻豆| 免费看av在线观看网站| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲熟女毛片儿| 国产亚洲精品久久久久5区| 精品卡一卡二卡四卡免费| 男女床上黄色一级片免费看| 久久久精品94久久精品| 精品视频人人做人人爽| 一本—道久久a久久精品蜜桃钙片| 亚洲专区中文字幕在线| 久久性视频一级片| 精品少妇一区二区三区视频日本电影| 久久精品国产亚洲av高清一级| 精品高清国产在线一区| 中文字幕人妻丝袜一区二区| 欧美国产精品一级二级三级| 亚洲av成人不卡在线观看播放网 | 麻豆av在线久日| 不卡av一区二区三区| 亚洲中文av在线| 久久人人爽av亚洲精品天堂| 日韩精品免费视频一区二区三区| 国产国语露脸激情在线看| 激情视频va一区二区三区| 一级片免费观看大全| 色播在线永久视频| 91精品三级在线观看| 久久午夜综合久久蜜桃| 国产日韩欧美亚洲二区| 国产熟女午夜一区二区三区| 久久人人爽人人片av| 一级,二级,三级黄色视频| 色婷婷久久久亚洲欧美| 最近中文字幕2019免费版| 中文字幕av电影在线播放| 亚洲视频免费观看视频| 国产精品免费大片| 免费少妇av软件| 国产精品亚洲av一区麻豆| 成年av动漫网址| 美女主播在线视频| 妹子高潮喷水视频| 丝袜人妻中文字幕| 国产精品免费视频内射| 国产福利在线免费观看视频| 日韩免费高清中文字幕av| 叶爱在线成人免费视频播放| 久久99热这里只频精品6学生| 中文字幕人妻丝袜一区二区| 欧美国产精品一级二级三级| 久热这里只有精品99| 中文精品一卡2卡3卡4更新| 欧美av亚洲av综合av国产av| 国产极品粉嫩免费观看在线| 亚洲 国产 在线| 国产精品亚洲av一区麻豆| 热99久久久久精品小说推荐| 亚洲欧洲精品一区二区精品久久久| 国产精品国产av在线观看| 亚洲色图综合在线观看| 久久99一区二区三区| 午夜两性在线视频| 日本wwww免费看| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区免费欧美 | 69精品国产乱码久久久| 少妇精品久久久久久久| 国产亚洲午夜精品一区二区久久| 亚洲,欧美,日韩| 婷婷色综合www| 日韩人妻精品一区2区三区| 国产一级毛片在线| 中文字幕色久视频| 日韩欧美一区视频在线观看| 国产免费视频播放在线视频| 精品免费久久久久久久清纯 | 国产有黄有色有爽视频| 狂野欧美激情性bbbbbb| 日本wwww免费看| 久久国产精品男人的天堂亚洲| 搡老乐熟女国产| 色网站视频免费| 亚洲精品日本国产第一区| 精品福利永久在线观看| 亚洲精品国产av蜜桃| 欧美黄色淫秽网站| 人人妻人人爽人人添夜夜欢视频| 99久久99久久久精品蜜桃| 国产成人精品无人区| 亚洲国产欧美日韩在线播放| 首页视频小说图片口味搜索 | 高潮久久久久久久久久久不卡| 丝袜美腿诱惑在线| 亚洲欧美日韩另类电影网站| 免费不卡黄色视频| 赤兔流量卡办理| 免费在线观看日本一区| 天天操日日干夜夜撸| 少妇粗大呻吟视频| 国产激情久久老熟女| 啦啦啦 在线观看视频| 在现免费观看毛片| 在线观看免费午夜福利视频| 国产精品麻豆人妻色哟哟久久| 国产成人av激情在线播放| 你懂的网址亚洲精品在线观看| 亚洲欧美一区二区三区国产| 一区二区av电影网| av视频免费观看在线观看| 日日摸夜夜添夜夜爱| 日韩一本色道免费dvd| 午夜精品国产一区二区电影| 成人三级做爰电影| 国产亚洲欧美在线一区二区| 黄色视频在线播放观看不卡| 日韩伦理黄色片| 赤兔流量卡办理| 男男h啪啪无遮挡| 交换朋友夫妻互换小说| 亚洲av成人不卡在线观看播放网 | 水蜜桃什么品种好| 亚洲一卡2卡3卡4卡5卡精品中文| 国产日韩欧美亚洲二区| 50天的宝宝边吃奶边哭怎么回事| 免费女性裸体啪啪无遮挡网站| 黄色 视频免费看| 精品欧美一区二区三区在线| 国产在线视频一区二区| 水蜜桃什么品种好| 老司机午夜十八禁免费视频| 久久av网站| 一区二区三区乱码不卡18| 久久99精品国语久久久| 日本欧美视频一区| 久久精品久久精品一区二区三区| 黄色视频不卡| 亚洲午夜精品一区,二区,三区| 国产欧美日韩综合在线一区二区| 久热这里只有精品99| 男男h啪啪无遮挡| 只有这里有精品99| 亚洲成人免费av在线播放| 91老司机精品| 国产女主播在线喷水免费视频网站| 国产爽快片一区二区三区| 国产精品一区二区在线不卡| 亚洲欧美一区二区三区黑人| 欧美日韩黄片免| www.精华液| 久久精品人人爽人人爽视色| 一本久久精品| 国产一区二区三区av在线| 日韩电影二区| 大片免费播放器 马上看|