• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variational Problem of One Power Type Functional about Second Fundamental Form

    2019-05-04 05:51:10LiuJin

    Liu Jin

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

    Abstract For an n-dimensional submanifold in a general real ambient manifold φ:Mn→Nn+p, let S denote the square length of second fundamental form of φ. In this paper, we introduce one power type functional concerning S as where r≥1 is a real number, which measures how derivations φ(M) from a totally geodesic submanifold and has a closed relation with the well known Willmore conjecture. For this functional,the first variational equation is obtained, and in unit sphere,we construct a few examples of critical points. Moreover, by two famous matrix inequalities, we derive out the Simons’ type integral inequalities, and based on which a gap phenomenon has been classified.

    Key words Second fundamental form Willmore conjecture Critical point Simons’ type integral inequality Gap phenomenon

    1 Introduction

    Letφ:Mn→Nn+pbe ann-dimensional compact without boundary submanifold in a general ambient manifold. Sometimes we chooseNn+pto be (n+p)-dimensional space formsRn+p(c). It is well known that whenc=1,0,-1,Rn+p(c) is the standard unit sphereSn+p(1), Euclidean spaceEn+pand hyperbolic spaceHn+p(-1) respectively. Choose an orthonormal frame fields

    {e1,…,en,en+1,…,en+p}

    alongMsuch that {e1,…,en} are tangent toMand {en+1,…,en+p} are normal toM. Their dual frame fields are {θ1,…,θn} and {θn+1,…,θn+p} respectively. It is well known thatθn+1=…=θn+p=0 when they are restricted overM. Throughout this paper, we employ the Einstein summation convention, which states that repeated copies of the same index are summed over. Additionally, we adopt the following convention forthe range of the various indices:

    1≤A,B,C,D,…≤n+p,1≤i,j,k,l,…≤n,n+1≤α,β,γ,δ,…≤n+p.

    LetIIdenote the second fundamental form of the submanifoldφ:Mn→Nn+p, which can be expressed in terms of the frame fields and their duals as:

    where ? denotes the tensor product andhαijdenotes the tensor components of the second fundamental form. Additionally define the following quantities:

    In differential geometry, there is a famous classic Willmore functional for submanifold in unit sphereφ:Mn→Sn+p(1) which is defined as

    Due to the importance of Willmore conjecture, many geometric experts generalized the classic Willmore functional to a wide range and some interesting results have been obtained. For examples, Wu [12] considered theW(n,r)functional

    for submanifold inSn+p(1) which simply measures how derivationsφ(M) from a totally umbilical submanifold

    It is well known that the Simons’ integral inequality in [13] plays an important role in the study of minimal submanifold. It says that ifMis ann-dimensional compact minimal submanifold in (n+p)-dimensional unit sphereSn+p(1), then

    For functionalW(n,r)(φ), Wu in [12] proved some Simons’ type integral results which say ifMis ann-dimensional compact critical points ofW(n,r)(φ) in unit sphereSn+p(1), then

    In this paper,we will give a positive confirmation to the above three questions. Concretely we focus the functional about square length of second fundamental form

    FunctionalG(n,r)(φ) has a closed relation with Willmore Conjecture. In fact,obviouslyρ=S-nH2, thus whenMis minimal,ρ=S, andW(n,r)=G(n,r).

    Above all, it is natural and meaningful to study the functionalG(n,r)(φ). In geometric meaning, the functional measures how derivationsφ(M) form a totally geodesic submanifold and generalize the well known classic Willmorefunctional. In this paper, we study the variational problem and gap phenomenon ofG(n,r)(φ).

    The rest of this paper is organized as follows. In section 2, the structure equations of submaifolds and the variation formulas of the second fundamental form are established. In section 3, using the basic formulas in section 2, we calculate the first variation ofG(n,r)(φ). When the ambient manifoldNn+pis unit sphere,in section 4, according to the formulas in section 3, we construct some examples of critical points ofG(n,r)(φ). In section 5, using two famous matrix inequalities, we derive out some Simons’ type integral inequalities. Based on the foregoing results, a gap phenomenon has been classified in section 6.

    2 Structure equations and basic variation formulas

    Letφ:Mn→Nn+pbe ann-dimensional compact submanifold without boundary in an (n+p)-dimensional general ambient manifold, and Φ(·,·):Mn×(-ε,ε)→Nn+pbe a variation ofφ. This means that

    φt=:Φ(·,t):Mn×{t}→Nn+p,?t∈(-ε,ε)

    is an isometric immersion withφ0≡φ.

    Lets=(s1,…,sn,sn+1,…,sn+p) andσ=(σ1,…,σn,σn+1,…,σn+p) be the orthonormal local frame fields of tangent vector bundleTNn+pand cotangent vector bundleT*Nn+p,respectively. Then,e=(e1,…,en,en+1,…,en+p)=φ-1tsis the set of orthonormal local frame fields of the pull-back vector bundleφ-1tTNn+poverMn×{t}. Note since

    φ-1tTNn+p=TMnt⊕T⊥Mnt,

    {e1,…,en} are tangent toMnand {en+1,…,en+p} are normal toMn.

    Letωdenote the connection form overTNn+p. By the pull-back operation, we can assume the following decomposition:

    Φ*σ=θ+Vdt,Φ*σA=θA+VAdt,
    Φ*σi=θi+Vidt,Φ*σα=θα+Vαdt,
    Φ*ω=φ+Ldt,Φ*ωBA=φBA+LBAdt,
    Φ*ωji=φji+Ljidt,Φ*ωαi=φαi+Lαidt,
    Φ*ωiα=φiα+Liαdt,Φ*ωβα=φβα+Lβαdt.

    From submanifold theory or [15], it is well known that {θi} are the orthonormal frame fields ofT*Mn, {φji} is the connection form ofTMn, {φβα} is the connection form ofT⊥Mn,{φαi=hαijθj} is the second fundamental form, andθn+1≡…≡θn+p≡0 when they are restricted overMn.

    One can also derive that {Vi,Vα} are the variation vector fields of Φ, meaning that

    It must be mentioned that in variational theory, generally speaking, the tangential variation vector fields∑iVieihave little role in the calculations. So, we assume in this paper that only normal variation vector fields need to be considered

    From the second fundamental form, we can construct some notations which are useful in the variation calculation. First, when the codimension of submanifoldφ:Mn→Nn+pis 1, it meansMnis a hypersurface, we can introduce

    Second, when the codimension ofφ:Mn→Nn+pis greater than 1, we can introduce

    Let Ω, Ω┬, and Ω⊥denote the curvature forms ofTNn+p,TMn, andT⊥Mn, respectively. Hence their components and some other algebraic identities are as follows:

    Φ*Ω=Ψ+dt∧P,Φ*ΩAB=ΨAB+dt∧PAB,

    where Ψ denotes the pull back curvature form without dt, whilePdenotes 1-form with dt.

    Following from the definitions:

    Hence

    From any standard differential geometry text book or [15], one has the structure equations of Riemannian manifold

    ω+ωT=0,dσ-σ∧ω=0,
    Ω+ΩT=0,Ω=dω-ω∧ω,

    whereωT, ΩTdenote the transpose ofω, Ω respectively. By pulling back the both sides of structure equations,one has

    Φ*ω+Φ*ωT=0,

    (1)

    dM×(-ε,ε)Φ*σ-Φ*σ∧Φ*Ω=0,

    (2)

    Φ*Ω+Φ*ΩT=0,

    (3)

    Φ*Ω=dM×(-ε,ε)Φ*ω-Φ*ω∧Φ*ω.

    (4)

    Compare both sides of (1),(2),(3) and (4), one has the following Lemmas.

    Lemma 2.1([11,15,16]). Letφ:Mn→Nn+pbe a submanifold, and ∑αVαeαbe a normal variation vector field, one has

    Lemma 2.2([11,15,16]). Letφ:Mn→Nn+pbe a submanifold, one has structure equations

    Lemma 2.3([11,15,16]). Letφ:Mn→Nn+pbe a submanifold, and ∑αVαeαbe a normal variation vector field, one has

    From any standard differential geometry text book or reference [15], one has the Ricci identity about tensor’s second derivatives.

    Lemma 2.4([15]). Letφ:Mn→Nn+pbe a submanifold, andTl1…lq;α1…αrk1…kpbe a tensor over pullback vector bundleφ-1TN, one has

    In particular, when the tensor in Lemma 2.4 is second fundamental formhαij, together with equations in Lemma 2.2, we have a special Ricci identity.

    Lemma 2.5([11,15,16]). Letφ:Mn→Nn+pbe a submanifold, one has

    ProofBy Lemma 2.4, we have

    Substituting the equations in Lemma 2.2 in to the above formula, easily the desired result is obtained.

    Lemma 2.6Letφ:Mn→Nn+pbe a submanifold, one has

    Finally, one additional lemma is useful for our results.

    Lemma 2.7([16]). With the same notations as above, one has

    3 The first variation calculation

    To calculate the first variation of functionalG(n,r)(φ), two additional lemmas are needed.

    Lemma 3.1Letφ:Mn→Nn+pbe a submanifold, and ∑αVαeαbe a normal variation vector field. Suppose dv=θ1∧…∧θndenotes the volume element, one has

    which completes the proof.

    Lemma 3.2Letφ:Mn→Nn+pbe a submanifold, and ∑αVαeαbe a normal variation vector field, one has

    ProofBy Lemmas 2.3 and 2.7, one has

    which completes the proof.

    Use Lemmas 3.1 and 3.2 together, we can calculate the first variation formula of functionalG(n,r)(φ).

    Theorem 3.1Letφ:Mn→Nn+pbe ann-dimensional submanifold in an (n+p)-dimensional general real ambient manifoldNn+p, thenMis a critical point ofG(n,r)(φ) if and only if for anyα∈[n+1,n+p]

    (5)

    When codimensionp=1, the above equation becomes

    (6)

    ProofUsing Lemma 3.1, Lemma 3.2, and Stoke’s theorem of integration by parts, we calculate

    which completes the proof.

    From any one standard differential geometry text book or [15], we know the curvature of space formsRn+p(c) are

    Thus

    Together with Theorem 3.1, we can derive out the following corollaries.

    Corollary 3.1Letφ:Mn→Rn+p(c) be ann-dimensional submanifold in an (n+p)-dimensional space formsRn+p(c), thenMis a critical point ofG(n,r)(φ) if and only if for anyα∈[n+1,n+p]

    (7)

    When codimensionp=1, the above equation becomes

    (8)

    Corollary 3.2Letφ:Mn→Rn+1(c) be an isoparametric(all principal curvatures are constant ) hypersurface in an (n+1)-dimensional space formsRn+1(c), thenMis a critical point ofG(n,r)(φ) if and only if

    (9)

    For the use in examples construction, it is necessary to expand the first term of the equations in (5) when the ambient manifoldNn+pisRn+p(c).

    Corollary 3.3Letφ:Mn→Rn+p(c) be ann-dimensional submanifold in an (n+p)-dimensional space formsRn+p(c), thenMis a critical point ofG(n,r)(φ) if and only if for anyα∈[n+1,n+p],

    (10)

    ProofNotice that in space formsRn+p(c), by Lemma 2.2, there holds the fact

    hαij,k=hαik,j

    which should be used repeat in the expanding of ∑ij(rSr-1hαij),ij.

    +r(r-1)Sr-2S,ihαij,j+r(r-1)Sr-2S,jhαij,i+rSr-1hαij,ij]

    Substituting the above expression into (5), the desired result is obtained.

    4 Construction of examples

    In this section, we use equations in Theorem 3.1 and its corollaries to explore critical points ofG(n,r)(φ) in unite sphere, the main technique is to solve algebraic equations.

    Example 4.1Totally geodesic submanifolds in unit sphere are critical points ofG(n,r)(φ).

    Example 4.2Letφ:Mn→Sn+1(1) is a totally umbilical but not totally geodesic hypersurface in unit sphere, according to the definition, suppose all principal curvatures are

    k1=k2=…=kn=λ=constant>0.

    Through a direct calculation, we obtain

    H=λ,S=nλ2,P3=nλ3,

    substituting them into the equation (9), we have an algebraic equation of critical points ofG(n,r)(φ)

    which means that there exists a particular totally umbilical but not totally geodesic hypersurface in unit sphere satisfying the critical points ofG(n,r)(φ).

    Example 4.3For a particular hypersurface withn≡0(mod2)

    All principal curvatures are

    Example 4.4Torus withS=n. For a torus with parametersλ,μ,0<λ,μ<1,λ2+μ2=1.

    Sm(λ)×Sn-m(μ)→Sn+1(1),1≤m≤n-1.

    Obviously, all principal curvatures are

    Then the quantityρis

    We solve the equation

    Hence

    and

    Example 4.5For a family hypersurfaces with parameterλ,μ,0<λ,μ<1,λ2+μ2=1,

    Sm(λ)×Sn-m(μ)→Sn+1(1),1≤m≤n-1.

    Obviously, all principal curvatures are

    Then the quantitiesH,S,P3are respectively

    m(2r-m)x6+m(n-m+2r)x4-(n-m)(m+2r)x2+(n-m)(n-m-2r)=0.

    Settingy=x2, then the above equation becomes

    g(y)=:m(2r-m)y3+m(n-m+2r)y2-(n-m)(m+2r)y+(n-m)(n-m-2r)=0.

    In fact, the equation ofg(y) essentially are 3 order polynomial, which can be solved completely, but depends on the parametersn,r,m.

    Example 4.6Let (x,y,z) be a natural coordinates ofR3and (u1,u2,u3,u4,u5) be the natural coordinate system ofR5, we consider the mapping as below

    Then we calculate

    H3=H4=0,S333=S344=S433=S444=0.

    Substituting them into the equation (7), one can conclude that Veronese surface always is a critical point ofG(n,r)(φ).

    Example 4.7Letφ:Mn→Sn+p(1),n≥3 be a minimal submanifold in unit sphere. Ifφ:Mn→Sn+p(1) is also Einstein, then it must be a critical point ofG(n,r)(φ).

    ProofSinceMis minimal and Einstein, according to the definitions, one has

    It is well known that whenn≥3

    R=constant.

    By Lemma 2.2, one has

    Obviously

    S=n(n-1)-R=constant.

    According to the condition of Einstein, one has

    Wheni=j, one has

    Wheni≠j, one has

    Thus for any indexn+1≤α≤n+p, one has

    All above substituting into equation of Corollary 3.3, we conclude that a minimal and Einstein submanifold in unit sphere must be a critical point ofG(n,r)(φ).

    Example 4.8([17]). Let

    5 Simons’ type integral inequalities

    Some lemmas are needed for the establishment of Simons’ type integral inequalities. We start with some basic facts on matrices. For an (n×n) matrixA, we define its square length

    The following properties are obvious:N(A)≥0 for any matrixA, andN(A)=0 if and only ifA≡0;N(A)=N(TATt)=N(TA) for any orthogonal matrixTand for any matrixA;N(AB-BA)=2tr(AABB-ABAB) for any two symmetric matricesA,B.

    Lemma 5.1([14]). IfAandBare symmetric matrices, then

    N(AB-BA)≤2N(A)N(B),

    and the equality holds if and only if eitherA,Bor one of them must be zero, orAandBcan be transformed simultaneously by an orthogonal matrix into multiples of the following matrixes respectively:

    Moreover, ifB1,B2,B3are (n×n)-symmetric matrices satisfying

    N(BiBj-BjBi)=2N(Bi).N(Bj),1≤i,j≤3,

    then at least one of the matricesBimust be zero.

    Lemma 5.2Letφ:Mn→Nn+pbe a submanifold withp≥2,S,Sαβ,Aαas defined in section 2, one has estimate

    ProofDiagonalize (Sαβ) such thatSαβ=0,α≠β, by Lemma 5.1 and Cauchy-Schwartz inequality, one has

    Lemma 5.3([18]). LetB1,…,Bp,p≥2 be symmetric (n×n) matrices.Setting

    One has

    and ≤ becomes = if and only ifB1,…,Bp,p≥2 satisfy one of the below two conditions

    (1)B1=B2=…=Bp=0;

    (2)B1≠0,B2≠0,B3=B4=…Bp=0,L11=L22.

    When condition (2) holds,B1,B2can be transformed simultaneously by an common orthogonal matrix into the following matrices respectively:

    Lemma 5.4Letφ:Mn→Nn+pbe a submanifold withp≥2,S,Sαβ,Aαas defined in section 2, one has estimate

    ProofLemma 5.4 is a directly consequence of Lemma 5.3.

    Lemma 5.5Letφ:Mn→Nn+pbe a submanifold.

    (i) When codimensionp=1, one has

    (ii) When codimensionp≥2, one has

    (iii) When codimensionp≥2, one has

    (iv) When codimensionp≥2, one has

    ProofBy the definition ofSand Laplacian operator, one has

    (11)

    We denote the last term ∑ijkαhαijhαij,kk=:T1, by Lemma 2.2, one obtains

    (12)

    Furthermore, we denote the last term ∑ijkαhαij(hαik,jk-hαik,kj)=:T2, by Lemma 2.5, one has

    According to the definition of trace andN(·),one has

    (13)

    Substituting (13) into (12), one has

    (14)

    Together with Bianchi identities and changing the index, one has

    (15)

    Putting (15) into (14), one has

    (16)

    When codimensionp=1, one has

    (17)

    When codimensionp≥2, by Lemma 5.2, one has

    (18)

    When codimensionp≥2, by Lemma 5.4, one has

    (19)

    Putting (16),(17),(18),and (19) into (11), the desired results are obtained.

    Lemma 5.6Letφ:Mn→Nn+pbe a submanifold,Sdefined as before andr≥1, one has

    Δ(Sr)=r(r-1)Sr-2|S|2+rSr-1Δ(S).

    (i) When codimensionp=1, one has

    Δ(Sr)=r(r-1)Sr-2|

    +2rSr-1|

    (ii) When codimensionp≥2, one has

    (iii) When codimensionp≥2, one has

    Δ(Sr)≥r(r-1)Sr-2|

    +2rSr-1|

    (iv) When codimensionp≥2, one has

    Δ(Sr)≥r(r-1)Sr-2|

    +2rSr-1|

    ProofBy the definition of Lapalacian operator, one has

    together with Lemma 5.5, the desired results are obtained.

    Integrating both sides of equalities and inequalities in Lemma 5.6, together using the Stokes’ theorem and equations in Theorem 3.1, we can derive out the following theorem.

    Theorem 5.1Letφ:Mn→Nn+pbe a critial submanifold ofG(n,r)(φ) withr≥1.

    (i) When codimensionp=1, one has

    (ii) When codimensionp≥2, one has

    (iii) When codimensionp≥2, one has

    (iv) When codimensionp≥2, one has

    ProofSinceφ:Mn→Nn+pis a critical point ofG(n,r)(φ), one has

    Integrating the second term in Lemma 5.6, by Stokes’ theorem

    Thus, we can easily derive out the integral equalities and inequalities in Theorem 5.1.

    From any standard differential geometry text book or [15], we know the curvature of space formsRn+p(c) are

    Together with Theorem 5.1, we can derive out the following corollary.

    Corollary 5.1Letφ:Mn→Rn+p(c) be a critial submanifold ofG(n,r)(φ) in space form withr≥1.

    (i) When codimensionp=1, one has

    (ii) When codimensionp≥2, one has

    (iii) When codimensionp≥2, one has

    (iv) When codimensionp≥2, one has

    6 Gap phenomenon of critical points

    In order to give a classification of the boundary points of the Simons’ type integral equalities or inequalities, we need three very important conclusions which are treated as a Lemma and a main Theorem in [14] and a theorem in [18]. For a hypersurface, we choose frame fields in such a way thathij=0,?i≠j,hi=hii.

    Lemma 6.1([14]). Letφ:Mn→Sn+1(1) be a compact hypersurface withh≡0, then there are two cases.(1).h1=…=hn=λ=constant, andMis a totally umbilic(λ>0) or totally geodesic (λ=0);(2).andMis a Riemannian product ofM1×M2, where

    Based on examples in section 4 and Lemmas in section 5 and section 6, we can derive out the following theorems, which draw a picture of the gap phenomenon of critical points ofG(n,r)(φ).

    ProofSinceMis minimal,i.e.,H2=0, by the (i) of Corollary 5.1, one has

    If 0≤S≤n, we have 2rSr(S-n)≤0 and

    Since

    we have

    Thus we obtainS≡0 orS≡nandh=0.

    then

    or

    For the former case,Mis a torusSm(λ)×Sn-m(μ)→Sn+1(1),1≤m≤n-1, determined by

    For the latter case,Mis a torusSm(λ)×Sn-m(μ)→Sn+1(1),1≤m≤n-1, determined by

    ProofWe denote

    and

    By (i) of Corollary 5.1, we have

    Ifa≤S≤b, we have 2rSr-1(S-a)(s-b)≤0 and

    Since

    we have

    Thus we obtainS≡aorS≡bandh=0. WhenS=a,b, by Lemma 6.1 and Example 4.5, we can conclude thatMis a torus determined through algebraic equations.

    and

    ProofWe denote

    and

    By (iii) of Corollary 5.1, one has

    Since

    we have

    Thus we obtainS≡aorS≡bandh=0. By Lemma 5.1 and the proof process of Lemma 5.5, we have some inequalities in Lemma 5.5 must be equalities. ThusH2=0, by Lemma 6.2 and Example 4.6, we can conclude that (i)a=0 andMis totally geodesic;(ii)andMis Veronese surface inS4.

    ProofWe denote

    and

    By the (iii) of Corollary 5.1, one has

    Ifa≤S≤b, we have 3rSr-1(S-a)(S-b)≤0 and

    Since

    we have

    Thus we obtainS≡aorS≡bandh=0. By Lemma 5.3 and the proof process of Lemma 5.5, some inequalities in Lemma 5.5 must be equalities. ThusH2=0, by Lemma 6.3 and Example 4.6, we can conclude that (i)a=0 andMis totally geodesic;(ii)andMis Veronese surface inS4.

    7 Conclusion

    In this paper, one power type functional concerning the square length of second fundamental form has been constructed which generalizes the well known classic Willmore functional, we calculate the first variational equation. Using some algebraic technique, some examples of critical points ofG(n,r)functional are constructed or proven. Based on the first variational calculation, the higher derivative computation of functionSr, and some trickly inequalities, we have established some Simons’ type integral inequalities forG(n,r)submanifolds. Without any surprise, isoparametric torus inSn+1(1) and Veronese surface inS4(1) still play an important role in the discussion of gap phenomenon and show us an interesting picture aboutG(n,r)submanifolds.

    999精品在线视频| 搡女人真爽免费视频火全软件| 日韩av免费高清视频| 男男h啪啪无遮挡| 建设人人有责人人尽责人人享有的| 国产亚洲精品第一综合不卡| 九草在线视频观看| 欧美日韩一级在线毛片| 亚洲精品国产色婷婷电影| 欧美国产精品va在线观看不卡| 99久久人妻综合| 国产成人精品福利久久| 成人国产麻豆网| 一级毛片电影观看| 国产精品免费视频内射| 亚洲第一青青草原| 日韩av在线免费看完整版不卡| 欧美精品国产亚洲| 国产精品久久久久成人av| 乱人伦中国视频| 国产在线免费精品| 久热久热在线精品观看| 亚洲人成网站在线观看播放| 纵有疾风起免费观看全集完整版| 日韩三级伦理在线观看| 美国免费a级毛片| 韩国精品一区二区三区| 欧美激情极品国产一区二区三区| 午夜av观看不卡| 久久影院123| 一二三四在线观看免费中文在| 精品国产一区二区三区四区第35| 国产成人精品久久久久久| 色吧在线观看| 国产精品久久久久成人av| 日本91视频免费播放| 国产男女超爽视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品av麻豆狂野| 欧美 日韩 精品 国产| 在线精品无人区一区二区三| 欧美精品一区二区免费开放| 亚洲情色 制服丝袜| 一边摸一边做爽爽视频免费| 欧美变态另类bdsm刘玥| 中文欧美无线码| 国产日韩一区二区三区精品不卡| 99热全是精品| 人人妻人人爽人人添夜夜欢视频| 久久99蜜桃精品久久| 成人18禁高潮啪啪吃奶动态图| 秋霞在线观看毛片| 捣出白浆h1v1| 99热国产这里只有精品6| 人人妻人人添人人爽欧美一区卜| 丰满饥渴人妻一区二区三| 国产色婷婷99| 日韩av在线免费看完整版不卡| www.熟女人妻精品国产| 欧美亚洲日本最大视频资源| 捣出白浆h1v1| 免费播放大片免费观看视频在线观看| 久久韩国三级中文字幕| 一个人免费看片子| 亚洲精品aⅴ在线观看| av网站在线播放免费| 久久久久网色| 亚洲国产精品999| 超色免费av| 黄片播放在线免费| 亚洲图色成人| 亚洲av日韩在线播放| 视频区图区小说| 熟女少妇亚洲综合色aaa.| 日韩成人av中文字幕在线观看| 精品国产国语对白av| 久久人人爽人人片av| 少妇精品久久久久久久| 久久久精品免费免费高清| 五月开心婷婷网| 电影成人av| 亚洲美女视频黄频| 色婷婷久久久亚洲欧美| a级片在线免费高清观看视频| 欧美亚洲 丝袜 人妻 在线| 久久综合国产亚洲精品| 18禁动态无遮挡网站| 大香蕉久久网| 精品午夜福利在线看| av女优亚洲男人天堂| 日韩欧美一区视频在线观看| 亚洲av国产av综合av卡| 黄色毛片三级朝国网站| 久久久a久久爽久久v久久| 久久人妻熟女aⅴ| 亚洲国产欧美在线一区| 久久久精品区二区三区| 色94色欧美一区二区| 美女国产视频在线观看| 国产黄色视频一区二区在线观看| 熟女av电影| 国产 一区精品| 亚洲,一卡二卡三卡| 欧美成人午夜免费资源| 纵有疾风起免费观看全集完整版| 国产视频首页在线观看| 九九爱精品视频在线观看| 最近中文字幕2019免费版| 精品午夜福利在线看| 亚洲国产av影院在线观看| 亚洲国产最新在线播放| 午夜福利一区二区在线看| 成人手机av| 亚洲 欧美一区二区三区| 九九爱精品视频在线观看| 香蕉丝袜av| 国产精品免费大片| 国产成人欧美| 免费女性裸体啪啪无遮挡网站| 在线观看三级黄色| 国产无遮挡羞羞视频在线观看| 九草在线视频观看| 欧美日韩亚洲国产一区二区在线观看 | 伊人久久大香线蕉亚洲五| 午夜福利在线免费观看网站| 国产精品亚洲av一区麻豆 | 久久狼人影院| 欧美日韩视频精品一区| 丰满少妇做爰视频| 男女无遮挡免费网站观看| 日韩av在线免费看完整版不卡| 国产精品女同一区二区软件| 在线亚洲精品国产二区图片欧美| 免费高清在线观看日韩| 亚洲综合色网址| 韩国av在线不卡| 亚洲在久久综合| 最新中文字幕久久久久| 亚洲国产精品成人久久小说| 另类亚洲欧美激情| 久久久久精品久久久久真实原创| 天天躁日日躁夜夜躁夜夜| 亚洲三级黄色毛片| 如日韩欧美国产精品一区二区三区| 美女福利国产在线| 赤兔流量卡办理| 免费观看a级毛片全部| 一级毛片黄色毛片免费观看视频| 亚洲综合色网址| 欧美成人午夜精品| 90打野战视频偷拍视频| 男女高潮啪啪啪动态图| 97在线人人人人妻| 国产精品偷伦视频观看了| 啦啦啦视频在线资源免费观看| 国产野战对白在线观看| 男女啪啪激烈高潮av片| 好男人视频免费观看在线| 一级爰片在线观看| 日本av免费视频播放| 国产免费一区二区三区四区乱码| 久久精品熟女亚洲av麻豆精品| 大香蕉久久成人网| 人人妻人人添人人爽欧美一区卜| 极品少妇高潮喷水抽搐| 街头女战士在线观看网站| 91精品国产国语对白视频| 精品亚洲成国产av| 街头女战士在线观看网站| 久久午夜福利片| 日韩精品免费视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 亚洲成人手机| 国产不卡av网站在线观看| 一区在线观看完整版| 免费在线观看视频国产中文字幕亚洲 | 超色免费av| 99久久综合免费| 欧美在线黄色| 视频区图区小说| 中文乱码字字幕精品一区二区三区| 久久久欧美国产精品| av福利片在线| 亚洲精品成人av观看孕妇| 精品酒店卫生间| 最近最新中文字幕免费大全7| 国产黄色视频一区二区在线观看| 欧美激情极品国产一区二区三区| 国语对白做爰xxxⅹ性视频网站| 亚洲激情五月婷婷啪啪| 色哟哟·www| 美女国产高潮福利片在线看| 久久精品国产鲁丝片午夜精品| 不卡视频在线观看欧美| 2022亚洲国产成人精品| 日韩av免费高清视频| 欧美 亚洲 国产 日韩一| 国产在线一区二区三区精| 老汉色av国产亚洲站长工具| 只有这里有精品99| 国产亚洲最大av| 欧美精品亚洲一区二区| 青春草视频在线免费观看| 国产免费福利视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久韩国三级中文字幕| 晚上一个人看的免费电影| 老汉色av国产亚洲站长工具| 国产 一区精品| 99久国产av精品国产电影| 亚洲精品美女久久久久99蜜臀 | 五月开心婷婷网| 国产男女内射视频| 天天躁夜夜躁狠狠躁躁| 亚洲精品,欧美精品| 一级毛片我不卡| 亚洲精品一二三| 国产97色在线日韩免费| 晚上一个人看的免费电影| 男女下面插进去视频免费观看| 在线观看人妻少妇| 国产精品一国产av| 亚洲国产精品成人久久小说| 色94色欧美一区二区| 国产片内射在线| 老熟女久久久| 美女主播在线视频| 秋霞在线观看毛片| 成人毛片a级毛片在线播放| 久久青草综合色| 秋霞伦理黄片| 一本—道久久a久久精品蜜桃钙片| 在线观看www视频免费| 黄频高清免费视频| 91精品伊人久久大香线蕉| 午夜免费男女啪啪视频观看| 色吧在线观看| 国产深夜福利视频在线观看| 麻豆av在线久日| av国产久精品久网站免费入址| 18+在线观看网站| 亚洲av男天堂| 纯流量卡能插随身wifi吗| 老鸭窝网址在线观看| 毛片一级片免费看久久久久| 18+在线观看网站| 亚洲精品乱久久久久久| 久久久久久久国产电影| 制服诱惑二区| 秋霞在线观看毛片| 伊人亚洲综合成人网| 国产免费一区二区三区四区乱码| 深夜精品福利| 国产视频首页在线观看| 日韩视频在线欧美| 色吧在线观看| 纯流量卡能插随身wifi吗| 亚洲av中文av极速乱| 欧美日韩国产mv在线观看视频| 欧美+日韩+精品| 亚洲内射少妇av| 亚洲av在线观看美女高潮| 久久精品亚洲av国产电影网| 久久久久精品性色| 黄频高清免费视频| 亚洲五月色婷婷综合| 亚洲在久久综合| 国产成人精品婷婷| 少妇精品久久久久久久| 久久久久久伊人网av| 婷婷色av中文字幕| 欧美亚洲 丝袜 人妻 在线| www日本在线高清视频| 国产av一区二区精品久久| 日韩av在线免费看完整版不卡| 国产免费一区二区三区四区乱码| 秋霞伦理黄片| 少妇被粗大猛烈的视频| 三级国产精品片| 大话2 男鬼变身卡| av国产久精品久网站免费入址| 中文字幕人妻丝袜一区二区 | 人妻少妇偷人精品九色| 亚洲国产精品一区二区三区在线| 王馨瑶露胸无遮挡在线观看| 不卡视频在线观看欧美| 在线观看美女被高潮喷水网站| 一区福利在线观看| 国产亚洲欧美精品永久| 欧美精品高潮呻吟av久久| 久久精品久久久久久噜噜老黄| 欧美成人午夜精品| 国产黄色免费在线视频| 国产精品免费视频内射| 久久久亚洲精品成人影院| 午夜福利影视在线免费观看| 亚洲成色77777| xxxhd国产人妻xxx| 十八禁网站网址无遮挡| 黄片播放在线免费| 国产不卡av网站在线观看| av网站在线播放免费| 国产日韩欧美亚洲二区| 亚洲综合色惰| 新久久久久国产一级毛片| 欧美日韩一级在线毛片| 亚洲国产成人一精品久久久| 国产精品成人在线| 亚洲精品在线美女| 亚洲美女黄色视频免费看| 亚洲欧美精品综合一区二区三区 | 热re99久久国产66热| 亚洲成av片中文字幕在线观看 | 久久国产精品男人的天堂亚洲| 久久久精品国产亚洲av高清涩受| 亚洲av综合色区一区| 亚洲av中文av极速乱| 9热在线视频观看99| 国产精品av久久久久免费| 国产精品三级大全| 国产精品久久久久久久久免| 免费观看av网站的网址| 精品久久久精品久久久| 在线天堂最新版资源| 国产成人a∨麻豆精品| 精品人妻熟女毛片av久久网站| 青春草亚洲视频在线观看| 考比视频在线观看| 国产人伦9x9x在线观看 | 日本av手机在线免费观看| 国产又色又爽无遮挡免| 一边亲一边摸免费视频| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 亚洲少妇的诱惑av| 亚洲av.av天堂| 韩国精品一区二区三区| 少妇人妻久久综合中文| 国产深夜福利视频在线观看| 精品国产一区二区久久| 老熟女久久久| 女人精品久久久久毛片| 精品亚洲成a人片在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品99又大又爽又粗少妇毛片| 亚洲天堂av无毛| 性色av一级| 大香蕉久久成人网| 999精品在线视频| 两性夫妻黄色片| 亚洲精品在线美女| 男人操女人黄网站| 女的被弄到高潮叫床怎么办| 最黄视频免费看| 国产成人欧美| 视频区图区小说| 欧美日韩亚洲高清精品| 美女主播在线视频| 免费黄网站久久成人精品| 欧美bdsm另类| 99久久人妻综合| 亚洲欧美成人综合另类久久久| 18禁动态无遮挡网站| 哪个播放器可以免费观看大片| 国产精品久久久久久精品古装| av在线观看视频网站免费| 秋霞在线观看毛片| 青草久久国产| 国产精品久久久久久精品古装| 黄片无遮挡物在线观看| 中文字幕亚洲精品专区| av福利片在线| 日日啪夜夜爽| 国产精品人妻久久久影院| 日本欧美视频一区| 午夜久久久在线观看| 久久这里有精品视频免费| 欧美中文综合在线视频| 国产不卡av网站在线观看| 搡老乐熟女国产| a级片在线免费高清观看视频| 久久久久人妻精品一区果冻| 欧美人与善性xxx| xxxhd国产人妻xxx| 亚洲成色77777| 午夜91福利影院| 夫妻性生交免费视频一级片| 日韩欧美精品免费久久| 国产成人精品久久久久久| 国产片特级美女逼逼视频| 纵有疾风起免费观看全集完整版| 一级a爱视频在线免费观看| 一级,二级,三级黄色视频| 亚洲五月色婷婷综合| 大香蕉久久成人网| 亚洲精品国产av蜜桃| 成人黄色视频免费在线看| 如何舔出高潮| 美女国产视频在线观看| 亚洲第一av免费看| 国产精品 欧美亚洲| 狠狠婷婷综合久久久久久88av| 午夜福利影视在线免费观看| 午夜福利网站1000一区二区三区| 亚洲欧美精品综合一区二区三区 | 热99国产精品久久久久久7| 亚洲国产精品一区二区三区在线| 亚洲欧美精品综合一区二区三区 | 曰老女人黄片| 这个男人来自地球电影免费观看 | 亚洲久久久国产精品| 校园人妻丝袜中文字幕| 国产免费现黄频在线看| 日韩免费高清中文字幕av| 亚洲av日韩在线播放| a 毛片基地| 午夜日本视频在线| 如何舔出高潮| 桃花免费在线播放| 欧美在线黄色| 国产片内射在线| 高清视频免费观看一区二区| 国产成人免费无遮挡视频| 老司机影院毛片| 中文字幕精品免费在线观看视频| 电影成人av| 一区二区三区激情视频| 欧美bdsm另类| 波多野结衣av一区二区av| 日韩av免费高清视频| 国产成人午夜福利电影在线观看| 我的亚洲天堂| 午夜福利在线免费观看网站| 超碰成人久久| 日韩av不卡免费在线播放| 丰满饥渴人妻一区二区三| 中文字幕人妻熟女乱码| av线在线观看网站| 大片电影免费在线观看免费| 宅男免费午夜| 男男h啪啪无遮挡| 亚洲成人av在线免费| 婷婷色综合www| 久久99一区二区三区| 最近的中文字幕免费完整| 99久国产av精品国产电影| 叶爱在线成人免费视频播放| 我要看黄色一级片免费的| 一级片免费观看大全| 在线观看www视频免费| 国产国语露脸激情在线看| 在线观看人妻少妇| 精品一区在线观看国产| 日韩,欧美,国产一区二区三区| 亚洲成人手机| 亚洲一码二码三码区别大吗| 青春草国产在线视频| 中文字幕人妻熟女乱码| 久久久久久久亚洲中文字幕| 国产精品一区二区在线不卡| 国产白丝娇喘喷水9色精品| 午夜福利影视在线免费观看| 亚洲激情五月婷婷啪啪| 三上悠亚av全集在线观看| 18禁裸乳无遮挡动漫免费视频| 一区福利在线观看| 久久99热这里只频精品6学生| xxxhd国产人妻xxx| 欧美日本中文国产一区发布| 亚洲国产最新在线播放| 美女大奶头黄色视频| 亚洲精品中文字幕在线视频| 亚洲av.av天堂| 秋霞伦理黄片| 久久97久久精品| 日本免费在线观看一区| 亚洲精品第二区| 看非洲黑人一级黄片| 国产一区有黄有色的免费视频| 伦理电影免费视频| 日韩熟女老妇一区二区性免费视频| 中文字幕精品免费在线观看视频| 免费高清在线观看视频在线观看| www.自偷自拍.com| 国产成人精品婷婷| 久久精品国产亚洲av涩爱| 9191精品国产免费久久| 久久免费观看电影| 午夜精品国产一区二区电影| 成年女人毛片免费观看观看9 | av不卡在线播放| 日韩av不卡免费在线播放| 欧美 日韩 精品 国产| 国产成人免费观看mmmm| 蜜桃在线观看..| av卡一久久| 满18在线观看网站| 亚洲成人一二三区av| 桃花免费在线播放| 蜜桃在线观看..| 热re99久久国产66热| 满18在线观看网站| 国产精品久久久久久久久免| 色吧在线观看| 久久av网站| 亚洲成人手机| 一级片免费观看大全| 久久久久久人人人人人| 午夜激情久久久久久久| 中文字幕人妻丝袜一区二区 | 男人操女人黄网站| 久久ye,这里只有精品| 免费在线观看完整版高清| 精品卡一卡二卡四卡免费| 一级片免费观看大全| 狠狠精品人妻久久久久久综合| 一级片'在线观看视频| 亚洲成av片中文字幕在线观看 | 国产一区二区三区综合在线观看| 亚洲国产精品成人久久小说| 看非洲黑人一级黄片| 亚洲国产看品久久| 国产av国产精品国产| 国产福利在线免费观看视频| 国产精品蜜桃在线观看| 极品人妻少妇av视频| 另类亚洲欧美激情| 99九九在线精品视频| 丝袜人妻中文字幕| 涩涩av久久男人的天堂| 成人18禁高潮啪啪吃奶动态图| 国产av精品麻豆| 亚洲五月色婷婷综合| 精品一区二区免费观看| 18禁国产床啪视频网站| 日韩免费高清中文字幕av| 国产黄频视频在线观看| 一个人免费看片子| 国产综合精华液| 肉色欧美久久久久久久蜜桃| 亚洲精品中文字幕在线视频| 亚洲综合色网址| 亚洲精品美女久久av网站| 久久久久网色| 精品国产乱码久久久久久小说| 午夜福利乱码中文字幕| 亚洲婷婷狠狠爱综合网| 超色免费av| 少妇精品久久久久久久| 日本爱情动作片www.在线观看| 高清黄色对白视频在线免费看| 久久久久久久大尺度免费视频| 免费不卡的大黄色大毛片视频在线观看| 人人妻人人爽人人添夜夜欢视频| 不卡av一区二区三区| 观看av在线不卡| 青春草视频在线免费观看| 国产成人免费无遮挡视频| 日韩一本色道免费dvd| 久久精品国产鲁丝片午夜精品| 久久久久人妻精品一区果冻| 中文字幕人妻丝袜制服| 黄色 视频免费看| 亚洲内射少妇av| 亚洲经典国产精华液单| 一边摸一边做爽爽视频免费| 免费不卡的大黄色大毛片视频在线观看| 99re6热这里在线精品视频| 在线 av 中文字幕| 久久精品久久久久久噜噜老黄| 少妇的逼水好多| 一本久久精品| 亚洲色图 男人天堂 中文字幕| 免费少妇av软件| 啦啦啦视频在线资源免费观看| 91午夜精品亚洲一区二区三区| 涩涩av久久男人的天堂| 日韩成人av中文字幕在线观看| 男女下面插进去视频免费观看| 自线自在国产av| 在线观看国产h片| 你懂的网址亚洲精品在线观看| 蜜桃国产av成人99| 欧美中文综合在线视频| 最近中文字幕2019免费版| 国产精品久久久久久精品古装| 国产男女内射视频| 久久国产精品大桥未久av| 另类精品久久| 亚洲内射少妇av| 久久国产精品大桥未久av| 亚洲成人一二三区av| 有码 亚洲区| 人体艺术视频欧美日本| 蜜桃国产av成人99| 多毛熟女@视频| 久久久久久久久久人人人人人人| 亚洲精品在线美女| 日本猛色少妇xxxxx猛交久久| 国产高清不卡午夜福利| 超碰97精品在线观看| 免费久久久久久久精品成人欧美视频| 久久女婷五月综合色啪小说| 免费看av在线观看网站| 国产亚洲午夜精品一区二区久久| 国产熟女欧美一区二区| 国产欧美日韩一区二区三区在线| 中文字幕最新亚洲高清| 男女免费视频国产| 欧美成人午夜免费资源| 黄片播放在线免费| 美女大奶头黄色视频| 在线天堂中文资源库| 99热全是精品| 又粗又硬又长又爽又黄的视频|