張思進(jìn) 劉喻 吉德三
摘 ??要:采用攝動(dòng)法和Poincaré映射方法推導(dǎo)出了具有立方非線性項(xiàng)和外部激勵(lì)項(xiàng)的二自由度碰振系統(tǒng)周期解的擴(kuò)展Melnikov函數(shù),并運(yùn)用該Melnikov函數(shù)研究了二自由度碰振系統(tǒng)的雙碰周期解特性,確定了系統(tǒng)穩(wěn)定雙碰周期2運(yùn)動(dòng)的存在條件,即在參數(shù)域內(nèi)的一條臨界曲線.通過數(shù)值模擬驗(yàn)證,結(jié)果表明:該臨界曲線下方區(qū)域參數(shù)是雙碰周期2運(yùn)動(dòng),上方區(qū)域參數(shù)是非雙碰周期2運(yùn)動(dòng);當(dāng)保持其他參數(shù)不變,僅增加系統(tǒng)激勵(lì)幅值f時(shí),系統(tǒng)的運(yùn)動(dòng)狀態(tài)會(huì)從多碰多周期運(yùn)動(dòng)逐步向雙碰周期2運(yùn)動(dòng)轉(zhuǎn)變;當(dāng)保持其他參數(shù)不變,僅增加系統(tǒng)恢復(fù)系數(shù)η0時(shí),系統(tǒng)的運(yùn)動(dòng)狀態(tài)會(huì)從雙碰周期2運(yùn)動(dòng)逐步向多碰多周期運(yùn)動(dòng)轉(zhuǎn)變.
關(guān)鍵詞:碰振系統(tǒng);Melnikov方法;雙碰周期2運(yùn)動(dòng);Poincaré映射;擴(kuò)展Melnikov函數(shù)
中圖分類號(hào):O322 ??????????????????????????????????文獻(xiàn)標(biāo)志碼:A
Melnikov′s Method of Periodic Solutions with Double Impacts for
a 2-DOF Vibro-impact Quasi-Hamiltonian System
ZHANG Sijin1,LIU Yu1,JI Desan2
(1. College of Mechanical and Vehicle Engineering, Hunan University,Changsha 410082,China;
2. College of Science,Wuhan University of Science and Technology,Wuhan 430065,China)
Abstract: Perturbation method and Poincaré mapping method were used to derive the generalized Melnikov function of the periodic solution for a two-degree-of-freedom vibro-impact system with cubic non-linearity and external excitations. By using the?Melnikov′s method, the characteristics of periodic motions with double-impact of the 2-dof system were studied, and the existence condition of period-2 motions with double-impact was determined as a critical curve in the parameter domain. The results of numerical simulations show that the regions below the critical curve are the period-2 motions with double-impact, the upper regions of the critical curve are not period-2 motions with double-impact;Meanwhile,increasing the force amplitude and keeping the other parameters unchanged, the motion state of the system changes from multi-period motions with multi-impact to period-2 motions with double-impact, while increasing the system restitution coefficient and keeping the other parameters unchanged, the motion state of the system changes from period-2 motions with double-impact to multi-period motions with multi-impact.
Key words: vibro-impact system; ?generalized Melnikov′s method;period-2 motion; Poincaré maping; generalized Melnikov′s function
在實(shí)際工程系統(tǒng)中往往存在碰撞、沖擊、干摩擦、變剛度、開關(guān)、閾值等大量非光滑因素,人們致力于研究力學(xué)系統(tǒng)中這些非光滑因素帶來(lái)的復(fù)雜動(dòng)力學(xué)行為.非光滑動(dòng)力系統(tǒng)通常表現(xiàn)出與光滑動(dòng)力學(xué)系統(tǒng)截然不同的特征,例如: 加周期分岔、擦邊分岔、粘滯分岔和C型混沌吸引子等.學(xué)者們[1-8]建立了非光滑動(dòng)力學(xué)系統(tǒng)定性理論(例如脈沖微分方程理論、微分包含理論、非光滑分岔理論等),它們?cè)诜治龇枪饣到y(tǒng)的分岔、混沌以及運(yùn)動(dòng)復(fù)雜性上發(fā)揮了重要作用.
碰撞振動(dòng)(簡(jiǎn)稱碰振)系統(tǒng)是一類典型的非光滑動(dòng)力系統(tǒng).針對(duì)這類系統(tǒng)早期的研究對(duì)象是沖擊消振器,該類系統(tǒng)一般為有擋板的單自由度碰撞振動(dòng)系統(tǒng).后來(lái)逐步發(fā)展為多自由度碰撞振動(dòng)系統(tǒng).Chávez等[9]研究了兩自由度的Jeffcott轉(zhuǎn)子的非光滑動(dòng)力學(xué)模型,在過載及粘性阻尼的共同作用下的復(fù)雜動(dòng)力學(xué)特性.Xu等[10]研究了兩自由度振動(dòng)沖擊系統(tǒng)發(fā)生擦邊運(yùn)動(dòng)的存在性和穩(wěn)定性,并比較了兩自由度的Poincaré圖與原微分方程模擬圖,證明了不連續(xù)映射方法的有效性.Al-Shudeifat等[11]研究了加裝非線性能量阱(NES)的二自由度振動(dòng)系統(tǒng)在單邊振動(dòng)沖擊下的響應(yīng)機(jī)制,著重探索了NES對(duì)系統(tǒng)振動(dòng)的抑制以及系統(tǒng)內(nèi)的靶向能量傳遞(TET)特性.Luo等[12]研究了帶間隙的二自由度周期強(qiáng)迫系統(tǒng)的動(dòng)態(tài)性能與系統(tǒng)參數(shù)之間的關(guān)系.
近年來(lái),不少學(xué)者開始應(yīng)用Melnikov方法來(lái)研究碰振系統(tǒng)的同宿軌道、亞諧周期運(yùn)動(dòng)、全局分岔乃至混沌運(yùn)動(dòng)等動(dòng)力學(xué)特性.Zhang等[13]將Melnikov方法應(yīng)用于碰振準(zhǔn)哈密頓系統(tǒng)的局部亞諧軌道,推導(dǎo)出了局部亞諧軌道的Melnikov函數(shù).Du等[14]以碰撞倒擺為模型,提出了一種同宿軌道與剛性面相切的非光滑同宿分岔的Melnikov方法.Yagasaki[15]將擴(kuò)展的分段光滑系統(tǒng)的次諧Melnikov函數(shù)應(yīng)用于三線性振動(dòng)器模型.更多非光滑系統(tǒng)的Melnikov方法參見文獻(xiàn)[16-19].
本文運(yùn)用攝動(dòng)法和Poincaré映射方法推導(dǎo)了二自由度準(zhǔn)哈密頓碰振振子系統(tǒng)雙碰周期2運(yùn)動(dòng)的Melikov函數(shù).此函數(shù)可以確定雙碰周期2運(yùn)動(dòng)和非雙碰周期2運(yùn)動(dòng)的參數(shù)區(qū)域,并通過數(shù)值模擬驗(yàn)證了該分析方法的正確性.
1 ??非光滑準(zhǔn)哈密頓系統(tǒng)的描述
考慮以下二自由度非線性碰振振子(圖1),當(dāng) 時(shí),兩質(zhì)量塊非碰振運(yùn)動(dòng)的控制方程為:
忽略碰振瞬間兩質(zhì)量塊的位移改變,當(dāng)x1 - x2 = δ時(shí)發(fā)生完全彈性碰撞;由于碰振過程中動(dòng)量守恒和能量守恒,有:
以上兩式中:ε表示O(1)小量分別表示碰振前和碰振后的速度;f(x)表示單位質(zhì)量塊上作用的恢復(fù)力,εg1(t)是周期為T 的周期性激勵(lì)函數(shù);1-εη0∈(0,1]表示碰振恢復(fù)系數(shù);δ是質(zhì)量塊m1與質(zhì)量塊m2之間的間隙.
方程(1)和(2)可以改寫為如下矢量形式:
該擾動(dòng)系統(tǒng)(3)則被稱為準(zhǔn)哈密頓碰振系統(tǒng).其中,
{X1,X2} = {x1,y1,x2,y2}
JDH1(X1) = {?墜H1/?墜y1,-?墜H1/?墜x1}
JDH2(X2) = {?墜H2/?墜y2,-?墜H2/?墜x2}
G1(X1,t) = {0,g1(x1,y1,t)}
G2(X2,t) = {0,g2(x2,y2,t)}
當(dāng)ε=0時(shí),方程(3)可以表示為(所謂未擾系統(tǒng)):
為了研究在外部激勵(lì)和粘性阻尼作用下的二自由度碰振系統(tǒng)(1)雙碰周期運(yùn)動(dòng)的存在性,我們將通過分析手段構(gòu)建雙碰周期2運(yùn)動(dòng)的廣義Melnikov函數(shù).
2 ??碰振準(zhǔn)哈密頓系統(tǒng)雙碰周期的Melnikov
函數(shù)
方程(4)描述的未擾系統(tǒng)碰振過程一般比較復(fù)雜,為便于分析,這里僅考慮兩質(zhì)量塊碰撞面是固定的情形.引入以下假設(shè):
1)方程(4)有一簇周期軌道,可以表示為L(zhǎng)1=
2)Xh11 ?(t)和Xh22 ?(t)的周期分別為T1(h1)和
T2(h2);
3)共振關(guān)系應(yīng)該滿足以下條件
這里Mj和nj (j=1,2)是互質(zhì)整數(shù).
研究擾動(dòng)系統(tǒng)(3)的雙碰周期2運(yùn)動(dòng),其軌道如圖2所示.由于方程(3)中的兩個(gè)表達(dá)式類似,這里我們僅分析前一個(gè)方程的擾動(dòng)軌道,可以用同樣的方法分析第二個(gè)方程.
當(dāng)x1 - x2 小于δ時(shí),擾動(dòng)軌道Xε(t,t0)是光滑的,因此可以將其展開成泰勒級(jí)數(shù)的形式,如下:
Xε(t,t0,ε) = Xα(t - t0) + εX(1)(t,t0) + O(ε2) ? (6)
式中,Xα(t)表示未擾軌道表達(dá)式.
為了便于分析,定義以下算子:
Δ(t,t0) = F(Xα(t - t0))∧Xα(t,t0) (7)
Δ0(t,t0) = F(Xα(t - t0))∧Xε(t - t0) (8)
Δ1(t,t0) = F(Xα(t - t0))∧X(1)(t - t0) (9)
光滑條件下,我們可以得到:
Δ1(t,t0) = F(Xα(t - t0))∧H(Xα(t - t0),t) (10)
這里∧表示楔形算子.
接下來(lái),我們考慮始于截面經(jīng)過mT時(shí)間后返回到該截面的擾動(dòng)軌跡Xε(t,t0).Poincaré截面上起始點(diǎn)和返回點(diǎn)間的距離(見圖2)可以通過下式計(jì)算,得:
d(t0)==
[Δ(t0+mT,t0)-Δ(t0,t0)]/DH(Xα(0))
(11)
雙碰周期2運(yùn)動(dòng)的Melnikov函數(shù)定義為:
Mm(t0) = Δ1(t0 + mT,t0) - Δ1(t0,t0) ?(12)
將方程(12)改寫為以下分段表達(dá)的形式:
Mm(t0)=Δ1(t0+mT,t0)-Δ1(t0,t0)=
=Δ1(t0+mT,t0)-Δ1(tε ??2,-,t0)+
Δ1(tε ??2,-,t0)-Δ1(tε ??1,+,t0)+Δ1(tε ??1,+,t0)-Δ1(tε ??1,-,t0)+
Δ1(tε ??1,-,t0)-Δ1(t0,t0) (13)
然后,將方程(9)對(duì)時(shí)間t求導(dǎo),得:
dΔ1(t,t0)/dt=DH(Xα(t-t0))·G(Xα(t-t0),t)(14)
在積分區(qū)間[t0,tε ??1,-]內(nèi)積分,并結(jié)合分段表達(dá)式Xα-(t-t0),可得:
Δ1(tε ??1,-,t0)-Δ1(t0,t0)=
H(Xα-(t-t0))·G(Xα-(t-t0),t)dt(15)
假設(shè)tε ??1,±,tα ??1,±,tε ??2,±,tα ??2,±分別是擾動(dòng)軌道和非擾動(dòng)軌道到達(dá)碰撞面x1 - x2 = δ的時(shí)刻,將表達(dá)式tε ±在未擾軌道碰振時(shí)間tα ±處展開,得:
tε ??1,± = tα ??1,± + εt1 ??1,± + O(ε2) ? (16)
將式(16)代入式(15),得
Δ1(tε ??1,-,t0)-Δ1(t0,t0)=
)
類似地,在區(qū)間[tε ??1,+,tε ??2,-]內(nèi)積分方程(14),得
Δ1(tε ??1,+,t0)-Δ1(tε ??2,-,t0)=
)
由式(16)易知下式成立:
Δ1(tε ??1,+,t0)-Δ1(tε ??1,-,t0)=Δ1(tα ??1,+,t0)-Δ1(tα ??1,-,t0)+O(ε)
(19)
將式(17)~(19)代入式(13),得到
Δ1(tα ??1,+,t0)-Δ1(tα ??1,-,t0)+Δ1(tα ??2,+,t0)-Δ1(tα ??2,-,t0)+O(ε)
(20)
接下來(lái),將表達(dá)式Δ1(tα ??1,+,t0)-Δ1(tα ??1,-,t0)運(yùn)用泰勒公式展開,并結(jié)合方程(6)和定義算子(7)~(9),易知:
Δ(tα ??1,+,t0)-Δ(tα ??1,-,t0)=Δ0(tα ??1,+,t0)-Δ0(tα ??1,-,t0)+
ε[Δ1(tα ??1,+,t0)-Δ1(tα ??1,-,t0)]+O(ε2)(21)
注意到未擾軌道是封閉的,所以
Δ0(tα ??1,+,t0)-Δ0(tα ??1,-,t0)=0(22)
因而,Δ1(tα ??1,+,t0)-Δ1(tα ??1,-,t0)≈[Δ(tα ??1,+,t0)-Δ(tα ??1,-,t0)]/ε.又根據(jù)算子定義:
Δ(tα ??1,+,t0)-Δ(tα ??1,-,t0)=
[f1(Xα1(tα ??1,+-t0)Xε1(tα ??1,+,t0))+
(Yα1(tα ??1,+,t0)-Yα2(tα ??1,+,t0))(Yε1(tε ??1,+,t0)-Yε2(tε ??1,+,t0))]-
[f2(Xα1(tα ??1,--t0)Xε1(tα ??1,-,t0))+
(Yα1(tα ??1,-,t0)-Yα2(tα ??1,-,t0))(Yε1(tε ??1,-,t0)-Yε2(tε ??1,-,t0))]
(23)
將上式中Xε(tε ??1,±,t0)在時(shí)間tα±處做泰勒展開,
如下:
Xε1(tα ??1,±,t0)=Xα1(tε ??1,±,t0)-εYα1(tα ??1,±-t0)t1 ??1,±+O(ε2)Yε1(tα ??1,±,t0)=Yα1(tε ??1,±,t0)+εf1(Yα1(tα ??1,±-t0))t1 ??1,±+O(ε2)
(24)
以上分析了兩質(zhì)量塊未發(fā)生接觸時(shí),質(zhì)量塊m1的運(yùn)動(dòng)軌線部分(碰撞面右邊部分);類似可得質(zhì)量塊m2的亞諧運(yùn)動(dòng)軌線表達(dá)式,這里不再詳細(xì)描述.
下面我們重點(diǎn)分析兩質(zhì)量塊發(fā)生碰振瞬間(23)式的具體計(jì)算.根據(jù)碰撞法則兩質(zhì)量塊應(yīng)在同一時(shí)刻到達(dá)碰撞面處,因此對(duì)于兩質(zhì)量塊的擾動(dòng)和未擾動(dòng)軌道,下列關(guān)系式顯然成立:
tε ??1,+ = tε ??1,-Xε1(tε ??1,+,t0)=Xε1(tε ??1,-,t0)Xε2(tε ??1,+,t0)=Xε2(tε ??1,-,t0)Yε1(tε ??1,+,t0)-Yε2(tε ??1,+,t0)= ????????-(1-εη0)(Yε1(tε ??1,-,t0)-Yε2(tε ??1,-,t0))
(25)
tα ??1,+ = tα ??1,-Xα1(tα ??1,+-t0)=Xα1(tα ??1,--t0)Xα2(tα ??1,+-t0)=Xα2(tα ??1,--t0)Yα1(tα ??1,+,t0)-Yα2(tα ??1,+,t0)= ????????-(Yα1(tα ??1,-,t0)-Yα2(tα ??1,-,t0)) (26)
類似地,展開表達(dá)式Y(jié)ε(tε ??1,±,t0),得:
Xε2(tα ??1,±,t0)=Xα2(tε ??1,±,t0)-εYα2(tα ??1,±-t0)t1 ??1,±+O(ε2)Yε2(tα ??1,±,t0)=Yα2(tε ??1,±,t0)+εf2(Yα1(tα ??1,±-t0))t1 ??1,±+O(ε2)
(27)
將(24)-(27)式代入(23)式并結(jié)合(16)式,可知:
Δ(tα ??1,+,t0)-Δ(tα ??1,-,t0)=
(Yα1(tα ??1,+,t0)-Yα2(tα ??1,+,t0))(Yε1(tε ??1,+,t0)-Yε2(tε ??1,+,t0))-
(Yα1(tα ??1,-,t0)-Yα2(tα ??1,-,t0))(Yε1(tε ??1,-,t0)-Yε2(tε ??1,-,t0))=
-εη0(Yα1(tα ??1,-,t0)-Yα2(tα ??1,-,t0))(Yε1(tε ??1,-,t0)-Yε2(tε ??1,-,t0))
(28)
又因?yàn)椋?/p>
Yε1(tε ??1,-,t0)-Yε2(tε ??1,-,t0)=Yα1(tα ??1,-,t0)-Yα2(tα ??1,-,t0)+O(ε)
(29)
重新整理方程(28)得
Δ(tα ??1,+,t0)-Δ(tα ??1,-,t0)=
-εηε2)
(33)
注意到t
3 ??雙碰周期運(yùn)動(dòng)Melnikov函數(shù)的應(yīng)用
3.1 ??準(zhǔn)哈密頓系統(tǒng)模型
以前面(圖1)給出的碰振準(zhǔn)哈密頓機(jī)械動(dòng)力學(xué)模型為例,此處的兩質(zhì)量塊分別用非線性彈簧k1 - K1x21和k2 - K2x22以及阻尼系數(shù)為c1和c2的線性阻尼器連接在一起.設(shè)兩質(zhì)量塊分別作用幅值為F1和F2,頻率為Ω簡(jiǎn)諧力.系統(tǒng)運(yùn)動(dòng)微分方程如下:
r是碰振恢復(fù)系數(shù).為便于分析,考慮弱阻尼小激勵(lì)條件下,將方程(36)和(37)的無(wú)量綱形式可以分別化簡(jiǎn)如下:
x″1 + 2εμ1 x′1 + ω21x1 - α1x31= εf1 cosΩ 0τx″2 + 2εμ2 x″2 + ω22x2 - α2x32= εf2 cosΩ 0τ(38)
x′+1 ??+ μm x′+2 ??= x′-1 ??+ μm x′-2 ?x′+1 ??- ?x′+2 ??= -(1 - εη0)(x′-1 ??- x′-2 ?)(39)
這里
3.2 ??準(zhǔn)哈密頓周期軌道分析
將方程(36)改寫成如下形式:
x′1 = y1,y′1 = -ω21x1 + α1x31 + ε(-2μ1y1 + f1cosΩτ)
(40)
x′2 = y2,y′2 = -ω22x2 + α2x32 + ε(-2μ2y2 + f2cosΩτ)
(41)
當(dāng)ε=0時(shí),未擾系統(tǒng)(40)和(41)為Hamilton系統(tǒng),其哈密頓作用量為:
(44)
L
(45)
此處的dn(·),cn(·),sn(·)均為橢圓函數(shù).
如果未擾系統(tǒng)沒有發(fā)生碰振,那么周期軌道的周期可以表示為
Tα(k類橢圓積分.
然而,碰振會(huì)導(dǎo)致周期軌道破裂,碰振后的軌道周期為:
T(k) = Tα(k) - ΔT ? (47)
式中ΔT為完整軌道穿越切換面的時(shí)間,它可以由解除條件來(lái)確定:
由于考慮的是周期二運(yùn)動(dòng),且1 ∶ 1的內(nèi)共振情況,結(jié)合公式(5),即1,可得:
2T0(k) - 2ΔT = 2T ? (49)
方程(48)和(49)可用于確定周期 的未擾軌道的橢圓模量.
將公式(44)~(45)代入(35),得:
M2((51)
其中:
Z1 )dτ+
,+cosΩ(τ+τ0)+y2,+cosΩ(τ+τ0))dτ.
根據(jù)Melnikov理論,如果擾動(dòng)系統(tǒng)(40)~(41)存在周期軌道,那么M(τ0)存在簡(jiǎn)單零點(diǎn),因此可得雙碰周期2運(yùn)動(dòng)存在的必要條件:
-2Z1μ - 4η0Z2 + fZ3(τ0)max ≥ 0 ? (52)
將參數(shù)μ = 0.1,ω = 2,Ω = 3,δ = 2,代入公式(52),可得系統(tǒng)激勵(lì)幅值和恢復(fù)系數(shù)間的關(guān)系:
2.813 4 f - 9.964 8 - 3.2η0 ≥ 0(53)
3.3 ??數(shù)值仿真
方程(53)確定的臨界線將參數(shù)(f,η0)分為上下兩個(gè)部分:臨界線下方區(qū)域是雙碰周期2運(yùn)動(dòng),臨界線上方的區(qū)域均為非雙碰周期2運(yùn)動(dòng).為了驗(yàn)證這一結(jié)論,取點(diǎn)A到點(diǎn)F(如圖3)六個(gè)不同系統(tǒng)參數(shù)來(lái)進(jìn)行模擬.圖4~圖10是圖3中各點(diǎn)對(duì)應(yīng)運(yùn)動(dòng)的相圖,實(shí)線與虛線分別代表質(zhì)量塊m1和質(zhì)量塊m2的運(yùn)動(dòng)狀態(tài),其余參數(shù)取值:α1 = 0.1,α2 = 0.3,μm = 1.
圖4中(a)~(b)分別是系統(tǒng)在A點(diǎn)參數(shù)下運(yùn)動(dòng)的運(yùn)動(dòng)相圖.從圖中可以看出,系統(tǒng)表現(xiàn)為雙碰周期2運(yùn)動(dòng).同樣位于臨界線下方的B點(diǎn)和C點(diǎn)也表現(xiàn)出相似的雙碰周期2運(yùn)動(dòng),其相對(duì)運(yùn)動(dòng)相圖見圖5和圖6.
取臨界線上方點(diǎn)D和F驗(yàn)證時(shí),系統(tǒng)運(yùn)動(dòng)可能表現(xiàn)為三碰周期3的,也可能表現(xiàn)為四碰周期4的,甚至變?yōu)閺?fù)雜的多周期多碰運(yùn)動(dòng).其相對(duì)運(yùn)動(dòng)相圖見圖7和圖8.
當(dāng)固定參數(shù)f = 7不變時(shí),εη0從0.25(B點(diǎn))逐漸增大到0.6(H點(diǎn)),中間經(jīng)過εη0 = 0.4(E點(diǎn)),系統(tǒng)由雙碰周期2運(yùn)動(dòng)變?yōu)槿鲋芷?,最后又變?yōu)槎嘀芷诘亩嗯鲞\(yùn)動(dòng).E點(diǎn)和H點(diǎn)的相圖如圖9和
當(dāng)固定參數(shù)εη0 = 0.4不變時(shí),f從6(G點(diǎn))逐漸增大到9(C點(diǎn)),中間經(jīng)過f = 7(E點(diǎn)),系統(tǒng)由二碰周期2運(yùn)動(dòng)逐步變?yōu)槎嘀芷诙嗯鲞\(yùn)動(dòng).G點(diǎn)的相對(duì)運(yùn)動(dòng)相圖見圖11.
4 ??結(jié) ??論
本文應(yīng)用改進(jìn)的局部亞諧Melnikov方法來(lái)研究具有立方項(xiàng)和外部激勵(lì)的二自由度非線性準(zhǔn)哈密頓碰振系統(tǒng)的雙碰周期運(yùn)動(dòng)特性.通過分析,構(gòu)建了雙碰周期2運(yùn)動(dòng)的Melnikov函數(shù),得到了雙碰周期2運(yùn)動(dòng)的存在條件.該條件將系統(tǒng)的參數(shù)區(qū)域分為雙碰周期2運(yùn)動(dòng)參數(shù)區(qū)域和非雙碰周期2參數(shù)區(qū)域兩部分.最后通過數(shù)值模擬驗(yàn)證了Melnikov方法分析二自由度碰振系統(tǒng)雙碰周期2運(yùn)動(dòng)的有效性.
此外數(shù)值結(jié)果還表明,當(dāng)保留其他參數(shù)不變,僅增加力f時(shí),系統(tǒng)由多碰多周期運(yùn)動(dòng),經(jīng)過三碰周期3運(yùn)動(dòng),最后達(dá)到雙碰周期2運(yùn)動(dòng).同樣地,當(dāng)保留其他參數(shù)不變,僅增加η0時(shí),系統(tǒng)由雙碰周期2運(yùn)動(dòng)逐步變?yōu)槎嗯龆嘀芷谶\(yùn)動(dòng).故可適當(dāng)控制參數(shù) f和參數(shù)η0的取值,使系統(tǒng)盡量避免復(fù)雜的高頻振動(dòng).
參考文獻(xiàn)
[1] ???TIAN R L,ZHAO Z J,YANG X W,et al. Subharmonic bifurcation for a nonsmooth oscillator[J]. International Journal of Bifurcation & Chaos,2017,27(10):1750163.
[2] ???SHEN J,LI Y,DU Z. Subharmonic and grazing bifurcations for a simple bilinear oscillator[J]. International Journal of Non-linear Mechanics,2014,60(2):70—82.
[3] ???張思進(jìn),杜偉霞,殷珊. 振動(dòng)篩系統(tǒng)雙Hopf分岔的反控制[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,44(10):55—61.
ZHANG S J,DU W X,YIN S. Anti-control of double Hopf bifurcation of vibration rating griddle system[J]. Journal of Hunan University(Natural Sciences),2017,44(10):55—61.(In Chinese)
[4] ???WU Q,COLE C,LUO S,et al. A review of dynamics modeling of friction draft gear[J]. Vehicle System Dynamics,2014,52(6):733—758.
[5] ???范新秀,王琪.車輛縱向非光滑多體動(dòng)力學(xué)建模與數(shù)值算法研究[J]. 力學(xué)學(xué)報(bào),2015,47(2):301—309.
FAN X X,WANG Q. Research on modeling and simulation of longitudinal vehicle dynamics based on non-smooth dynamics of multibody systems[J]. Chinese Journal of Theoretical & Applied Mechanics,2015,47 (2),301—309.(In Chinese)
[6] ???CAO D,CHU S,LI Z. Study on the non-smooth mechanical models and dynamics for space deployable mechanisms[J]. Chinese Journal of Theoretical & Applied Mechanics,2013,45(1):3—15.
[7] ???KUKUCKA P. Melnikov method for discontinuous planar systems[J]. Nonlinear Analysis Theory Methods & Applications,2007,66(12):2698—2719.
[8] ???SHEN ?J,DU Z. Heteroclinic bifurcation in a class of planar piecewise smooth systems with multiple zones[J]. Zeitschrift Angewandte Mathematik Und Physik,2016,67(3):1—17.
[9] ???CHáVEZ J P,WIERCIGROCH M. Bifurcation analysis of periodic orbits of a non-smooth Jeffcott rotor model[J]. Communications in Nonlinear Science & Numerical Simulation,2013,18(9):2571—2580.
[10] ?XU J,LI Q,WANG N. Existence and stability of the grazing periodic trajectory in a two-degree-of-freedom vibro-impact system[J]. Applied ?Mathematics & Computation,2011,217(12):5537—5546.
[11] ?AL-SHUDEIFAT M A,WIERSCHEM N,QUINN D D,et al. ?Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation[J]. International Journal of Non-linear Mechanics, 2013,52(6):96—109.
[12] ?LUO G W,ZHU X F,SHI Y Q. Dynamics of a two-degree-of freedom periodically-forced system with a rigid stop: Diversity and evolution of periodic-impact motions[J]. Journal of Sound & Vibration,2015,334(334):338—362.
[13] ?ZHANG S J,WEN G L,WANG Y. The Melnikov′s method for local-subharmonic orbits of a vibro-impact quasi-Hamiltonian system[J]. ?Journal of Vibration Engineering,2016,29(2):214—219.
[14] ?DU Z,LI Y,SHEN J,et al. Impact oscillators with homoclinic orbit tangent to the wall[J]. Physica D Nonlinear Phenomena,2013, 245(1):19—33.
[15] ?YAGASAKI K. Application of the subharmonic Melnikov method to piecewise-smooth systems[J]. Discrete and Continuous Dynamical Systems,2013,33(5):2189—2209.
[16] ?張思進(jìn),文桂林,王緊業(yè),等. 碰振準(zhǔn)哈密頓系統(tǒng)局部亞諧軌道的Melnikov方法[J]. 振動(dòng)工程學(xué)報(bào),2016,29(2):214—219.
ZHANG S J,WEN G L,WANG J Y,et al. The Melnikov′s method for local-subharmonic orbits of a vibro-impact quasi-Hamiltonian system[J]. Journal of Vibration Engineering,2016,29(2):214—219.(In Chinese)
[17] ?XU W,F(xiàn)ENG J,RONG H,et al. Melnikov′s method for a general nonlinear vibro-impact oscillator [J]. Nonlinear Analysis, 2009, 71(1):418—426.
[18] ?GRANADOS A,HOGAN S J,SEARA T M. The Melnikov method and subharmonic orbits in a piecewise smooth system[J]. Siam Journal on Applied Dynamical Systems,2012,11(3):801—830.
[19] ?TIAN R L,ZHAO Z J,YANG X W,et al. Subharmonic bifurcation for a nonsmooth oscillator[J]. International Journal of Bifurcation & Chaos,2017,27(10):1750163.