王教領(lǐng),宋衛(wèi)東,金誠謙,丁天航,王明友,吳今姬,劉自暢
?
杏鮑菇轉(zhuǎn)輪除濕熱泵干燥系統(tǒng)結(jié)構(gòu)設(shè)計(jì)及工藝參數(shù)優(yōu)化
王教領(lǐng),宋衛(wèi)東※,金誠謙,丁天航,王明友,吳今姬,劉自暢
(農(nóng)業(yè)農(nóng)村部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014)
為了實(shí)現(xiàn)農(nóng)產(chǎn)品低濕節(jié)能干燥,分析了典型轉(zhuǎn)輪除濕干燥模式,基于能耗高、結(jié)構(gòu)不合理等問題,開展轉(zhuǎn)輪熱泵聯(lián)合除濕干燥系統(tǒng)優(yōu)化設(shè)計(jì)與試驗(yàn)研究,研制出轉(zhuǎn)輪除濕熱泵干燥機(jī)。為了檢驗(yàn)并提高轉(zhuǎn)輪除濕熱泵干燥機(jī)的作業(yè)性能,該文以杏鮑菇為研究對(duì)象,以降低杏鮑菇色差、除濕能耗比,提高復(fù)水性為目標(biāo),運(yùn)用Box-Benhnken 中心組合試驗(yàn)設(shè)計(jì)理論,對(duì)再生溫度、干燥溫度、轉(zhuǎn)換點(diǎn)相對(duì)濕度影響其干燥品質(zhì)與能耗的因素開展響應(yīng)面試驗(yàn)。通過數(shù)據(jù)分析,建立了響應(yīng)面模型,結(jié)合四維渲染圖分析了上述3個(gè)考察指標(biāo)受3個(gè)試驗(yàn)因素取值變化的影響機(jī)制,同時(shí)對(duì)各影響因素進(jìn)行了綜合優(yōu)化與試驗(yàn)驗(yàn)證。結(jié)果表明,3個(gè)模型的2均大于0.98,試驗(yàn)因素對(duì)干燥品質(zhì)及能耗有較大影響,當(dāng)再生溫度87 ℃,干燥溫度50 ℃,轉(zhuǎn)換點(diǎn)相對(duì)濕度45%時(shí),杏鮑菇復(fù)水比4.028,色差22.89,除濕能耗比(specific power consumption, SPC)2 633kJ/kg,與預(yù)測(cè)絕對(duì)值誤差均低于6個(gè)百分點(diǎn)。該研究為轉(zhuǎn)輪除濕熱泵干燥設(shè)備的設(shè)計(jì)及干燥工藝優(yōu)化提供參考。
干燥;農(nóng)產(chǎn)品;品質(zhì)控制;轉(zhuǎn)輪除濕;熱泵;杏鮑菇
農(nóng)產(chǎn)品干制是其貯藏的重要手段。常見干燥類型有輻射、傳導(dǎo)與對(duì)流干燥3種方式,其中對(duì)流干燥以其設(shè)備簡(jiǎn)單、適用范圍大而獲得了廣泛的應(yīng)用。對(duì)流干燥一般可調(diào)參數(shù)有風(fēng)溫、風(fēng)速與干燥介質(zhì)濕度,但溫度在每個(gè)干燥階段都有上限,超過上限會(huì)破壞農(nóng)產(chǎn)品品質(zhì);風(fēng)量調(diào)節(jié)也不宜太大,超過最佳風(fēng)量不利于干燥介質(zhì)與物料之間進(jìn)行充分的熱交換[1-2]。而干燥介質(zhì)的濕度在干燥大部分階段是不受限制的,低濕度可以提高干燥速率,實(shí)現(xiàn)低溫干燥,因此濕度是一個(gè)理想的調(diào)節(jié)參數(shù)[3-6]。
轉(zhuǎn)輪除濕是固體除濕中常用模式[7-8],世界上最早的除濕機(jī)是瑞典科學(xué)家Mr.Carl Munters于1956年發(fā)明的蜂窩吸收式除濕機(jī),國內(nèi)大概于上世紀(jì)七十年代開始研究轉(zhuǎn)輪除濕技術(shù),主要用于空調(diào)除濕與工業(yè)除濕干燥[9],鮮有用于農(nóng)產(chǎn)品干燥。近年來,隨著國家對(duì)三農(nóng)工作的重視以及國民對(duì)食品營養(yǎng)的追求,轉(zhuǎn)輪除濕在農(nóng)產(chǎn)品干燥方面的研究也逐漸受到關(guān)注。研究表明相同條件下轉(zhuǎn)輪干燥比熱泵干燥速度快,比冷凍干燥能耗低、效率高,綜合來看是一種理想的除濕干燥技術(shù)[10-11],同時(shí)轉(zhuǎn)輪除濕解決了溫濕度獨(dú)立控制的難題,是未來食品行業(yè)極具競(jìng)爭(zhēng)力的干燥方式[12-13]。但當(dāng)前空調(diào)除濕與工業(yè)除濕干燥的轉(zhuǎn)輪結(jié)構(gòu)并不適合農(nóng)產(chǎn)品干燥,若直接套用將導(dǎo)致高能耗等問題;而熱泵除濕雖然深度除濕能力有限,但節(jié)能效果明顯[14-16],因此,高濕環(huán)境下轉(zhuǎn)輪熱泵聯(lián)合除濕干燥可實(shí)現(xiàn)優(yōu)勢(shì)互補(bǔ),特別是針對(duì)熱敏性物料干燥具有較大應(yīng)用前景。
本文針對(duì)當(dāng)前轉(zhuǎn)輪除濕結(jié)構(gòu)不合理、能耗大等問題,結(jié)合農(nóng)產(chǎn)品干燥要求設(shè)計(jì)了轉(zhuǎn)輪除濕熱泵干燥設(shè)備,并針對(duì)杏鮑菇開展了切片干燥試驗(yàn),以期為轉(zhuǎn)輪除濕干燥設(shè)備的設(shè)計(jì)及工藝優(yōu)化提供參考。
典型的轉(zhuǎn)輪除濕一般由轉(zhuǎn)輪、表冷器及加熱器等組成。新風(fēng)或回風(fēng)先通過表冷器降溫除濕[17-18]后進(jìn)入轉(zhuǎn)輪除濕,轉(zhuǎn)輪中裝填吸附劑,轉(zhuǎn)輪面分為除濕與再生區(qū)。在除濕過程中,轉(zhuǎn)輪在驅(qū)動(dòng)裝置帶動(dòng)下緩慢轉(zhuǎn)動(dòng),當(dāng)轉(zhuǎn)輪在除濕區(qū)域吸附水分達(dá)到飽和狀態(tài)后,進(jìn)入再生區(qū)域由高溫空氣進(jìn)行脫附再生,這一過程循環(huán)進(jìn)行,除濕干燥后的處理出風(fēng)經(jīng)加熱或降溫后送入干燥箱,該系統(tǒng)具有如下不足:一方面始終在利用回風(fēng)進(jìn)行循環(huán)干燥,但干燥前期干燥箱內(nèi)濕度較大,當(dāng)物料完成預(yù)熱后不宜再利用;另一方面,傳統(tǒng)的表冷器無法實(shí)現(xiàn)能量循環(huán)利用,增大了能耗。針對(duì)以上問題做如下改進(jìn):
設(shè)置三通閥轉(zhuǎn)換機(jī)構(gòu),解決新風(fēng)與回風(fēng)利用的合理轉(zhuǎn)換問題,實(shí)現(xiàn)節(jié)能干燥;蒸發(fā)器代替表冷器,同時(shí)設(shè)置冷凝器形成熱泵循環(huán),實(shí)現(xiàn)能量的循環(huán)利用,并利用冷凝器放出的熱量加熱干燥進(jìn)風(fēng)或者用于轉(zhuǎn)輪再生;降溫設(shè)備的選擇在完成轉(zhuǎn)輪選型后依據(jù)溫升確定,根據(jù)計(jì)算本設(shè)計(jì)無需后表冷降溫,優(yōu)化后的結(jié)構(gòu)如圖1所示。
1.冷凝器 2、3.加熱器 4.膨脹閥 5.轉(zhuǎn)換機(jī)構(gòu) 6.蒸發(fā)器 7.除濕轉(zhuǎn)輪 8.壓縮機(jī) 9.干燥箱 10.出風(fēng)板 A.再生進(jìn)風(fēng) B.再生出風(fēng) C.處理進(jìn)風(fēng) D.處理出風(fēng) E.干燥進(jìn)風(fēng)
設(shè)計(jì)的轉(zhuǎn)輪除濕熱泵干燥機(jī)整機(jī)結(jié)構(gòu)如圖2所示,在工作時(shí),要先將料盤放在托盤中,將托盤放在6層的物料車的層架上,再將物料車推入干燥箱,共可容納3個(gè)物料車,物料車與干燥箱壁緊密結(jié)合,主要是為了熱風(fēng)能穿過物料,防止串風(fēng)。干燥初期,由轉(zhuǎn)換機(jī)構(gòu)切換將新風(fēng)導(dǎo)入除濕主機(jī),進(jìn)風(fēng)經(jīng)轉(zhuǎn)輪除濕系統(tǒng)除濕調(diào)溫后經(jīng)進(jìn)風(fēng)管道利用進(jìn)風(fēng)風(fēng)道進(jìn)入熱風(fēng)層,之后穿過熱封板上出風(fēng)孔進(jìn)入干燥箱,逐步穿過物料,并由回風(fēng)管道返回到除濕系統(tǒng),或者排到大氣中。而當(dāng)干燥進(jìn)行到某個(gè)階段時(shí)回風(fēng)濕度較低、溫度較高時(shí),通過轉(zhuǎn)換機(jī)構(gòu)將回風(fēng)導(dǎo)入轉(zhuǎn)輪除濕系統(tǒng),進(jìn)行閉環(huán)除濕干燥。
1.除濕主機(jī) 2.控制器 3.轉(zhuǎn)換機(jī)構(gòu) 4.回風(fēng)管道 5.干燥箱 6.出風(fēng)板 7.進(jìn)風(fēng)風(fēng)道 8.熱風(fēng)層 9.進(jìn)風(fēng)管道 10.出風(fēng)孔 11.再生廢氣出口
1.2.1 批次鋪料面積
以杏鮑菇干燥為例,批次干燥質(zhì)量為40 kg,物料初始含水率含水率為90%,干燥溫度40~80 ℃線性可調(diào),3 h將物料干燥到貯藏要求。為了保證物料的干燥效果,采用薄層干燥,取單層鋪料。厚度=5 mm,試驗(yàn)測(cè)得杏鮑菇密度為400 kg/m3,則批次攤放面積0計(jì)算如下
1.2.2 料盤、物料車及干燥箱尺寸的確定
物料車與托盤設(shè)計(jì)圖如圖3。設(shè)計(jì)托盤(圖3b)內(nèi)部尺寸620 mm×600 mm×20 mm,邊厚2 mm,共需20/(0.62×0.60)=53.8個(gè)托盤;設(shè)計(jì)3個(gè)物料車(圖3a),每個(gè)物料車上設(shè)計(jì)可放置18個(gè)托盤,則3個(gè)物料車可裝載18×3=54個(gè)托盤;根據(jù)托盤尺寸確定物料車的尺寸為:1 960 mm×650 mm×1 560 mm。同時(shí)在干燥時(shí)物料車與箱體間是緊密接觸的,這是為了使得熱風(fēng)與物料的充分換熱,設(shè)計(jì)干燥箱尺寸為1 970 mm×1 960 mm× 2 000 mm。干燥熱風(fēng)通過干燥箱底板上的均布的出風(fēng)口穿過物料,出風(fēng)口的總面積為1=1.25 m2。
因?yàn)闊犸L(fēng)是通過穿流方式穿過物料的,因此風(fēng)速一般小于1 m/s,本次取風(fēng)速=0.6 m/s,則干燥風(fēng)體積流量
取熱空氣密度=1.09 3 kg/m3,干燥風(fēng)質(zhì)量流量
圖3 物料車與托盤
1.3.1 轉(zhuǎn)輪主機(jī)選擇
設(shè)計(jì)的轉(zhuǎn)輪除濕熱泵干燥系統(tǒng)單位除濕量= 40×0.9/3=12 kg/h,依據(jù)單位除濕量,主機(jī)選擇舜天公司的ST~15轉(zhuǎn)輪除濕機(jī),該除濕轉(zhuǎn)輪額定除濕量10~20 kg/h,額定除濕風(fēng)量2 200~4 550 m3/h,滿足生產(chǎn)設(shè)計(jì)要求。
處理空氣溫升計(jì)算:轉(zhuǎn)輪熱泵除濕過程如圖4所示,1點(diǎn)~2點(diǎn)為蒸發(fā)過程,干燥介質(zhì)被降溫除濕,2點(diǎn)~3點(diǎn)為等焓除濕過程,干燥介質(zhì)被升溫除濕,3點(diǎn)~4點(diǎn)為冷凝過過程,干燥介質(zhì)被等濕升溫,4點(diǎn)為進(jìn)干燥箱,5點(diǎn)為出干燥箱,為等焓干燥。設(shè)1點(diǎn)新風(fēng)經(jīng)蒸發(fā)器降溫到2點(diǎn),此時(shí)2=15 ℃且為飽和氣體,根據(jù)焓濕圖知1=10.7 g/kg,通過轉(zhuǎn)輪反復(fù)試驗(yàn)得出轉(zhuǎn)輪溫升D=23 ℃,轉(zhuǎn)輪除濕量為D=6.1 g/kg,則處理后的空氣溫度32+D=38 ℃,而一般干燥溫度在40 ℃以上,因此無需降溫處理。
注:φ為相對(duì)濕度,1為新風(fēng)點(diǎn),2為蒸發(fā)除濕終點(diǎn),3為轉(zhuǎn)輪除濕終點(diǎn),4為等濕加熱終點(diǎn)。
1.3.2 蒸發(fā)器計(jì)算
根據(jù)圖4所示,蒸發(fā)過程由1點(diǎn)~2點(diǎn),設(shè)室溫新風(fēng)平均溫度1=25 ℃,濕度1=55%,則新風(fēng)焓值1=52.96 kJ/kg,設(shè)蒸發(fā)溫度為10 ℃,換熱溫差為5 ℃,2=t+5=15 ℃,t為蒸發(fā)溫度,當(dāng)降溫飽和后相對(duì)濕度2=100%,此時(shí)2=42.07 kJ/kg,則蒸發(fā)器傳熱量
平均傳熱溫差
1.3.3 冷凝器計(jì)算
根據(jù)圖4所示,冷凝過程由3點(diǎn)到4點(diǎn),是等濕加熱過程,其中3=38 ℃,3=4.6 g/kg,3=50.2 kJ/kg,設(shè)冷凝溫度t為55 ℃,取換熱溫差為5 ℃,4=t?5=50 ℃,且已知4=4.6 g/kg,則4=62.42 kJ/kg,則冷凝器傳熱量
平均傳熱溫差
1.3.4 壓縮機(jī)計(jì)算
圖5為R134a工質(zhì)理論循環(huán)示意圖,其中4~1為等溫蒸發(fā)過程,1~2為等熵壓縮過程,2~3為等溫冷凝過程,3~4為絕熱膨脹過程。由圖5結(jié)合蒸發(fā)溫度與冷凝溫度可以確定1點(diǎn)焓值1=405 kJ/kg,比體積1=0.05,2點(diǎn)2=225 kJ/kg,3點(diǎn)3=280 kJ/kg,4點(diǎn)4=3=280 kJ/kg,單位熱泵工質(zhì)焓值
熱泵工質(zhì)流量
壓縮機(jī)輸氣量
理論循環(huán)等熵壓縮時(shí)壓縮機(jī)的耗電量
注:e為蒸發(fā)溫度,c為冷凝溫度,1為蒸發(fā)終點(diǎn)焓值,2為壓縮終點(diǎn)焓值,3為冷凝終點(diǎn)焓值,4為節(jié)流終點(diǎn)焓值。
Note:eis evaporation temperature,cis condensation temperature,1is the enthalpy at the end of evaporation,2is the enthalpy at the end of compression,3is the enthalpy at the end of condensation,4is the enthalpy at the end of throttling.
圖5 基于R134a工質(zhì)的熱泵理論循環(huán)
Fig.5 Heat pump theoretical cycle based on working fluid of R134a
干燥介質(zhì)與外界環(huán)境的連通程度,一般可以分為開式、半開式與封閉式,因?yàn)檗D(zhuǎn)輪除濕的優(yōu)勢(shì)就是低露點(diǎn),所以主要形式應(yīng)該采用封閉式,而干燥初期回風(fēng)溫度低、濕度大不宜利用。因此,合理的干燥過程應(yīng)是干燥初期采用開式,當(dāng)達(dá)回風(fēng)達(dá)到某個(gè)臨界狀態(tài)時(shí)轉(zhuǎn)換為封閉式干燥,所以尋找這個(gè)臨界點(diǎn)是關(guān)鍵。
物料在干燥箱內(nèi)的干燥近似等焓干燥,轉(zhuǎn)輪除濕也是近似等焓過程,且除濕溫度越低轉(zhuǎn)輪除濕效率越高[22-23]。通常干燥溫度是預(yù)先設(shè)置好的,隨著除濕狀態(tài)的進(jìn)行焓值逐漸降低,回風(fēng)溫度逐漸上升。干燥時(shí),某個(gè)循環(huán)中,物料干燥過程中是沿等焓線沿降溫方向移動(dòng),隨著干燥的進(jìn)行,在不同的循環(huán)中,回風(fēng)焓值是降低的,回風(fēng)溫度不斷上升。同時(shí)隨著回風(fēng)溫度的增大,如果全部利用回風(fēng)的話,則蒸發(fā)溫度升高,由于單位制冷量與輸氣系數(shù)增大,相應(yīng)制冷量也會(huì)升高。如圖6所示,干燥開始時(shí),某時(shí)刻進(jìn)入干燥箱的空氣處于狀態(tài)點(diǎn)1,在干燥箱內(nèi)空氣沿著1~2達(dá)到2時(shí)流出干燥箱,假如此時(shí)2點(diǎn)的溫度與環(huán)境溫度相同,離開干燥器后進(jìn)入蒸發(fā)器冷凝除濕,到飽和線上的3點(diǎn),之后沿飽和線到4點(diǎn),進(jìn)入轉(zhuǎn)輪后近似等焓除濕,到達(dá)5點(diǎn),再等濕加熱到6點(diǎn),下個(gè)過程是沿著6~2′,到3′點(diǎn)再降溫除濕到4′,除濕到5′點(diǎn),再加熱到6′點(diǎn),假如下一個(gè)循環(huán)中,既從6′~2″,之后從蒸發(fā)器出口時(shí)的狀態(tài)點(diǎn)和4″重合,既和新風(fēng)從蒸發(fā)器出口的狀態(tài)點(diǎn)一致時(shí),記為臨界點(diǎn)。在此點(diǎn)之前如果利用回風(fēng)干燥則從蒸發(fā)器出口的空氣溫度高于4″,由于轉(zhuǎn)輪除濕效率與處理風(fēng)溫成反比,所以回風(fēng)除濕效率低,因此,在此點(diǎn)前應(yīng)利用新風(fēng);當(dāng)回風(fēng)從蒸發(fā)器出口的狀態(tài)點(diǎn)越過臨界點(diǎn)后,其溫度比新風(fēng)從蒸發(fā)器出口溫度4″點(diǎn)低,除濕量增大,所以越過臨界點(diǎn)后應(yīng)使用回風(fēng)。另一方面,冷凝除濕階段,如在2~3~4階段,制冷消耗的能量在冷凝器中又放出用于轉(zhuǎn)輪再生了,因此,可認(rèn)為實(shí)現(xiàn)了能量的內(nèi)部循環(huán)利用。因此,到達(dá)臨界點(diǎn)后,利用回風(fēng)除濕比利用室外新風(fēng)節(jié)能。通過圖6可知,2′″為最適轉(zhuǎn)換點(diǎn),其相對(duì)濕度處于%與%之間,其中值利用除濕回風(fēng)焓值與室外溫度確定,值根據(jù)2″′含水率與初始除濕焓值確定。
注:1~6表示某一物料等焓干燥后干燥介質(zhì)再除濕加熱過程,“′”、“″”、“′″”分別代表不同除濕循環(huán),b%為轉(zhuǎn)換點(diǎn)相對(duì)濕度下限,a%為轉(zhuǎn)換點(diǎn)相對(duì)濕度上限。
試驗(yàn)用杏鮑菇采自宜興新錦源菌業(yè)科技有限公司,含水率約在90%;美國OHAUS奧豪斯MB27快速水分測(cè)定儀;柯尼卡美能達(dá)色差計(jì)CR-10plus(上海嘉標(biāo)測(cè)試儀器有限公司);HH-4恒溫水浴鍋(常州智博瑞儀器制造有限公司);BSA224S電子天平(廣州市深華生物技術(shù)有限公司);切片機(jī)(自制);電表。
2.2.1 水分
水分的測(cè)定利用美國OHAUS奧豪斯MB27快速水分測(cè)定儀進(jìn)行測(cè)量。
2.2.2 復(fù)水比
杏鮑菇復(fù)水性能用復(fù)水比表示,復(fù)水比為杏鮑菇在復(fù)水一定時(shí)間后的質(zhì)量與復(fù)水前質(zhì)量之比,計(jì)算公式如下
式中R為復(fù)水比;M為杏鮑菇復(fù)水瀝干后的質(zhì)量,kg;M為杏鮑菇復(fù)水前的質(zhì)量,kg。
試驗(yàn)時(shí),稱量一定質(zhì)量的干燥杏鮑菇樣品放入40 ℃恒溫的蒸餾水中,保溫30 min后取出瀝干20 min,并用吸水紙拭干表面水分后稱質(zhì)量。每組進(jìn)行3次平行試驗(yàn),結(jié)果取平均值[24]。
2.2.3 色差值測(cè)定
采用柯尼卡美能達(dá)色差計(jì)CR-10plus測(cè)定。顏色通過(明暗度)、(紅綠度)、(黃藍(lán)度)表示。根據(jù)測(cè)得的新鮮杏鮑菇片和干燥后的杏鮑菇片顏色值計(jì)算色差值Δ[25-26],具體按式(14)計(jì)算。
2.2.4 除濕能耗比(specific power consumption, SPC)
除濕能耗比表示每除去單位水分所消耗的能量。試驗(yàn)中利用電表測(cè)量每次試驗(yàn)所消耗的電量,結(jié)合試驗(yàn)中除去水的質(zhì)量進(jìn)行計(jì)算[27]。
其中為電耗,kW·h,為除去水的質(zhì)量,kg。
根據(jù)杏鮑菇性質(zhì)與相關(guān)文獻(xiàn)[28-30],杏鮑菇干燥溫度一般不超過65 ℃,由于轉(zhuǎn)輪具有低濕低溫特性,本次試驗(yàn)注重探究低溫下的干燥速率與能耗,選擇干燥溫度為50 ℃。轉(zhuǎn)輪再生溫度越高除濕能力越強(qiáng),但相應(yīng)的能耗也越大;另一方面轉(zhuǎn)輪除濕是近似等焓過程,再生溫度太高會(huì)導(dǎo)致處理出氣溫升較大,可能超過目標(biāo)干燥溫度;同時(shí)低溫干燥是該設(shè)備的作業(yè)優(yōu)勢(shì),因此為了研究不同再生溫度對(duì)除濕能力的影響,特別是低溫再生特性,依據(jù)物料與設(shè)備特性選擇再生溫度為80 ℃;干燥濕度的選擇根據(jù)1.4中對(duì)轉(zhuǎn)換機(jī)構(gòu)的分析,測(cè)量初始回風(fēng)焓值結(jié)合室外相對(duì)濕度,確定,點(diǎn)分別為40%與50%,取此次干燥濕度為45%。試驗(yàn)樣機(jī)放置于工廠化生產(chǎn)食用菌栽培房?jī)?nèi),通過溫濕度控制系統(tǒng)確保干燥介質(zhì)的溫度與濕度保持穩(wěn)定。每隔30 min稱質(zhì)量一次,記錄并折算出含水率,結(jié)果如圖7所示,初始含水率為90%,150 min時(shí)含水率為15.6%,180 min時(shí)含水率降為8.53%,且色澤等品質(zhì)符合干燥要求。在單因素試驗(yàn)基礎(chǔ)上,采用Box-Benhnken中心組合設(shè)計(jì),以復(fù)水比1、色差2與除濕能耗比3作為響應(yīng)值,對(duì)轉(zhuǎn)輪再生溫度1、干燥溫度2、轉(zhuǎn)換點(diǎn)的相對(duì)濕度3進(jìn)行響應(yīng)面試驗(yàn),設(shè)計(jì)因素水平回歸試驗(yàn),對(duì)3個(gè)主要參數(shù)組合優(yōu)化設(shè)計(jì),進(jìn)而獲取最優(yōu)干燥工藝。轉(zhuǎn)輪除濕熱泵干燥機(jī)置于由食用菌培養(yǎng)房提供的恒溫與恒濕環(huán)境中,每組干燥時(shí)間統(tǒng)一為3 h。試驗(yàn)因素與水平如表1所示。采用Mintab v15.1軟件進(jìn)行試驗(yàn)設(shè)計(jì)、數(shù)據(jù)處理與統(tǒng)計(jì)分析,利用Voxler4軟件進(jìn)行繪圖,根據(jù)Box-Benhnken 試驗(yàn)方案進(jìn)行三因素三水平響應(yīng)面分析試驗(yàn)。
圖7 濕基含水率隨時(shí)間變化
表1 響應(yīng)面試驗(yàn)因素與水平
2.4.1 響應(yīng)面模型及顯著性檢驗(yàn)
對(duì)表2中的數(shù)據(jù),運(yùn)用Mintab15.1 數(shù)據(jù)分析軟件進(jìn)行多元回歸擬合分析,結(jié)果見表3,利用voxler4繪制各考察因素與試驗(yàn)因素之間關(guān)系如圖8所示。
表3為回歸模型方差分析,由表可知,復(fù)水比1、色差2、除濕能耗比3響應(yīng)面模型的<0.001,表明3個(gè)回歸模型均高度顯著;1、2、3模型失擬項(xiàng)均不顯著(>0.05,),表明在試驗(yàn)范圍內(nèi),回歸模型與實(shí)際情況擬合度較好;1、2、3模型的決定系數(shù)2值依次為98.85%、99.07%、99.00%,均大于98%,表明各模型可以解釋98%以上響應(yīng)值變化,僅有不到2%的總變異不能由模型來解釋,預(yù)測(cè)值和實(shí)際值之間具有高度相關(guān)性,試驗(yàn)誤差較小。因此,可用該模型對(duì)杏鮑菇干燥各指標(biāo)進(jìn)行分析和預(yù)測(cè)。
表2 試驗(yàn)方案與結(jié)果
圖8 再生溫度、干燥溫度和轉(zhuǎn)換點(diǎn)相對(duì)濕度與復(fù)水比、色差及除濕能耗比之間的四維渲染圖
表3 回歸模型方差分析
注:***表示<0.001(極顯著)。
Note: *** shows significance (<0.001).
由表3可知,模型1的1、2、22、12的5個(gè)回歸項(xiàng)影響極顯著(<0.01),12、32影響顯著(<0.05),其余回歸項(xiàng)影響不顯著(>0.05);模型2的2、3的2個(gè)回歸項(xiàng)影響極顯著(<0.01),22、23的2個(gè)回歸項(xiàng)影響顯著(<0.05),其余回歸項(xiàng)影響不顯著(>0.05);模型3的1、2、12、22、32、13、23的7個(gè)回歸項(xiàng)影響極顯著(<0.01),3影響顯著(<0.05),12不顯著(>0.05)。保留上述模型顯著項(xiàng),剔除不顯著項(xiàng),建立復(fù)水比1、色差2、除濕能耗比3對(duì)3個(gè)自變量(1、2、3)的二次多項(xiàng)式回歸模型,如方程(16)~(18)所示,對(duì)建立的3個(gè)回歸模型方程進(jìn)行方差分析,對(duì)3個(gè)模型進(jìn)行擬合,在保證模型高度顯著、失擬項(xiàng)不顯著基礎(chǔ)上,其回歸模型可以優(yōu)化為(16)~(18),其中值為編碼值。
1=3.650 00?0.040 001?0.268 752+0.021 2512
?0.031 2522+0.023 7532?0.030 0012(16)
2=27.500 0+2.600 02?1.100 03?0.650 022
+0.500 023(17)
3=2 435.33+85.001+104.622+31.383+128.8312+
141.0822+167.5832?61.7513?106.5023(18)
2.4.2 因素響應(yīng)分析
由表3的值知,再生溫度1,干燥溫度2,轉(zhuǎn)換點(diǎn)相對(duì)濕度3對(duì)復(fù)水比1的3個(gè)因素的重要影響性順序?yàn)?>1>3,1、2、3對(duì)1的影響效應(yīng)如圖8a所示,總體影響趨勢(shì)為再生溫度越低、干燥溫度越低,復(fù)水比越高,反之越低。主要是因?yàn)樵偕鷾囟雀?,干燥濕度低,而低的干燥濕度在干燥后期可能?huì)引起杏鮑菇的皺縮,影響復(fù)水性;高的干燥溫度會(huì)對(duì)杏鮑菇的細(xì)胞等結(jié)構(gòu)產(chǎn)生破壞,影響復(fù)水性。
再生溫度1,干燥溫度2,轉(zhuǎn)換點(diǎn)相對(duì)濕度3對(duì)色差2的3個(gè)因素的重要影響性順序?yàn)?>3>1,1、2、3對(duì)2的影響效應(yīng)如圖8b所示,總體影響趨勢(shì)為干燥溫度越低,轉(zhuǎn)換點(diǎn)相對(duì)濕度越小色差越小,反之越大。主要是因?yàn)榈偷母稍餃囟瓤梢砸种菩吁U菇加熱過程中美拉德反應(yīng)的發(fā)生,從而降低褐變,減少了色差;轉(zhuǎn)換點(diǎn)相對(duì)濕度高色差小的原因可能是因?yàn)?,轉(zhuǎn)換點(diǎn)相對(duì)濕度高意味著越早關(guān)閉轉(zhuǎn)換閥,更多的利用循環(huán)風(fēng),減小干燥箱中氧氣的濃度,同樣可以抑制美拉德等反應(yīng),減小了色差。
再生溫度1,干燥溫度2,轉(zhuǎn)換點(diǎn)相對(duì)濕度3對(duì)除濕能耗比3的3個(gè)因素的重要影響性順序?yàn)?>1>3,1、2、3對(duì)3的影響效應(yīng)如圖8c所示,總體影響為再生溫度、干燥溫度和轉(zhuǎn)換點(diǎn)相對(duì)濕度對(duì)SPC的影響呈現(xiàn)先低后高的趨勢(shì)。再生溫度高則干燥濕度低,在干燥初期由于濕度低焓值低,物料升溫速度慢,不利于干燥,同樣在干燥后期物料處于降速干燥階段,低濕所產(chǎn)的干燥驅(qū)動(dòng)力的優(yōu)勢(shì)不能充分發(fā)揮,也會(huì)導(dǎo)致能耗高;而低再生溫度則干燥濕度高,造成干燥過程中平均干燥速率降低進(jìn)而導(dǎo)致能耗高。干燥溫度對(duì)能耗的影響機(jī)理與再生溫度對(duì)能耗的影響機(jī)理基本相似。而轉(zhuǎn)換點(diǎn)相對(duì)濕度對(duì)能耗的影響呈現(xiàn)單谷趨勢(shì)的原因,與1.4章節(jié)中對(duì)臨界除濕分析原因相似,在臨界點(diǎn)前利用新風(fēng),在臨界點(diǎn)后利用回風(fēng)可以實(shí)現(xiàn)節(jié)能效果。
為了達(dá)到理想的干燥效果,要求干燥后的杏鮑菇在保證水分含量的情況下復(fù)水比盡量高,色差和除濕能耗比盡量小。通過各因素影響效應(yīng)分析可知:要獲得較高復(fù)水比的杏鮑菇,要求再生溫度與干燥溫度盡量低;要獲得較低色差的杏鮑菇,就要求干燥溫度盡量低,轉(zhuǎn)換點(diǎn)相對(duì)濕度盡量高;要獲得較低的除濕能耗比,就要求再生溫度、干燥溫度和轉(zhuǎn)換點(diǎn)相對(duì)濕度需要適中。因此,采用mintab響應(yīng)優(yōu)化器對(duì)3個(gè)響應(yīng)的目標(biāo)、期望值、上下限和重要性進(jìn)行設(shè)置,其中上、下限值通過表2獲得,望目值在望大響應(yīng)中取上限值,在望小響應(yīng)中取下限值,綜合物料的干燥品相與能耗,取3個(gè)響應(yīng)的重要性與權(quán)重相同(表4),優(yōu)化后的結(jié)果如表5所示,當(dāng)再生溫度為87.49 ℃,干燥溫度為50.05 ℃,轉(zhuǎn)換點(diǎn)相對(duì)濕度為45.45%時(shí),復(fù)水比為3.89,合意性為0.954,色差為24.2,合意性為0.755,除濕能耗比為2 461 kJ/kg,合意性為0.895,復(fù)合合意性為0.868,符合預(yù)期干燥目標(biāo)。為了驗(yàn)證優(yōu)化結(jié)果的可行性,對(duì)優(yōu)化后的參數(shù)組合進(jìn)行試驗(yàn)驗(yàn)證,試驗(yàn)條件和試驗(yàn)方法同上。設(shè)定再生溫度為87 ℃,干燥溫度為為50 ℃,轉(zhuǎn)換點(diǎn)相對(duì)濕度為45%時(shí),試驗(yàn)進(jìn)行3次取平均值,最后得到干品杏鮑菇復(fù)水比4.028,色差22.89,SPC 2 633 kJ/kg,分別與預(yù)測(cè)值的絕對(duì)誤差為3.5、5.6及4.7個(gè)百分點(diǎn),試驗(yàn)結(jié)果與預(yù)測(cè)值很接近,驗(yàn)證了該模型的可靠性。
表4 參數(shù)優(yōu)化設(shè)置
表5 全局解與預(yù)測(cè)的響應(yīng)
本文在分析轉(zhuǎn)輪、熱泵除濕特點(diǎn)的基礎(chǔ)上,開展了轉(zhuǎn)輪除濕熱泵干燥系統(tǒng)結(jié)構(gòu)優(yōu)化設(shè)計(jì),研究了設(shè)備調(diào)節(jié)參數(shù)再生溫度、干燥溫度與轉(zhuǎn)換點(diǎn)相對(duì)濕度對(duì)切片杏鮑菇復(fù)水比、色差和除濕能耗比的影響,試驗(yàn)結(jié)果達(dá)到了預(yù)期目標(biāo)。但在除濕能耗的研究方面還有待進(jìn)一步深入研究,一方面,在實(shí)際生產(chǎn)中非專業(yè)人員很難結(jié)合環(huán)境狀況與焓濕圖確定最佳轉(zhuǎn)換點(diǎn)相對(duì)濕度,另一方面,環(huán)境狀態(tài)是不斷變化的,如果不能實(shí)現(xiàn)自動(dòng)調(diào)節(jié)很難實(shí)現(xiàn)精準(zhǔn)調(diào)控。因此,結(jié)合控制技術(shù),通過實(shí)時(shí)獲取環(huán)境參數(shù)與回風(fēng)在蒸發(fā)器的出口狀態(tài),從而構(gòu)建一套具有自動(dòng)調(diào)節(jié)最佳轉(zhuǎn)換點(diǎn)相對(duì)濕度的系統(tǒng),將是下一步的研究重點(diǎn)。
1)各個(gè)因素對(duì)復(fù)水性影響重要性順序?yàn)楦稍餃囟龋驹偕鷾囟龋巨D(zhuǎn)換點(diǎn)相對(duì)濕度,對(duì)色差重要影響性順序?yàn)楦稍餃囟龋巨D(zhuǎn)換點(diǎn)相對(duì)濕度>再生溫度,對(duì)除濕能耗比重要影響性順序?yàn)楦稍餃囟龋驹偕鷾囟龋巨D(zhuǎn)換點(diǎn)相對(duì)濕度。
2)再生溫度越低、干燥溫度越低,復(fù)水比越高,反之越低;干燥溫度越低,轉(zhuǎn)換點(diǎn)相對(duì)濕度越小色差越小,反之越大;再生溫度、干燥溫和轉(zhuǎn)換點(diǎn)相對(duì)濕度對(duì)除濕能耗比的影響呈現(xiàn)先低后高的趨勢(shì)。
3)通過多指標(biāo)響應(yīng)面綜合試驗(yàn)研究表明,該轉(zhuǎn)輪除濕熱泵干燥機(jī)通過3 h將40 kg杏鮑菇干燥到貯藏要求,且質(zhì)量較好達(dá)到了樣機(jī)設(shè)計(jì)要求。綜合優(yōu)化試驗(yàn)結(jié)果表明:再生溫度87 ℃,干燥溫度50 ℃,轉(zhuǎn)換點(diǎn)相對(duì)濕度45%時(shí),杏鮑菇復(fù)水比4.028,色差22.89,SPC 2 633 kJ/kg,與預(yù)測(cè)絕對(duì)值誤差均低于6個(gè)百分點(diǎn),符合預(yù)期干燥目標(biāo)。
通過對(duì)新風(fēng)與循環(huán)風(fēng)的除濕干燥過程分析,明確了臨界除濕機(jī)理,獲得了最佳節(jié)能轉(zhuǎn)換點(diǎn)相對(duì)濕度,為進(jìn)一步構(gòu)建自動(dòng)調(diào)節(jié)系統(tǒng)奠定了理論基礎(chǔ)。
[1] 張健平,趙周能. 油菜籽流化床恒速干燥傳熱傳質(zhì)特性及模型研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(13):287-295.
Zhang Jianping, Zhao Zhouneng. Heat and mass transfer characteristics and model of rapeseed () fluidized-bed drying with constant drying rate[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 287-295. (in Chinese with English abstract)
[2] 謝永康,林雅文,朱廣飛,等. 基于加熱均勻性的射頻干燥系統(tǒng)結(jié)構(gòu)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(5):248-255.
Xie Yongkang, Lin Yawen, Zhu Guangfei, et al. Structure optimization and experiment of radio frequency dryer based on heating uniformity[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 248-255. (in Chinese with English abstract)
[3] 巨浩羽,肖紅偉,鄭霞,等.干燥介質(zhì)相對(duì)濕度對(duì)胡蘿卜片熱風(fēng)干燥特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(16):296-304.
Ju Haoyu, Xiao Hongwei, Zheng Xia, et al. Effect of hot air relative humidity on drying characteristics of carrot slabs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 296-304. (in Chinese with English abstract)
[4] 張雪飛,劉顯茜. 胡蘿卜切片熱風(fēng)干燥對(duì)流傳質(zhì)系數(shù)的估算[J]. 機(jī)械與電子,2015(11):17-20.
Zhang Xuefei, Liu Xianxi. Estimation of convective mass transfer coefficient of hot air drying of carrot slices[J]. Machinery & Electronics, 2015(11): 17-20. (in Chinese with English abstract)
[5] Ju H Y, Zhang Q, Mujumdar A S, et al. Hot-air drying kinetics of yam slices under step change in relative humidity[J]. International Journal of Food Engineering, 2016, 12(8): 783-792. (in Chinese with English abstract)
[6] Rao D L N. Drying characteristics of red chillies: Mathematical modelling and drying experiments[J]. International Journal of Engineering Sciences & Research Technology, 2014, 3(7): 425-437.
[7] 任廣躍,李暉,段續(xù),等. 常壓冷凍干燥技術(shù)在食品中的應(yīng)用研究[J]. 食品研究與開發(fā),2013,34(18):119-122.
Ren Guangyue, Li Hui, Duan Xuan, et al. Application of atmospheric freeze drying technology in foods[J]. Food Research And Development, 2013, 34(18): 119-122. (in Chinese with English abstract)
[8] Wu X N, Ge T S, Dai Y J, et al. Review on substrate of solid desiccant dehumidification system[J]. Renewable & Sustainable Energy Reviews, 2018, 82: 3236-3249.
[9] 段潔利,張馨予,呂恩利,等. 倉儲(chǔ)轉(zhuǎn)輪除濕系統(tǒng)管道形式參數(shù)優(yōu)化試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(15):255-260.
Duan Jieli, Zhang Xinyu, Lü Enli, et al. Optimization of pipe form parameters of desiccant rotary wheels of dehumidification system for storage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(15): 255-260. (in Chinese with English abstract)
[10] Borneo R, Alba N, Aguirre A. New films based on triticale flour: Properties and effects of storage time[J]. Journal of Cereal Science, 2016, 68: 82-87.
[11] Al-Alili A, Hwang Y, Radermacher R. Performance of a desiccant wheel cycle utilizing new zeolite material: Experimental investigation[J]. Energy, 2015, 81: 137-145.
[12] Antonellis S D, Joppolo C M, Molinaroli L, et al. Simulation and energy efficiency analysis of desiccant wheel systems for drying processes[J]. Energy, 2012, 37(1): 336-345.
[13] Yang Z, Zhu Z, Zhao F. Simultaneous control of drying temperature and superheat for a closed-loop heat pump dryer[J]. Applied Thermal Engineering, 2016, 93: 571-579.
[14] Jafari S M, Ghanbari V, Ganje M, et al. Modeling the drying kinetics of green bell pepper in a heat pump assisted fluidized bed dryer[J]. Journal of Food Quality, 2016, 39(2): 98-108.
[15] Aziz M, Prawisudha P, Prabowo B, et al. Integration of energy-efficient empty fruit bunch drying with gasification combined cycle systems[J]. Applied Energy, 2015, 139: 188-195.
[16] Apinyavisit K, Nathakaranakule A, Mittal G S, et al. Heat and mass transfer properties of longan shrinking from a spherical to an irregular shape during drying[J]. Biosystems Engineering, 2018, 169: 11-21.
[17] 葛鳳華,王劍,郭興龍,等. 熱泵廢熱再生轉(zhuǎn)輪除濕空調(diào)系統(tǒng)的性能研究[J]. 太陽能學(xué)報(bào),2016,37(9):2326-2331.
Ge Fenghua, Wang Jian, Guo Xinglong, et al. Performance study on hybrid desiccant wheel air-conditioning system with waste heat recover of heat pump [J]. Journal of Solar Energy, 2016, 37(9): 2326-2331. (in Chinese with English abstract)
[18] Sultan M, El-Sharkaw I I, Miyazaki T, et al. Experimental study on carbon based adsorbents for greenhouse dehumidification[J]. Evergreen, 2014, 1: 5-11.
[19] 陸耀慶. 實(shí)用供熱空調(diào)設(shè)計(jì)手冊(cè)[M]. 北京:中國建筑工業(yè)出版社,1993.
[20] 陳東,謝繼紅. 熱泵技術(shù)手冊(cè)[M]. 北京:化學(xué)工業(yè)出版社,2012.
[21] 馬最良王偉倪龍. 空氣源熱泵技術(shù)與應(yīng)用[M]. 北京:中國建筑工業(yè)出版社,2017.
[22] 涂壤,劉曉華,江億. 不同固體除濕方式的熱質(zhì)交換過程分析及性能比較[J]. 化工學(xué)報(bào),2013,64(6):1939-1947.
Tu Rang, Liu Xiaohua, Jiang Yi. Heat and mass transfer analysis and performance comparison for different solid dehumidification methods[J]. CIESC Journal, 2013, 64(6): 1939-1947. (in Chinese with English abstract)
[23] 呂君,魏娟,張振濤,等. 基于等焓和等溫過程的熱泵烤煙系統(tǒng)性能的理論分析與比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(20):265-271.
Lü Jun, Wei Juan, Zhang Zhentao, et al. Theoretical analysis and comparison of the performance of heat pump flue-cured tobacco system based on isothermal and isothermal processes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 265-271. (in Chinese with English abstract)
[24] 王教領(lǐng),宋衛(wèi)東,王明友,等. 微波熱泵聯(lián)合干燥機(jī)的設(shè)計(jì)與試驗(yàn)研究[J]. 農(nóng)機(jī)化研究,2016(12):161-178.
Wang Jiaoling, Song Weidong, Wang Mingyou, et al. The design of microwave heat hump drying machine and experimental research[J]. Journal of Agricultural Mechanization Research, 2016(12): 161-178.
[25] 顏建春,胡志超,吳朋來,等. 熱板-微波聯(lián)合真空冷凍干燥茭白工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):262-270.
Yan Jianchun, Hu Zhichao, Wu Penglai, et al. Optimization of hot-plate and microwave combined vacuum freeze drying process of water-oat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 262-270. (in Chinese with English abstract)
[26] 黃略略. 凍干-真空微波串聯(lián)聯(lián)合干燥蘋果的保質(zhì)和節(jié)能工藝模型研究[D]. 無錫:江南大學(xué),2011.
Huang Luelue. Studies on Quality, Saving Energy Technology and Model of Tandem Combined Freeze Drying-vacuum Microwave Dried Apple[D]. Wuxi: Jiangnan University, 2011. (in Chinese with English abstract)
[27] 姚曜. 排熱回收式熱泵密集烤煙房節(jié)能性研究[D]. 合肥:合肥工業(yè)大學(xué),2017.
Yao Yao. Energy Saving Efficiency of Heat Pump Tobacco Leaf Bulk Curing System with Heat Recovery Unit[D]. Hefei: Hefei University of Technology, 2017.
[28] 陳君琛,楊藝龍,翁敏劼,等. 即食杏鮑菇熱風(fēng)-真空聯(lián)合干燥工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(14):331-338.
Chen Junchen, Yang Yilong,Weng Minjie, et al. Optimization of combined hot-air and vacuum drying technology for instant[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 331-338. (in Chinese with English abstract)
[29] 劉春泉,嚴(yán)啟梅,江寧,等. 杏鮑菇真空微波干燥特性及動(dòng)力學(xué)模型[J]. 核農(nóng)學(xué)報(bào),2012,26(3):494-499.
Liu Chunquan, Yan Qimei, Jiang Ning, et al. Vacuum microwave drying characteristics and kinetic model of[J]. Chinese Journal of Nuclear, 2012, 26(3): 494-499.
[30] 邢亞閣,蔣麗,曹東,等. 不同干燥方式對(duì)杏鮑菇營養(yǎng)成分的影響[J]. 食品工業(yè),2015(4):1-3.
Xing Yage, Jiang Li, Cao Dong, et al. Effects of different drying methods on the nutritional of[J]. Food Industry, 2015(4): 1-3. (in Chinese with English abstract)
Structural design and process parameter optimization of heat pump drying system of wheel dehumidification for
Wang Jiaoling, Song Weidong※, Jin Chengqian, Ding Tianhang, Wang Mingyou, Wu Jinji, Liu Zichang
(,210014,)
Common methods of drying have three ways: radiation, conduction and convection. Convective drying has been widely used due to its simple equipment and wide application range. The parameters that can be optimized are temperature, wind speed and humidity, but the temperature has an upper limit in each drying stage. Exceeding the upper limit will destroy the quality of agricultural products. It’s not conducive to sufficient heat exchange between wind and material if exceeding the optimum air volume. The humidity is unrestricted for most of the drying period. Low humidity can increase the drying rate and, so humidity is an ideal adjustment parameter. Wheel dehumidification is a common mode in solid dehumidification. However, the traditional wheel dehumidifier has problems such as high energy consumption and unreasonable structure, while heat pump has limited deep dehumidification capacity, but the energy saving effect. In view of the above problems, in this paper, we proposed a model of wheel dehumidifying and for the problems of high energy consumption and unsuitable for drying of agricultural products based on traditional structure of wheel dehumidifying, the optimization design of the dehumidifying structure and the dehumidification system was carried out. Firstly, a conversion mechanism was set up to solve the problem of reasonable conversion between fresh air and circulating air to realize energy-saving drying. Secondly, the surface cooler was replaced by an evaporator and a condenser was set up to recycle the energy. The heat released from the condenser was used to heat dry the inlet air or to regenerate the dehumidification wheel. In order to test and improve the performance of the wheel and heat pump combined dryer, in this paper, we took the sliced Pleurotus eryngii as the research object, and aimed to reduce the color difference of the Pleurotus eryngii, specific power consumption and improve the rehydration, using Box-Benhnken. In the central combined experimental design theory, we carried out three-factor and three-level response surface tests on three factors that affected the drying quality and energy consumption, such as regeneration temperature, dry temperature and conversion point relative humidity. Data analysis was carried out and the response surface mathematical model was established. The four-dimensional renderings was used to analyze the influence mechanism of the above three indicators on the changes of the three test factors. The results showed that the2was near to 1and the test factors had a great influence on the drying quality and energy consumption. The order of importance of each factor to rehydration was dry temperature > regeneration temperature > conversion point relative humidity, the order of importance to aberration was regeneration temperature > conversion point relative humidity > drying temperature, the important influence order on SPC was dry temperature > regeneration temperature > conversion point relative humidity. The lower regeneration temperature resulted in the lower drying temperature, the higher rehydration ratio, and the lower relative humidity of the converse. The lower drying temperature, the smaller the relative humidity of the conversion point, and the lower chromatic aberration, and vice versa. The regeneration temperature, the drying temperature and the conversion point relative humidity to SPC showed a trend of low first and then high. When the regeneration temperature was 87 ℃, the drying temperature is 50 ℃, and the relative humidity of the conversion point was 45%. The rehydration ratio of Pleurotus eryngii was 4.028, the color difference was 22.89, SPC was 2633 kJ/kg, and the error between the predicted and absolute value was less than 6 percentage point. This study explored the critical dehumidification mechanism based on enthalpy point and improved the wheel dehumidification structure, and formulated the optimum dehumidification drying process of Pleurotus eryngii. The results can provide the basis for the design of wheel dehumidification and HPD combined dryer and the optimization of drying process.
drying; agricultural products; quality control; wheel dehumidification; heat pump; pleurotus eryngii
王教領(lǐng),宋衛(wèi)東,金誠謙,丁天航,王明友,吳今姬,劉自暢. 杏鮑菇轉(zhuǎn)輪除濕熱泵干燥系統(tǒng)結(jié)構(gòu)設(shè)計(jì)及工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):273-280. doi:10.11975/j.issn.1002-6819.2019.04.034 http://www.tcsae.org
Wang Jiaoling, Song Weidong, Jin Chengqian, Ding Tianhang, Wang Mingyou, Wu Jinji, Liu Zichang. Structural design and process parameter optimization of heat pump drying system of wheel dehumidification for[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 273-280. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.04.034 http://www.tcsae.org
2018-09-05
2019-01-28
中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(S201809);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程特色農(nóng)產(chǎn)品干制與加工裝備團(tuán)隊(duì);中國農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程協(xié)同創(chuàng)新任務(wù)(CAAS-XTCX2016005)
王教領(lǐng),助理研究員,博士生,主要從事農(nóng)產(chǎn)品干燥加工技術(shù)與裝備研究。Email:kclwjl@126.com
宋衛(wèi)東,研究員,主要從事農(nóng)產(chǎn)品干燥加工、食用菌機(jī)械化生產(chǎn)技術(shù)與裝備研究。Email:songwd@163.com
10.11975/j.issn.1002-6819.2019.04.034
TS255.3; TS205.1
A
1002-6819(2019)-04-0273-08