• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      豫西高山夏季番茄育苗溫度適宜度定量評價

      2019-03-28 11:39:24李勝利周利杰牛旭旭余路明
      農(nóng)業(yè)工程學報 2019年4期
      關鍵詞:平原根際高山

      李勝利,李 陽,周利杰,牛旭旭,余路明

      ?

      豫西高山夏季番茄育苗溫度適宜度定量評價

      李勝利,李 陽,周利杰,牛旭旭,余路明

      (河南農(nóng)業(yè)大學園藝學院,鄭州 450002)

      高溫是夏季蔬菜育苗的主要障礙因子,利用高海拔地區(qū)夏季氣候冷涼優(yōu)勢,發(fā)展適地育苗是優(yōu)化蔬菜種苗基地布局的重要方向。為了科學利用高山夏季氣候優(yōu)勢,探明夏季高山育苗的溫度適宜性及對幼苗生長的影響,該文以番茄為試材,于2016、2017兩個年度,分別于高海拔(海拔998 m)和平原地區(qū)(海拔98 m)的同一類型的塑料大棚內(nèi)進行了4茬育苗試驗。運用溫度適宜度模型和游程理論對溫度特征進行了定量分析,探討了氣溫和根際溫度適宜度與番茄幼苗生長的關系。結果表明:夏季高山育苗設施內(nèi)氣溫和根際的夜間均溫比平原分別低了16.14%、18.99%,差異達極顯著水平。育苗期間高山溫度適宜度為 163.64%(白天+夜間+根際),是平原的2.23倍;不適宜度為13.34%(白天+夜間+根際),比平原降低了88.73%。播后28 d,高山番茄幼苗全株干物質(zhì)積累量是平原的1.39倍,壯苗指數(shù)是平原的1.34倍,可溶性糖含量比平原高37.91%,根系活力比平原提高了65.42%。白天溫度適宜度與幼苗干物質(zhì)(=0.774)及地上干質(zhì)量(=0.773)的積累量,夜間溫度適宜度與根冠比(=0.934)及地下干物質(zhì)(=0.808)的積累量相關性均達極顯著水平。高山培育的番茄幼苗定植后開花節(jié)位顯著減低,開花數(shù)、坐果數(shù)和坐果率顯著增加。綜上,夏季利用高海拔地區(qū)氣候冷涼優(yōu)勢是培育蔬菜壯苗的有效的途徑,該研究為高海拔地區(qū)夏季開展蔬菜集約化育苗提供了參考。

      溫度;模型;育苗;番茄幼苗;高山;平原;溫度適宜度

      0 引 言

      秧苗質(zhì)量直接影響到作物的最終產(chǎn)量和品質(zhì)。在現(xiàn)代農(nóng)業(yè)體系中,蔬菜工廠化育苗已成為不可或缺的重要環(huán)節(jié)之一[1]。利用溫室等可控環(huán)境設施進行蔬菜秧苗的培育是目前主要的集約化育苗手段[2]。番茄秋延后和越冬茬栽培幼苗培育期恰逢夏季高溫時節(jié),高溫脅迫成為培育壯苗的主要障礙因子[3]。番茄幼苗長期處于高于33 ℃的環(huán)境中會導致活性氧積累[4]、光合受阻[5],質(zhì)膜降解[6]、蛋白質(zhì)變性和蛋白質(zhì)合成受阻[7-8]等一系列代謝反應,進而造成根系生長不良、營養(yǎng)生長停滯,花芽分化差、花藥敗育等問題[9-11]。夏季設施常用的降溫措施有通風、遮陽、蒸發(fā)冷卻與濕簾風機等,其中后兩者降溫效果較好,但其成本相對較高,另一方面易造成設施內(nèi)濕度過高[12-14],導致番茄灰霉病、葉霉病等多種病害的發(fā)生和蔓延[15-16]。為降低能耗,利用高山獨特的冷涼氣候優(yōu)勢發(fā)展適地育苗是一個重要的途徑。河南豫西高海拔區(qū)域地勢平坦、夏季雨水資源豐富,是河南省規(guī)劃的夏季蔬菜生產(chǎn)重點區(qū)域和育苗優(yōu)勢區(qū),探明高山小氣候的特征是科學利用其優(yōu)勢的基礎。有關高山地區(qū)設施小氣候的研究前人做了一些研究。張志偉等[17]結合氣候資源方面分析不同的海拔高度高山蔬菜生產(chǎn)季節(jié)內(nèi)積溫隨高度的變化特征,推算當?shù)厥卟说倪m宜種植高度范圍;張明潔等[18]通過對影響日光溫室蔬菜生產(chǎn)的外界氣候因素進行適宜性的劃分,采用加權指數(shù)求和的評價方法建立綜合氣候適宜性區(qū)劃指標模型,在利用層次分析法對區(qū)劃指標進行量化分析確定其權重的基礎上,借助GIS技術,得到北方地區(qū)日光溫室發(fā)展的氣候適宜性區(qū)劃圖;陽威[19]以辣椒和蘿卜為例,引入蔬菜生育期模擬模型,定量研究不同海拔高度辣椒、蘿卜生育階段內(nèi)的溫度不適宜度變化規(guī)律,確定了鄂西南山區(qū)辣椒、蘿卜的適宜種植高度和種植期;魏瑞江等[20]將黃瓜設施內(nèi)的氣溫、相對濕度、太陽輻射進行適宜范圍和黃瓜生長的各個時期進行劃分,建立適宜度模型,得出黃瓜的產(chǎn)量與適宜度之間呈正相關。

      前人的研究成果為高山地區(qū)科學利用小氣候研究提供了寶貴的參考,但針對高山育苗小氣候適宜性的研究較為匱乏,其所用的適宜度研究方法存在不足。一是以每天均溫作為適宜度的最小計算單位,忽略了一天內(nèi)溫度變化,期間極不適宜的溫度會被平均溫度掩飾;二是將氣溫看作整體,沒有考慮到日溫和夜溫對作物生長影響的差異;三是對于植物生長同樣至關重要的根際溫度關注較少。為了更精準地揭示設施內(nèi)溫度適宜度對作物生長的影響,本文在前人研究的基礎上對適宜度的計算方法進行完善,一是以小時為適宜度計算的最小單位,挖掘被日均溫掩蓋的數(shù)據(jù);二是分別分析氣溫、夜溫和根際溫度的適宜度與幼苗生長的關系;三是引入游程模型來定量分析溫度不適宜的時段、性質(zhì)及程度。旨在優(yōu)化適宜度模型和探明高山地區(qū)夏季育苗的溫度特征,為優(yōu)化設施育苗模式和實施科學精準調(diào)控提供理論支撐。

      1 材料與方法

      1.1 試驗地點與材料

      試驗分別選擇高山(河南省三門峽市思瑞達農(nóng)業(yè)種植有限公司蘇村基地,海拔998 m,位于110°95′E,34°43′N)和平原(河南農(nóng)業(yè)大學毛莊科教園區(qū),海拔98 m,位于113°35′E,34°58′N)2個地區(qū)進行,采用統(tǒng)一規(guī)格和覆蓋材料的塑料大棚(長100 m,跨度8 m,矢高3.5 m),統(tǒng)一規(guī)格的72孔穴盤。供試品種為羅拉(以色列海澤拉公司提供)。

      育苗歷經(jīng)2016-2017兩年的最熱月(7、8月),每年期間育兩茬苗,共4茬。2016年育苗時間為6月25日-8月28日,2017年育苗時間為6月20日-8月28日。育苗過程中兩地正常的水肥管理一致,高山地區(qū)采用自然通風,平原地區(qū)采用常規(guī)的濕簾風機進行強制通風降溫。每茬育苗試驗結束后,每個處理選取生長一致的幼苗定植于河南農(nóng)業(yè)大學毛莊科教園區(qū)塑料大棚內(nèi),行距70 cm,株距40 cm,每個小區(qū)面積100 m2,重復3次。肥水按照常規(guī)的方法管理。

      1.2 試驗數(shù)據(jù)監(jiān)測

      1.2.1 溫度數(shù)據(jù)測試

      本試驗共設置2個處理,處理1(M);番茄夏季高山育苗;處理2(P):番茄夏季平原育苗。

      據(jù)育苗塑料大棚的長度和跨度平均分布15個溫度測點,于大棚橫向10、30、50、70、90 m處和縱向1、4、7 m處設置溫度測點。溫度的探頭分別放置于幼苗冠層處和基質(zhì)3 cm深處,每隔1 h記錄一次數(shù)據(jù),以這15個點溫度的平均值為文中所用溫度值。監(jiān)測儀器為JZRG-II建筑熱工溫度與熱流自動測試系統(tǒng)記錄儀(錦州陽光氣象科技有限公司提供)。

      1.2.2 番茄幼苗指標的測定

      在播種后的第14天、21天、28天分別從2個處理中取樣測定幼苗的株高、莖粗(子葉節(jié)下部)、壯苗指數(shù)(莖粗/株高×全株干質(zhì)量)、干物質(zhì)量、根冠比、生長速率、根系活力及可溶性糖、葉綠素指標;株高采用直尺測量:莖粗采用游標卡尺測量;干質(zhì)量采用烘干至恒質(zhì)量稱量的方法。根系活力的測定采用TTC法;葉綠素含量采用混合液提取法[21];可溶性糖采用蒽酮比色法;葉綠素含量用日本Minolta生產(chǎn)的葉綠素儀(SPAD-502)測定,每次取取5株,每株取3個葉片測定,結果取平均值。

      1.2.3 定植后開花坐果情況調(diào)查

      定植后從6葉期進行開花情況的觀察,之后每隔3天調(diào)查一次番茄開花及坐果情況,開花以花瓣展開45°角為準,坐果以果實直徑3 cm并且果實光澤度較好為準,并計算坐果率[21]。

      1.3 數(shù)據(jù)處理與分析方法

      本試驗將溫度分為白天(6:00-19:00)、夜間(0:00-6:00和19:00-24:00)和根際(0:00-23:00)溫度。文中的日均溫為24h的平均值,白天均溫,夜間均溫為白天和夜間的平均溫度,晝夜溫差為一天中的最高溫與最低溫的差值,高溫歷時為超出白天最高溫度的時數(shù)。文中的最低、最高和最適溫度取文獻值[22](表1)。

      表1 番茄幼苗所需的最低、最高、最適溫度 Table 1 Minimum, maximum and optimum temperatures for tomato seedlings ℃

      1.4 數(shù)據(jù)處理

      數(shù)據(jù)采用DPS軟件進行數(shù)據(jù)分析,并應用最小顯著差數(shù)法(LSD)進行顯著性差異分析(<0.05);溫度適宜度的計算采用建模專用的Matlab程序軟件進行編程計算分析與繪圖;將適宜度劃分為適宜、次適宜和不適宜3個等級。按照最優(yōu)分割法將[0,1]分為3段,則節(jié)點為0.3和0.7,劃分如下:白天氣溫、夜間氣溫、根際溫度和綜合溫度適宜度劃分:≥0.7為適宜;[0.3,0.7)為次適宜;<0.3為不適宜。溫度適宜度與幼苗指標的相關性分析,檢驗進行顯著性檢驗。

      2 結果與分析

      2.1 育苗期間高山和平原地區(qū)設施內(nèi)溫度基本特征比較

      整個試驗期間高山的溫度顯著低于平原。2017年度測試結果表明,高山的氣溫日均溫、夜間均溫比平原分別低11.54%,16.14%,差異達顯著水平;晝夜溫差是平原的1.84倍,平均最高溫度和平均最低溫度分別比平原低2.41,5.01 ℃;日均高溫歷時比平原低1.77 h(表2);高山的根際日均溫、夜間均溫比平原分別低12.75%,18.99%,差異達顯著水平;晝夜溫差是平原的1.70倍,平均最高溫度和平均最低溫度分別比平原低2.70 ℃,7.71 ℃;日均高溫歷時比平原低7.74 h(表2)。晴天,陰天和雨天的溫度變化曲線可看出,2個處理的變化趨勢一致,且平原的溫度一直高于高山的溫度,最高溫分別是高山的1.12、1.18、1.33倍(圖1)。

      2.2 高山與平原溫度游程特征比較

      據(jù)游程理論[23-25],計算得到的溫度游程值見表3。由表3可看出,白天、夜間、根際溫度的游程值,高山的均小于平原。2017年測試數(shù)據(jù)顯示,白天平原的平均高溫歷時分別為12.8,3.87 h,比高山分別高2.87,0.9 h;25 ℃截取水平下,平原的高溫烈度和高溫強度分別為5.43 ℃,0.42 ℃/h,高山是平原的34.9%,45.23%;33 ℃截取水平下,平原的高溫烈度和高溫強度為2.57 ℃,0.66 ℃/h,高山是平原的32.3%,42.42%。2017年測量數(shù)據(jù)表明,夜間平原平均高溫歷時為10,7.63 h,比高山分別低0.53,6.66 h;17 ℃截取水平下,平原的高溫烈度和高溫強度為3.28 ℃,0.33 ℃/h,高山是平原的68.29%,69.7%;25 ℃截取水平下,平原的高溫烈度和高溫強度為8.82 ℃,1.25 ℃/h,高山是平原的12.59%,92%。2017年,根際平原的平均高溫歷時為21.57,9.63 h,比高山分別低9.2,3.56 h;22 ℃截取水平下,平原的高溫烈度和高溫強度為6.08 ℃,0.28 ℃/h,高山是平原的48.85%,85.71%;28 ℃截取水平下,平原的高溫烈度和高溫強度為1.89 ℃,0.2 ℃/h,高山是平原的50.26%,80%。表明高山的白天、夜間和根際溫度番茄幼苗所遭受的高溫強度均低于平原。

      表2 試驗期間高山與平原設施內(nèi)總體溫度特征 Table 2 Temperature characteristics in greenhouse at alp and plain during experiment

      注:數(shù)據(jù)表示15個測點的平均值±標準誤;同一列不同字母表示在<0.05水平差異顯著,下同。日均溫、白天均溫、夜間均溫、晝夜溫差均為兩個育苗周期的均溫;平均最高溫度、平均最低溫度為日均溫中的最大值和最小值;日均高溫歷時為育苗期內(nèi)每日高溫歷時/小時數(shù)。

      Note: The results are mean±standard error (=15); The different letters in the same data column denotes significant difference (<0.05) by LSD, the same as below. The average diurnal temperature, average day temperature, average nighttime temperature and different temperature between day and night are all average temperatures in July and August; maximum average day temperature and minimum average day temperature are the maximum and minimum values in average diurnal temperature; daily mean high temperature is high temperature duration per days.

      圖1 典型天氣條件下高山與平原的溫度變化情況

      表3 高山與平原環(huán)境下番茄育苗期溫度游程特征值 Table 3 Run feature values of temperature in alp and plain conditions

      2.3 高山與平原不同育苗環(huán)境對幼苗的影響

      表4反映了番茄幼苗在不同溫度條件下整個育苗周期番茄幼苗的株高、莖粗、幼苗干質(zhì)量的生長情況。在播后28d,株高、莖粗、全株干質(zhì)量分別是平原的1.21,1.16,1.39倍;生長速率比平原高出39.52%,壯苗指數(shù)是平原的1.34倍。表4反映了整個育苗周期不同溫度條件下對番茄幼苗可溶性糖含量、根活和SPAD值的影響,高山的可溶性糖含量顯著高于平原。在播后28 d,可溶性糖含量高山比平原高出37.91%;根系活力高山比平原提高了65.42%;SPAD值高山比平原高出9.02%。綜上表明整個育苗期高山的番茄幼苗質(zhì)量高于平原。

      表4 高山與平原不同播種后天數(shù)條件下番茄幼苗生長及生理指標的情況

      2.4 氣溫適宜度模型

      2.4.1 溫度適宜度的計算

      為了定量評價夏季育苗設施內(nèi)溫度對番茄幼苗的適宜程度,參照前人研究成果,通過式(1)建立設施內(nèi)溫度適宜度模型[18-20,26]

      式(1)中,()為番茄溫度適宜度,為平均氣溫,℃;t、t和0分別為番茄幼苗各發(fā)育時期所需的最低、最高和最適氣溫。式(2)中日為日溫度適宜度,為一天中氣溫的觀測次數(shù)。

      溫度大于最大值,小于最小值時,適宜度的值為0;溫度在適宜溫度的范圍值之間時,適宜度的值為1。

      依據(jù)番茄幼苗生長發(fā)育期所需的最低、最高和最適溫度[22],結合張波等[27-29]的研究成果,由溫度的最高、最低、最適溫度基數(shù)繪出設施內(nèi)番茄幼苗對溫度適宜度的變化過程(圖2)。圖中可以看出,日為0~1變化的分段函數(shù),它反映了溫度條件從不適宜至適宜再至不適宜的過程。

      圖2 白天、夜間、根際溫度適宜度的變化過程

      2.4.2 溫度適宜度不同等級的百分比

      由表5反映了整個育苗期間氣溫適宜度處于適宜、不適宜和次適宜3個等級中所占的比例??梢钥闯?,白天高山氣溫和根際溫度適宜度所占比例均高于平原地區(qū)、不適宜度所占比例均低于平原地區(qū)。育苗期間高山總體適宜度(白天+夜間+根際)為163.64%,是平原的2.23倍;而不適宜度僅為13.34%,比平原降低了88.73%。其中夜間溫度適宜度和不適宜度的差異更為明顯,夜間高山氣溫適宜度所占比例為75%,而平原地區(qū)的溫度適宜度僅有1.67%,前者是后者的44.91倍,高山不適宜度所占比例只有6.67%,平原區(qū)的不適宜度則高達的95.00%。從典型天氣條件下(表6)可看出,白天氣溫適宜度和根際溫度適宜度,高山和平原地區(qū)均表現(xiàn)為晴天<陰天<雨天,而平原地區(qū)夜間氣溫不適宜度三者天氣情況下均達到了100%。說明在育苗期間,應該加強晴天時的溫度調(diào)控,而平原的夜間溫度則為溫度調(diào)控的重點。

      表5 高山與平原番茄育苗期間溫度適宜度不同等級出現(xiàn)時數(shù)的百分比

      表6 典型天氣下高山與平原番茄育苗期間溫度適宜度不同等級出現(xiàn)時數(shù)的百分比

      2.5 溫度適宜度與番茄幼苗形態(tài)指標的關系

      通過育苗期間溫度適宜度與番茄幼苗形態(tài)指標之間的相關性分析(表7)可知,白天氣溫適宜度與番茄幼苗地上、全株干物質(zhì)積累量和壯苗指數(shù)的相關系數(shù)分別為=0.773、=0.774和=0.657,均通過(0.05)的顯著性檢驗,且相關性顯著。夜間氣溫適宜度與幼苗地下干質(zhì)量和根冠比的相關系數(shù)分別為=0.808和=0.934,均通過(0.01)的顯著性檢驗,且相關性達極顯著。表明白天氣溫適宜度有利于地上干物質(zhì)的積累,而夜間氣溫適宜度有利于地下干物質(zhì)積累和根冠比的提高。

      表7 育苗期間溫度適宜度與番茄幼苗形態(tài)指標之間的相關性分析

      注:為相關系數(shù);為值;*表示在0.05水平上差異顯著;NS表示在0.05水平?jīng)]有差異。

      Note:is correlation coefficient;isvalue; *: Statistically significant at 95% confidence level; NS: not significative.

      2.6 高山和平原番茄幼苗定植后開花及坐果情況

      由表8中可以看出,高山和平原地區(qū)培育的番茄幼苗定植后的開花節(jié)位、開花數(shù)和坐果數(shù)有較大差異。2年的田間定植試驗的表現(xiàn)趨勢一致,與平原地區(qū)培育的番茄幼苗相比,高山培育的番茄幼苗定植后第一花序和第二花序的開花節(jié)位顯著降低,開花數(shù)、坐果數(shù)和坐果率顯著增加。2016和2017年2個試驗季節(jié),高山與平原番茄幼苗對比,定植后前者第一花序和第二花序的平均坐果數(shù)分別提高了179.5%和80.8%,平均坐果率分別提高了29.0%和15.4%。

      表8 高山與平原番茄幼苗定植后開花坐果情況調(diào)查結果

      3 討 論

      3.1 高山區(qū)域有效降低了夏季育苗期間的溫度

      通常隨著海拔的逐漸上升會有相應的物候差產(chǎn)生,氣溫呈現(xiàn)規(guī)律性的降低。邱正明等在鄂西南山區(qū)不同海拔進行的小氣候觀測表明,在一年中溫度最高的7月和8月間,日平均溫度≥30 ℃或日最高氣溫≥35 ℃的高溫天氣日數(shù),海拔174 m為30.8 d,400 m為26.0 d,海拔800 m以上基本上不出現(xiàn)高溫天氣,是喜溫蔬菜最佳種植帶[30]。隨著溫室效應的日益加劇,全球氣溫不斷升高,特別是夏秋季設施栽培易出現(xiàn)異常高溫[31-32]。蔬菜秋延后和越冬茬栽培中育苗正值夏秋高溫季節(jié),番茄生長的適溫范圍為15~33 ℃,高于30 ℃時番茄幼苗就會徒長,生長發(fā)育不良,35 ℃以上時番茄幼苗生長發(fā)育就會受到嚴重阻礙[33]。夏季平原地區(qū)在缺乏完善環(huán)境調(diào)控的情況下,設施內(nèi)溫度在大部分時段超過40 ℃,高溫或亞高溫脅迫是影響夏秋季蔬菜集約化育苗的關鍵因素之一[34]。高山育苗也正是利用了山地氣溫隨高度增加而降低的規(guī)律,本試驗育苗期間,高山條件下幼苗冠層平均氣溫和根際溫度分別為25.45和24.84 ℃,氣溫和根際日均高溫歷時只有2.10和3.59 h,溫度適宜度為平原的2.23倍。這些溫度條件的改善是夏季培育壯苗的基礎,表明在豫西海拔998 m的高山地區(qū)是夏季番茄集約化育苗的適宜區(qū)域。

      3.2 高山環(huán)境條件下提供了更為適宜的晝夜溫差

      在日均溫度相同條件下,晝夜溫差對番茄的干物質(zhì)積累[35],花芽分化[36-37]均有顯著影響,前期對幼苗進行溫差處理還會對番茄成株期的生長發(fā)育、產(chǎn)量和品質(zhì)產(chǎn)生間接影響[38-40]。毛麗萍等[40]研究發(fā)現(xiàn),保持晝夜溫差6 ℃是番茄植株物質(zhì)積累、花芽分化和產(chǎn)量形成的平衡點,有利于番茄的營養(yǎng)生長和產(chǎn)量形成。本試驗中高山地區(qū)設施內(nèi)氣溫和根際溫度的晝夜溫差分別為7.43和7.04 ℃,而平原地區(qū)氣溫和根際溫度的差異則僅有4.04和1.89 ℃。夏季園藝設施內(nèi)的高氣溫常常導致植株根區(qū)溫度過高,蔬菜集約化育苗普遍采用穴盤育苗,由于根系生長空間的限制幼苗更容易遭受逆境脅迫[8-9],過高的根際溫度嚴重影響了幼苗對水分和養(yǎng)分的吸收,致使幼苗根冠比降低,幼苗質(zhì)量下降[10-12]。高山環(huán)境下根際溫度不適宜度所占百分率為0,這為根系生長提供了適宜的環(huán)境條件。適宜的夜溫有助于降低呼吸消耗,增加幼苗干物質(zhì)積累,夜間溫度適宜度與根冠比(=0.934)及地下干物質(zhì)(=0.808)的積累量呈現(xiàn)極顯著的相關性分析結論也印證了這一點。番茄在幼苗期已開始花芽分化,花芽分化質(zhì)量是衡量幼苗健壯與否的一個重要指標。營養(yǎng)生長和營養(yǎng)物質(zhì)的積累是花芽分化的物質(zhì)基礎,花芽的分化和發(fā)育是一個形態(tài)建成過程,是一定量的營養(yǎng)積累以及外界環(huán)境誘導綜合作用的結果,幼苗期的適宜的晝夜溫差是影響花芽分化的重要環(huán)境因素[41-42]。高山培育的番茄幼苗定植后第一花序和第二花序開花數(shù)、坐果數(shù)和坐果率均高于平原地區(qū),這對于保證番茄的前期產(chǎn)量有很重要的作用。以上說明高山地區(qū)較大晝夜溫差是培育番茄壯苗的優(yōu)勢所在,在果菜類育苗期間,應該加強夜溫和晝夜溫差的調(diào)控。

      3.3 利用溫度適宜度模型科學評價小氣候特征的方法需要進一步完善

      如何定量評價環(huán)境對作物生長發(fā)育的影響,科學利用不同地區(qū)的自然優(yōu)勢資源,同時實現(xiàn)精準的設施環(huán)境調(diào)控,對于設施農(nóng)業(yè)的發(fā)展具有重要意義。不少學者應用模糊數(shù)學理論,建立了不同作物的小氣候適宜度模型,通過實際驗證證明了這種評價方法的科學性,為設施的智能化管理和小氣候資源的科學利用提供了依據(jù)[19,20,27-30]。番茄幼苗干物質(zhì)積累和壯苗指數(shù)與溫度適宜度的高度相關性也驗證了這種方法的科學性??茖W的適宜度模型需要詳實的小氣候測試數(shù)據(jù)作為基礎,以前學者可能受限于小氣候資料獲得的因素,以日均溫作為計算適宜度的基礎數(shù)據(jù)來統(tǒng)計每候或者旬的評價適宜度,這會掩蓋掉關鍵的信息。對于設施農(nóng)業(yè)來說,需要實現(xiàn)每天不同時段環(huán)境的精準調(diào)控。以小時為適宜度計算的最小單位,同時引入游程模型來定量分析溫度不適宜的時段、性質(zhì)及程度,可以彌補上述存在的不足。通過完善后的分析方法揭示了高山區(qū)氣溫和根際溫度高溫時間主要集中在10:00-15:00之間,平原區(qū)夜間溫度的不適宜度高達95.0%,這些時段都是溫度調(diào)控的關鍵時段。

      幼苗生長是受綜合環(huán)境因素的影響,盡管試驗的高山與平原育苗地屬同一個氣候區(qū),但不同海拔地區(qū)光照強度和光質(zhì)會存在一定差異,這會對植物生長造成一定的影響[43]。本文在評價溫度適宜度與幼苗生長關系的同時模糊了這些因素的效應,實際上在兩個區(qū)域環(huán)境條件下,這些環(huán)境因子存在著一定程度的差異。在這個方面需要進一步研究,以更完善的綜合小氣候適宜度模型進行定量分析和評價。

      4 結 論

      1)高山地區(qū)溫度環(huán)境更適宜夏季番茄育苗,育苗期間高山的根際溫度(日均溫、夜間均溫)分別比平原分別降低了12.75%,18.99%,根際晝夜溫差是平原的1.70倍。番茄幼苗溫度適宜度顯著高于平原地區(qū),高山區(qū)氣溫的適宜度值是平原區(qū)的2.23倍。

      2)白天氣溫、夜間氣溫和根際溫度對番茄幼苗生長的效應存在差異,白天氣溫適宜度有利于幼苗地上和全株干物質(zhì)的積累,夜間氣溫適宜度有利于地下干物質(zhì)的積累和根冠比的提高。

      3)高山培育的番茄幼苗干物質(zhì)積累量、壯苗指數(shù)等顯著優(yōu)于平原地區(qū)。播后28 d,番茄幼苗的株高,莖粗,全株干質(zhì)量依次為11.78 cm、3.86 mm、0.40 g,分別是平原的1.21,1.16,1.39倍,壯苗指數(shù)是平原的1.34倍。高山培育的番茄幼苗定植后第一花序和第二花序開花節(jié)位顯著降低,開花數(shù)和坐果率顯著提高。

      夏季高山適地育苗是培育壯苗的有效途徑。但高山育苗時也存在晴天正午前后光照過于強烈,白天空氣濕度較低,8月中旬以后隨著晝夜溫差的加大,夜間幼苗葉片容易出現(xiàn)結露現(xiàn)象,這些是在高山育苗中需要注意的問題。

      [1] 宮曉紅. 蔬菜工廠化育苗生產(chǎn)現(xiàn)狀與發(fā)展對策[J]. 農(nóng)業(yè)科技與裝備,2017(2):67-68. Gong Xiaohong. Vegetable industrialized seedling production status and development strategy[J]. Agricultural Science&Technology and Equipment, 2017(2): 67-68. (in Chinese with English abstract)

      [2] 陳振德. 蔬菜穴盤育苗技術[M]. 青島:青島出版社,2000.

      [3] Wilson R A, Sangha M K, Banga S S, et al. Heat stress tolerance in relation to oxidative stress and antioxidants in[J]. Journal of Environmental Biology, 2014, 35(2): 383-387.

      [4] Imahori Y, Bai J, Balawin E. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating tratments[J]. Scientia Horticulturae, 2016, 198(75): 398-406.

      [5] 劉愛榮,陳雙臣,王淼博,等. 高溫脅迫對番茄幼苗光合作用和葉綠素熒光參數(shù)的影響[J]. 西北農(nóng)業(yè)學報,2010,19(5):145-148. Liu Airong, Chen Shuangchen, Wang Miaobo, et al. Effects of heat stress on photosynthesis and chlorophyll fluorescence parameters in tomato seedlings[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2010, 19(5): 145-148. (in Chinese with English abstract)

      [6] Armond P A, Bjorkman O, Staehelin L A. Dissociation of supramolecular complexes in chloroplast membranes A manifestation of heat damage to the photosynthetic apparatus[J]. Biochim Biophys Acta, 1978, 601(3): 433-443.

      [7] Salvucci M E, Crafts-Brandner S J. Inhibition of photosynthesis by heat stress: The activation state of Rubisco as a limiting factor in photosynthesis[J]. Physiologia Plantarum, 2004, 120(2): 179-186.

      [8] Xu W, Cai S, Zhang Y, et al. Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants[J]. Journal of Pineal Research, 2016, 61(4): 457-469.

      [9] 范雙喜,王紹輝. 高溫逆境下嫁接番茄耐熱特性研究[J]. 農(nóng)業(yè)工程學報,2005,21(增刊2):60-63. Fan Shuangxi, Wang Shaohui. Endurance to high temperature stress of grafted tomato[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(Supp.2): 60-63. (in Chinese with English abstract)

      [10] 徐鶴林,李景富. 中國番茄[M]. 北京:中國農(nóng)業(yè)出版社,2007.

      [11] Li Z, Palmer W M, Martin A P, et al. High invertase activity in tomato reproductive organs correlates with enhanced sucrose import into, and heat tolerance of, young fruit[J]. Journal of Experimental Botany, 2012, 63(3): 1155-1166.

      [12] 王瑄,遲道才,王鐵良,等. 日光溫室夏季降溫措施的試驗研究初報[J]. 農(nóng)業(yè)工程學報,2001,17(5):95-98. Wang Xuan, Chi Daocai, Wang Tieliang, et al. Preliminary report on experimental research of summer cooling measures in solar greenhouses[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2001, 17(5): 95-98. (in Chinese with English abstract)

      [13] 王吉慶,張百良. 幾種降溫措施在溫室夏季降溫中的應用研究[J]. 農(nóng)業(yè)工程學報,2006,22(9):257-260. Wang Jiqing, Zhang Bailiang. Application of some cooling measures for greenhouse cooling in summer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(9): 257-260. (in Chinese with English abstract)

      [14] 李紅蓮,邢文剛,張娟,等. 不同降溫措施對連棟玻璃溫室內(nèi)溫度的影響[J]. 沈陽農(nóng)業(yè)大學學報,2006,37(2):241-244. Li Honglian, Xing Wengang, Zhang Juan, et al. Temperature influenced by different cooling measures in a multi span greenhouse[J]. Journal of Shenyang Agricultural University, 2006, 37(2): 241-244. (in Chinese with English abstract)

      [15] 楊合法,范聚芳,戈志奇,等. 有機、無公害及常規(guī)生產(chǎn)模式番茄病害及防治效果比較研究[J]. 中國生態(tài)農(nóng)業(yè)學報,2009,17(5):933-937. Yang Hefa, Fan Jufang, Ge Zhiqi, et al. Main diseases and control effects of organic, integrated and conventional cultivation patterns of greenhouse tomato[J]. Chinese Journal of Eco-Agriculture, 2009, 17(5): 933-937. (in Chinese with English abstract)

      [16] 王克安,李絮花,呂曉惠,等. 不同結構日光溫室溫濕度變化規(guī)律及其對番茄產(chǎn)量和病害的影響[J]. 山東農(nóng)業(yè)科學,2011,3:33-36. Wang Kean, Li Xuhua, Lü Xiaohui, et al. Changes rules of temperature and humidity in solar greenhouse with different structures and the effects on disease and yield of tomato[J]. Shandong Agricultural Science, 2011, 3: 33-36. (in Chinese with English abstract)

      [17] 張志偉,朱世東,嚴春國. 岳西縣高山蔬菜生產(chǎn)布局的研究[J]. 安徽農(nóng)業(yè)大學學報,1998(4):400-403. Zhang Zhiwei, Zhu Shidong, Yan Chunguo. Study on Production layout of mountain vegetable in Yuexi county[J]. Journal of Anhui Agricultural University, 1998(4): 400-403. (in Chinese with English abstract)

      [18] 張明潔,趙艷霞. 北方地區(qū)日光溫室氣候適宜性區(qū)劃方法[J]. 應用氣象學報,2013,24(3):278-286.Zhang Mingjie, Zhao Yanxia. Method of climate suitability zonation for greenhouse in northern China[J]. Journal of Applied Meteorology, 2013, 24(3): 278-286. (in Chinese with English abstract)

      [19] 陽威. 辣椒、蘿卜生育期模型及其在高山蔬菜生產(chǎn)中的應用[D]. 武漢:華中農(nóng)業(yè)大學,2012. Yang Wei. Simulation Model for The Development Stages of Pepper, Radish and Its Application in Mountain Vegetable Planting[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese with English abstract)

      [20] 魏瑞江,王鑫,朱慧欽. 日光溫室黃瓜小氣候適宜度定量評價模型[J]. 氣象,2015,41(5):630-638. Wei Ruijiang, Wang Xin, Zhu Huiqin. Quantitative evaluation model for cucumber microclimate suitability degree of solar greenhouse[J]. Meteorological Monthly, 2015, 41(5): 630-638. (in Chinese with English abstract)

      [21] 李勝利,夏亞真,劉金,等. 高溫脅迫下番茄幼苗對冷激的響應[J]. 應用生態(tài)學報,2014,25(10):2927-2934. Li Shengli, Xia Yazhen, Liu Jin, et al. Effects of cold-shock on tomato seedlings under high temperature stress[J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2927-2934. (in Chinese with English abstract)

      [22] 史宣杰,蔡毓新,馬凱,等. 番茄工廠化育苗技術規(guī)程[J]. 中國瓜菜,2017,30(4):40-42. Shi Xuanjie, Cai Yuxin, Ma Kai, et al. Tomato seedling factory Technical Specification[J]. Chinese Vegetables, 2017, 30(4): 40-42. (in Chinese with English abstract)

      [23] 王謙,孫治強,陳景玲,等. 河南日光溫室低溫寡照游程特征研究[J]. 華中農(nóng)業(yè)大學學報,2004(增刊2):125-128. Wang Qian, Sun Zhiqiang, Chen Jingling, et al. The run features of low temperature and overcast days over solar greenhouse[J]. Journal of Huazhong Agricultural University, 2004(z2): 125-128. (in Chinese with English abstract)

      [24] 陳景玲,楊曉光. 日光溫室連陰天危害游程模擬分析[J]. 中國農(nóng)業(yè)大學學報,1998,3(3):48-52. Chen Jingling, Yang Xiaoguang. The runs simulation and analysis of the successive overcast weather for its harms to sunlight greenhouse production[J]. Journal of China Agricultural University, 1998, 3(3): 48-52. (in Chinese with English abstract)

      [25] Sen Z. Run-sums of annual flow series[J]. Journal of Hydrology, 1977, 35(3): 311-324.

      [26] 張超,吳國周,宋海清,等. 基于CLDAS溫度適宜度指標空間化方法[J]. 氣象科技,2017,45(3):555-560. Zhang Chao, Wu Guozhou, Song Haiqing, et al. Method for spatializing temperature suitability index based on CLDAS[J]. Meteorological Science and Technology, 2017, 45(3): 555-560. (in Chinese with English abstract)

      [27] 張波,胡家敏,谷曉平,等. 基于氣候適宜度的貴州番茄精細化農(nóng)業(yè)氣候區(qū)劃[J]. 北方園藝,2018(2):193-198. Zhang Bo, Hu Jiamin, Gu Xiaoping, et al. Precise comprehensive agricultural climate division for tomato in Guizhou province based on climatic suitability models[J]. Northern Horticulture, 2018(2): 193-198. (in Chinese with English abstract)

      [28] 馬麗麗. 番茄生長模型及日光溫室小氣候建模的研究[D]. 沈陽:沈陽農(nóng)業(yè)大學. 2009. Ma Lili. The Research of Tomato Growth Model and Greenhouse Microclimate Modeling[D]. Shenyang: Shenyang Agricultural University, 2009. (in Chinese with English abstract)

      [29] 范永強. 南方溫室小氣候與番茄生長發(fā)育模型研究[D]. 南京:南京信息工程大學,2008. Fan Yongqiang. Study on Greenhouse Microclimate and Simulation Model of Tomato Growth and Development in Southern China[D]. Nanjing: Nanjing University of Information Science & Technology, 2008. (in Chinese with English abstract)

      [30] 邱正明,劉可群,聶啟軍,等. 高山立體氣候資源與高山蔬菜種植分布規(guī)律研究[J]. 中國蔬菜,2014(12):33-38. Qiu Zhengming, Liu Kequn, Nie Qijun, et al. Studies on high mountain three-dimenstional climate resources and distribution regulation of high mountain vegetable plantation[J]. China Vegetables, 2014(12): 33-38. (in Chinese with English abstract)

      [31] Yasushi K, Satoshi M, Katsumi S, et al. Root-zone cooling at high air temperatures enhances physiological activities and internal structures of roots in young tomato plants[J]. Journal of the Japanese Society for Horticultural Science, 2013, 82(4): 322-327.

      [32] 李勝利,師曉丹,夏亞真,等. 水冷式苗床根際降溫效果極其對番茄幼苗生長的影響[J]. 農(nóng)業(yè)工程學報,2014,30(7):212-218. Li Shengli, Shi Xiaodan, Xia Yazhen, et al. Root-zone cooling effect of water-cooled seedlings bed on growth of tomato seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 212-218. (in Chinese with English abstract)

      [33] 薛義霞,李亞靈,溫祥珍. 空氣濕度對高溫下番茄光合作用及坐果率的影響[J]. 園藝學報,2010,37(3):397-404. Xue Yixia, Li Yaling, Wen Xiangzhen. Effects of air humidity on the photosynthesis and fruit-set of tomato under high temperature[J]. Acta Horticulturae Sinica, 2010, 37(3): 397-404. (in Chinese with English abstract)

      [34] 吳韓英,壽森炎,朱祝軍,等.高溫脅迫對甜椒光合作用和葉綠素熒光的影響[J]. 園藝學報,2001,28(6):517-521. Wu Hanying, Shou Senyan, Zhu Zhujun, et al. Effects of high temperature stress on photosynthesis and chlorophyll fluorescence in sweet pepper (capsicum fructescens L.)[J]. Acta Horticulturae Sinica, 2001, 28(6): 517-521. (in Chinese with English abstract)

      [35] Gent M P N, Ma Y Z. Growth and mineral nutrition oftomato seedlings under diurnal temperature variation of the root and shoot[J]. Crop Science, 2000, 40: 1629-1636

      [36] Erwin J E, Smith A, Warner R. Interaction betweenphotoperiod, GA3 and vernalization time on flowering of Raphanussativus[J]. Physiol Plant, 2002, 115(2): 298-302.

      [37] Warner R M, Erwin J E. Variation in floral inductionrequirements of Hibiscus sp.[J]. Jounal American Society Horticulturae Science, 2001, 126(3): 262-268.

      [38] David H Fleisher, Logan S Logendra, CatalinMoraru,et al. Effect of temperature perturbations on tomato (LycopersiconesculentumMill.) quality and production scheduling[J]. Journal of Horticultural Science and Biotechnology, 2006, 81(1): 125-131.

      [39] 毛麗萍,李亞靈,趙軍良,等. 晝夜溫差對番茄幼苗光合特性和物質(zhì)積累的影響[J]. 華北農(nóng)學報,2012,27(1):128-133. Mao Liping, Li Yaling, Zhao Junliang, et al. Effects of difference between day and night temperature on photosynthesis mechanism of tomato seedlings[J]. Acta Agriculturae Boreali-Sinica, 2012, 27(1): 128-133. (in Chinese with English abstract)

      [40] 毛麗萍,李亞靈,溫祥珍. 苗期晝夜溫差對番茄產(chǎn)量形成因子的影響分析[J]. 農(nóng)業(yè)工程學報,2012,28(16):172-177. Mao Liping, Li Yaling, Wen Xiangzhen. Influencing analysis of diurnal temperature on yield-forming factors oftomato at seedling stage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 172-177. (in Chinese with English abstract)

      [41] 邱文明,何秀娟,徐育海. 板栗花芽性別調(diào)控研究進展[J]. 果樹學報,2015,32(1):142-149. Qiu Wenming, He Xiujuan, Xu Yuhai. Research progress on sex control of chestnut flower buds[J]. Journal of Fruit Science, 2015, 32(1): 142-149. (in Chinese with English abstract)

      [42] 黃東華,周超華,宋小民,等. 溫度和光照對金邊瑞香花芽分化的影響[J]. 園藝學報,2010,37(10):1685-1689. Huang Donghua, Zhou Chaohua, Song Xiaomin, et al. Effects of temperature and light on flower bud differentiation in[J]. ActaHorticulturaeSinica, 2010, 37(10): 1685-1689. (in Chinese with English abstract)

      [43] 潘紅麗,李邁和,蔡小虎,等. 海拔梯度上的植物生長于生理生態(tài)特性[J]. 生態(tài)環(huán)境學報,2009,18(2):722-730. Pan Hongli, Li Maihe, Cai Xiaohu, et al. Response of growth and ecophysiology of plants to altitude[J]. Ecology and Environmental Sciences, 2009, 18(2): 722-730. (in Chinese with English abstract)

      Quantitative assessment of temperature suitability of alpine summer tomato seedling in west of Henan province

      Li Shengli, Li Yang, Zhou Lijie, Niu Xuxu, Yu Luming

      ()

      Heat stress is well recognized as a major biotic stress that severely limits plant growth worldwide. In particular, high temperature is a main limiting factor in the production of vegetable industrialized seedlings raising in summer. Optimal and stable temperature is an important factor for plant growth and metabolism. Tomato is thermophilic, but it cannot withstand high temperature. Hence, how to lower the temperature is an urgently problem that needed to be solved. The low temperature at high altitude localities provided an opportunity to develop the vegetable industrialized seedlings raising production in summer. Raising vegetable seedlings at high altitude is more economical compared with some cooling methods (e.g., forced ventilation, fan/pad system, mist/fog system, roof cooling, mechanical cooling technology system, aquifer coupled cavity flow heat exchanger system, and earth-to-air heat exchanger system) depending on energy consumption. Furthermore, it also provided a new direction to select a suitable location for vegetable industrialized seedlings raising. The objective of this study was to investigate the temperature suitability of the summer alpine seedlings and the effects of high-altitude temperature on tomato seedling growth. During 2016 and 2017, several experiments were performed within four cropping seasons using tomato (L. Roller) seedlings in the same type of plastic greenhouses at two altitudes, respectively at high (998 m) and low (98 m). Then, temperatures of the alp and plain were measured during tomato seedlings growth. In addition, temperature characteristics were analyzed using the temperature suitability model and run-length theory. Finally, the relationship between air and root-zone temperature and tomato seedling growth were determined by path analysis. In summary, the results showed that the average air and root-zone temperature of night at high altitude significantly (<0.05) decreased by 16.14% and 18.99%, respectively, in comparison to the plain. More importantly, the average duration of daily maximum temperature decreased by 7.74h at alpine greenhouse in comparison to plain greenhouse. Consequently, raising tomato seedlings at alpine greatly alleviated the damage of high temperature on seedlings. The temperature suitability and temperature unsuitability were 163.64% (daytime+nighttime+root-zone) and 13.34% (daytime+nighttime+root-zone) at high altitudes, which increased by 2.23-fold and decreased by 88.73%, respectively, in comparison to the plain. Furthermore, compared to the plain, the whole plant dry weight, and the seedling healthy index of 28-days-old tomato seedlings growth at high altitude were significantly (<0.05) increased by 1.39-fold, 1.34-fold, respectively, the soluble sugar content and root vigor significantly (<0.05) increased by 37.91% and 65.42%, respectively. The day temperature suitability had an extremely significant correlation with the plant dry weight (=0.774) and shoot dry weight (=0.773).The night temperature suitability had extremely significant correlation with the root/shoot ratio (=0.934) and root dry weight (=0.808), respectively. Compared with the plain, tomato seedlings grown at high altitude had a significant lower flowering node position, and increased numbers of flowers, fruit and fruit set rate after transplanting. In conclusion, this study indicated that raising tomato seedlings at high altitude is an effective method to alleviate high temperature stress and promote tomato seedling growth during summer season.

      temperature; models; seedling; tomato transplants; high alp; plain; temperature suitability model

      李勝利,李 陽,周利杰,牛旭旭,余路明. 豫西高山夏季番茄育苗溫度適宜度定量評價[J]. 農(nóng)業(yè)工程學報,2019,35(4):194-202. doi:10.11975/j.issn.1002-6819.2019.04.024 http://www.tcsae.org

      Li Shengli, Li Yang, Zhou Lijie, Niu Xuxu, Yu Luming. Quantitative assessment of temperature suitability of alpine summer tomato seedling in west of Henan province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 194-202. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.04.024 http://www.tcsae.org

      2018-06-29

      2019-01-11

      河南省大宗蔬菜產(chǎn)業(yè)技術體系項目(S2010-03-03)

      李勝利,教授,博士,主要從事集約化育苗方面研究。 Email:lslhc@yeah.net

      10.11975/j.issn.1002-6819.2019.04.024

      S626.4

      A

      1002-6819(2019)-04-0194-09

      猜你喜歡
      平原根際高山
      那一片平原
      黃河之聲(2022年6期)2022-08-26 06:48:50
      根際微生物對植物與土壤交互調(diào)控的研究進展
      高山茶
      鴨綠江(2021年35期)2021-11-11 15:25:02
      平原的草
      安徽文學(2020年10期)2020-10-26 06:57:16
      浪起山走
      滇池(2019年1期)2019-02-14 02:36:54
      高山從何而來?
      軍事文摘(2018年24期)2018-12-26 00:57:56
      黃花蒿葉水提物對三七根際尖孢鐮刀菌生長的抑制作用
      促植物生長根際細菌HG28-5對黃瓜苗期生長及根際土壤微生態(tài)的影響
      中國蔬菜(2016年8期)2017-01-15 14:23:38
      高山臺防雷實踐
      紅平原上的“小肉山”
      辉县市| 班戈县| 大关县| 秦安县| 土默特右旗| 平邑县| 香格里拉县| 德钦县| 孝义市| 包头市| 安新县| 大洼县| 古田县| 贡山| 阿图什市| 会理县| 弥渡县| 通州区| 广昌县| 焦作市| 和林格尔县| 荆州市| 景宁| 天峨县| 旬阳县| 娄底市| 翼城县| 石首市| 乌拉特中旗| 姚安县| 高台县| 合江县| 建昌县| 邵东县| 彭水| 磴口县| 灵寿县| 镶黄旗| 马公市| 祥云县| 厦门市|