• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Dual-Chaining Watermark Scheme for Data Integrity Protection in Internet of Things

    2019-03-18 08:15:30BaoweiWangWeiwenKongWeiLiandNealXiong
    Computers Materials&Continua 2019年3期

    Baowei Wang ,Weiwen Kong,Wei Li and Neal N.Xiong

    Abstract:Chaining watermark is an effective way to verify the integrity of streaming data in wireless network environment,especially in resource-constrained sensor networks,such as the perception layer of Internet of Things applications.However,in all existing single chaining watermark schemes,how to ensure the synchronization between the data sender and the receiver is still an unsolved problem.Once the synchronization points are attacked by the adversary,existing data integrity authentication schemes are difficult to work properly,and the false negative rate might be up to 50 percent.And the additional fixed group delimiters not only increase the data size,but are also easily detected by adversaries.In this paper,we propose an effective dual-chaining watermark scheme,called DCW,for data integrity protection in smart campus IoT applications.The proposed DCW scheme has the following three characteristics:(1) In order to authenticate the integrity of the data,fragile watermarks are generated and embedded into the data in a chaining way using dynamic grouping; (2) Instead of additional fixed group delimiters,chained watermark delimiters are proposed to synchronize the both transmission sides in case of the synchronization points are tampered; (3) To achieve lossless integrity authentication,a reversible watermarking technique is applied.The experimental results and security analysis can prove that the proposed DCW scheme is able to effectively authenticate the integrity of the data with free distortion at low cost in our smart meteorological Internet of Things system.

    Keywords:Dual-chaining,reversible watermark,integrity authentication,Internet of things.

    1 Introduction

    The rapid development of Internet of Things (IoT) has caused great changes in the national security,industry and people’s lives [Zhang,Sun and Wang (2016); Wang,Gu and Zhou (2017)].It has the potential to become a vital part of our infrastructure to enrich lives and make processes easier.It offers economically viable solutions for a variety of people-centric applications,such as,health care,working space automation,public safety and smart space.Smart campus is exactly the most typical application scenario of Internet of Things.As the core part of the smart IoT system perception layer,wireless sensor networks (WSNs) are organized by a great number of sensors with limited computational capacity and power to form a self-organizing network in wireless communication.In the smart campus system,the massive real-time sensory data is continuously collected by the source nodes and sent to the sink node through multi-hop relays.It is used to make decisions and discover deep levels of knowledge [Wang,Gu,Ma et al.(2017); Xia,Wang,Sun et al.(2014)].Due to the limited resources,traditional data security solutions based on cryptography and Message Authentication Code (MAC) cannot be applied to sensor nodes.Sensor nodes are susceptible to a variety of attacks,such as data forgery attack,data tampering attack,and packets selective forwarding attack.So,verifying the integrity of the transmitted data is critical for most smart space IoT applications.

    Lightweight digital watermarking techniques are gradually introduced into the wireless sensor networks and smart Internet of Things to verify the integrity of the data [Feng and Potkonjak (2003); Wang,Yan,Li et al.(2015); Zhang,Liu,Das et al.(2008); Wang,Sun,Ruan et al.(2011); Dong and Li (2009)].Chaining watermarks are considered to be the most effective method [Guo,Li and Jajodia (2007)].The core ideas of the existing single chaining watermark schemes are as follows:The data collected by a source node is defined as a data stream.It is divided into multiple groups using the synchronization points or the group delimiters,and the fragile watermark generated by the data in the current group is embedded into the next (or previous) group to form a watermarking chain.Any tamper or attack on the watermarked data would corrupt the watermarking chain.It can efficiently detect and locate any modifications made to the data and authenticate the data integrity [Juma,Kamel and Kaya (2008); Kamel and Juma (2010);Kamel and Juma (2011); Shi and Xiao (2013); Liu,Ge,Zhu et al.(2014)].

    But all existing single chaining watermarking schemes still have the following bottlenecks:(1) The tampering of the indispensable synchronization points may lead to a high false negative rate of 50 percent and result in completely meaninglessness of data integrity authentication; (2) The additional fixed group delimiters,which are usually special data elements or fixed packet segments,can be detected easily by the adversaries.(3) It is unacceptable that the embedding method leads to certain irreversible changes to the original data.

    In this article,an effective dual-chaining watermark scheme is proposed to ensure the data integrity in the perception layer of smart IoT system.The proposed DCW scheme has the following three characteristics:

    (1) Fragile watermarks are generated and embedded into the data stream using a dynamic chaining method to verify the data integrity.

    (2) Instead of the additional fixed group delimiter,a chained watermark one is designed to synchronize the both transmission sides in case of the synchronization points failure.

    (3) To achieve completely lossless integrity authentication,a reversible watermark algorithm is applied to DCW.

    The proposed DCW scheme is evaluated in a real smart campus meteorological Internet of Things system,which is deployed in Nanjing University of Information Science and Technology.The experimental results and security analysis show that the proposed scheme can effectively authenticate the integrity of the data with free distortion and tiny computational overhead.It does not increase the data size nor change its accuracy.Furthermore,DCW can significantly improve the ability to detect and locate the various packet level attacks.Meanwhile,the adversaries can hardly detect the existence of the dual-chaining watermarking based integrity authentication scheme.

    The rest of the paper is organized as follows.Section 2 introduces some related works of single chaining watermark schemes.Section 3 presents our proposed dual-chaining watermark scheme.In Section 4,the experimental results and the analysis are introduced.Section 5 includes the work.

    2 Related works

    Chaining watermark is considered as a most effective way to verify the integrity of streaming data in network environment.The first single chaining watermark scheme,called SGW,is proposed by Guo et al.[Guo,Li and Jajodia (2007)].The SGW scheme is used to authentication the integrity of streaming data in network environment.The data stream is divided into groups of variable size by synchronization points.Fragile watermarks are chained across data groups.Any modifications can be detected and located.The problem with the SGW scheme is that the data insertion,modification,and deletion attacks may create confusion at the receiver.It is difficult for the receiver to track the synchronization points.The synchronization points have been the biggest bottleneck of existing dynamic grouping-based single chaining watermark methods.

    Juma et al.take the lead in applying the chaining watermark technology to wireless sensor networks.In Juma et al.[Juma,Kamel and Kaya (2008)],they presented two single chaining watermarking methods,called S-SGW and FWC,respectively.In Kamel et al.[Kamel and Juma (2010)],the authors proposed the LWC scheme to try to avoid several drawbacks of SGW.However,these three schemes still suffer from the same bottleneck as the SGW.In Kamel et al.[Kamel and Juma (2011)],the FWC-D scheme uses the group delimiters to synchronize the sender side and the receiver side.In FWC-D,the dynamic grouping method is abandoned,and additional data elements are used as the group delimiters.It is very easy to be detected by the adversaries.

    Another common disadvantage of the existing schemes is that watermarks are embedded by replacing the least significant bits (LSB) of the data,which can significantly affect the data accuracy.It is unacceptable that the methods used to protect the data destroy its integrity,especially,in some critical applications such as smart campus,medical care and military applications.

    Reversible chaining watermarking technologies are adopted to address this problem [Qiu(2017); Yuan,Xia and Sun (2017)].In Shi et al.[Shi and Xiao (2013)],a prediction-error expansion based reversible watermarking scheme is proposed by Shi and Li.It can avoid any modification to the data for watermark embedding.But the synchronization point is still its bottleneck.Once the synchronization points are attacked,the false negative rate will be up to 50% and the integrity authentication might be completely meaninglessness.

    Shi’s scheme does not take into account the upper bound of the buffer size,the buffer overflow would occur in extreme cases [Liu,Ge,Zhu et al.(2014)].To address this problem,Liu et al.proposed a histogram shifting based reversible watermarking scheme for data integrity protection in BSN.Liu’s scheme does not use dynamic grouping but adopts a fixed grouping method to avoid the drawback of synchronization points.In the head segment of the system packet,a serial number (SN) segment and a group delimiter(DF) segment are attached.Not only increase the transmission overhead,but also easily detected by the adversaries.

    3 The dual-chaining watermarking scheme

    3.1 Overview of the system model

    The system model of the proposed DCW scheme for data integrity protection in smart IoT system is illustrated in Fig.1.There are three types of nodes in the perception layer sensor network,including source sensor nodes,relay nodes and the sink node.Source sensor nodes continually collect data samplings,and send them to the sink using data packets through the multi-hop relay nodes.A data packet is represented as (headsegments,payload),where head segments are predefined parameters,including route,packet length,etc.; the payload is the encoded data samplings.For simplicity,we need not present the data on the packet level.Instead,each data sampling is represented as a data elementEi.All the sensory data of a source node is defined as an infinite numericaldata streamS={E1,E2,…,En}.

    Figure1:The system model of DCW

    To verify the integrity of the data stream,the proposed DCW scheme is adopted in the system’s perception layer.The dual-chaining watermarks are generated and embedded on the source node,extracted and verified on the sink node.

    (1) On the source sensor,the data streamSis cached in two buffers and dynamically divided into different data groups.And two adjacent data groups form an authentication group.The dual-chaining watermarks,including the chaining fragile watermark and the pre-defined chained delimiter watermark,are embedded into the authentication groups in a chaining way.

    (2) On the sink,it synchronizes the data groups using the synchronization point and the chained delimiter watermark,and verifies the integrity of the data stream using the chaining fragile watermark.If the data is not temped,the original data can be restored.

    3.2 Definitions and rules

    Firstly,some system parameters and notations used in the proposed DCW scheme are pre-defined.To simplify the description,all the notations and parameters are shown in Tab.1,and considered to be known parameters.

    To embed and extract the dual-chaining watermarking,the data elements would firstly be cached and grouped on the both transmission sides,including the source node and the sink node.Two data buffers B0and B1,which are also denoted as Buffer (b0) and Buffer(b1),are needed to cache the data groups.The data buffer is defined as follows:

    Definition 1:(Data Buffer,B) A data bufferBis an allocated memory space to cache the data elements.The capacityNof a data buffer means that it can cache up toNdata elements,which is usually a system-defined parameter.

    Definition 2:(Synchronization Point,SP) A data elementEiis aSP,if and only if:Hash(Key,Ei) mod m == 0.

    In DCW,the SPs are used for dynamic grouping of data.Since aSPis a selected data element using the secret key,and the group length is variable,it is very difficult to find out and destroy the data groups.All the data elements are cached in the two buffers B0and B1,alternately.When each data element is cached into a data buffer,Rule1is used to determine if a data group is cached successfully.

    Rule 1:(Data Grouping Rule) For each elementEkCached in a buffer:(1) ifEkis not aSP && k < N,then continue to buffer the data; (2) ifEkis aSP && k < L,whereLis defined as the lower bound of the group length,then continue to cache data; (3) ifEkis aSP && L ≤ k ≤ N,then all the data elements cached in the buffer is defined as a Data GroupGx={E1,E2,…,Ek}; (4) else,that is,when the buffer is full,a suitableSPhas not been found,then all the data elements cached in the buffer is defined as a Data GroupGx={E1,E2,…,EN},(no SP is included).

    In summary,two adjacent data groups are cached in two buffers.The group sizekis a variable value and is bounded byLandN.Buffer overflow would not occur in any cases.The two adjacent data groups can be defined as an Authentication Group,which is the workspace for embedding and verifying the dual-chaining watermark scheme.To avoid confusion,they are denoted as the previous group (Gi-1) and the current group (Gi).

    As shown in Fig.2,the data elements in each data group are divided into three segments,includingSF={E1,E2,…,Ek-l-1},SD={Ek-l,Ek-l+1,…,Ek-1} andSP=Ek.The lengthlofSDis a fixed value; and the length ofSFisk-l-1.The well-designed fragile watermark and delimiter watermark are embedded intoSFandSDof theprevious group Gi-1respectively,using a reversible method.The fragile watermarkFWiis generated by all the original data elements in the current groupGi,the delimiter watermarkDWi-1is generated using Rule 2.

    Figure2:The proposed Dual-Chaining Watermarking Model

    The workflow of the dual-chaining watermarking embedding:When a data groupGis cached in the buffer using Rule 1,the following two operations are performed:(1)Firstly,the fragile watermark binary stringFWiof the current groupGiis computed according to Rule 3,and is embedded into theSFsection of the previous groupGi-1using Rule 4.A fragile watermarking chain is formed.It is used to verify the data integrity.(2)Meanwhile,the delimiter watermarkDWis generated using Rule 2,and is embedded into theSDsection ofGi-1using Rule4.That is the other watermarking chain to keep the both transmission sides synchronized.It can avoid failure in sync grouping whenSPConfusion happens.Once the dual-watermarking embedding ends,the data in the groupGi-1will be sent to the sink node and the next groupGi+1will be buffered.

    Rule 2:(Delimiter Watermarks Definition) The delimiter watermarks,which is denote asDW={DW1,DW1,…,DWl},are a set of well-defined fixed-size binary strings.They are embedded into fixed position in each group of data,one by one,to form a watermark chain.Fo r simplicity,they can be generated by a fixed delimiterWD,DWiis denoted asWD⊕i,inwhich “⊕” is theXORoperation.XORis a reversible operation.The length ofWDandDWiis l,which is equal to the length ofSD.

    Rule 3:(Fragile Watermark Generation Rule) The fragile watermarkFWiis generated by the hash of the concatenation of all the data elements in the current group and then embedded into the previous group.FWiis denoted asGroupXOR (H1⊕H2⊕…⊕Hk),in which “⊕” is theXORoperation.The length ofFWi,which is a fixed value,depends on the hash function.If the length ofSFin previous group is larger than the length ofFWi,FWiwill be embedded repetitively.

    In DCW,to make the both watermarks reversible,a difference expansion-based reversible embedding algorithm is designed [Chen,Sun,Sun et al.(2013); Alattar (2004)].The reversible watermarking embedding rules are defined as follows.

    Rule 4:(Watermarking Embedding Rule) Given an numerical data groupGx={E1,E2,… ,Et},and a binary watermarkW,(its length ist-1),the embedding rule is as follows:(1)calculate the average value ofGxdata,denoted asu=?(E1+E2+…+Et)/t」; (2) compute the differences between each data elementEj(j=2,3,…,t)andE1,denoted asdj=Ej-E1;(3) shiftdjone bit to the left and embed the corresponding bit ofWinto the vacant least significant bit ofdj,that isdj'= 2×dj+W[j-2]; (4) we can get the watermarked dataGx',in whichE1'=u-?(d2'+d3' +…+ dt')/t」,Ej'=E1'+dj' (j=2,3,…,t).

    Since the data elements are collected in a short period of time,and thedjChanges in a small range,the 1-bit left-shifted operation overflow will not happen [Kamel and Juma(2010); Kamel and Juma (2011)].

    Rule 5:(Sync Data Grouping Rule) The only difference between the sync grouping rules and the Rule 1 is:the group ends before the buffer is full,if and only whenEkis aSPand simultaneously a delimiter watermark can be extracted from the data elements beforeEk.

    Rule 6:(Watermark Extraction and Data Recovery Rule) Given a watermarked data groupGx'={E1',E2',…,Et'}:(1) calculate the average value ofGx',denoted asu=?(E1'+E2' +…+Et')/t」; (2) compute the differences between eachEj'(j=2,3,…,t) andE1',denoted asdj'=Ej'-E1'; (3) the binary watermarkingWx'Can be extracted from the least significant bit of the differences; the corresponding watermark bit isWx' [j-2] =LSB(dj'),and the length ofWx'ist-1; (4) shiftdj'one bit to the right,dj= ?dj'/2」; (4) we can get the recovered dataGx,in whichE1=u-?(d2+d3+…+ dt)/t」,Ej=E1'+dj(j=2,3,…,t).

    The workflow of the dual-chaining watermarking based data integrity authentication scheme is as follows:(1) Two groups of dataGi-1'andGi'are cached correctly using Rule 5.As shown in Fig.2,data elements in each data group can be divided into three parts,includingSF,SDandSP; (2) the fragile watermarkingFWi'Could be extracted from sectionSFofGi-1',according to Rule 6; and then the watermarkingFWi''Can be recalculated using Rule 3.ThenFWi'is equal toFWi'',the data in Gi'is complete; (3) The original dataGiCan be regained fromGi'using Rule 6.

    3.3 Watermarking embedding algorithm

    Without loss of generality,the dual-chaining watermarking generation and embedding schemes,which run on the source sensor node in the perception layer of a smart Internet of Things system,are introduced formally in this section.Two data buffers,which are denoted as Buffer (b0) and Buffer (b1),respectively,are needed on each source sensor node.The dual-chaining watermark embedding algorithm is presented in Algorithm 1.It includes the delimiter watermark embedding and the fragile watermark embedding.Algorithm 2 shows the data buffering process on the data source sensor node.The detailed course of the reversible watermarking embedding is designed in Algorithm 3.

    Algorithm 1:Dual-Chaining Watermark Embedding(DW)1.clear Buffer (b 0),Buffer (b 1);2. b0= 0;3.Cache_buffer (Buffer (b0));//Call Algorithm 2 4.while (true) 5. { 6.b1= (b0 + 1 ) mod 2;7. FWi =Cache_buffer (Buffer (b1));//Call Algorithm 2 8. k= elements number in Buffer(b0);9. l= bits number in DW ;10. Embedding (Buffer(b0), k-l-1,k-2,DW);//Delimiter watermark embedding 11. Embedding (Buffer(b0), 0 , k-2-l , FWi);//Fragile watermark embedding 12. send data in Buffer(b0);13. Clear Buffer(b0);14. b0= b1 ;15.}

    Algorithm 2:Cache_buffer (Buffer(b))1. k =0; W =0;2.while (receive a data element Ei)3.{4.Buffer(b) (k ++)= Ei ;5. H=Hash (Key,Ei ) ;6. W = W ⊕ H ;7.if ((H mod m==0) && (k >= L) && (k <= N) || (k == N))8.return W ;9.}

    Algorithm 3:Embedding (buffer E , start , end , W)1. t=end-start ;// Generate W with the needed length 2.if (| W |>= t-1)//| W | is the length of W 3. W =the first t-1 bits of W ;4.else 5.{6.n= t/|W| ;7. W =n W plus the first t % |W|- bits of W ;8.}9. u =?(Estart + Estart+1 +…+ Eend)/t 」;is the i th data element of E 10.for (j = start+1 to end)11.{12. dj = Ej – Estart ;13. dj '= 2× dj + W[j-start-1] ;14.}15. Estart = u- (dstart+1 '+ dstart+2 ' +…+ dend ')/t 」;16.for (j = start+1 to end)17. Ej =E1 ' +dj ';

    3.4 Data integrity authentication algorithm

    Without loss of generality,the data integrity authentication and data recovery algorithms,which run on the sink node in a smart Internet of Things system,are presented formally in this subsection.In a smart IoT application scenario,the computing resource,storage space and energy of the sink node are not constrained.It can cache data elements into the two buffers as well using Algorithm 6.As shown in Tab.1,the watermark embedding securityKey,the secret parameterm,and the lower bound of the buffer sizeLand the upper bound of the buffer sizeNare considered to be known parameters.The complete algorithm for data integrity authentication and original data recovery is shown in Algorithm 4.The extracted watermarks includeFWi'andDW'.Here,FWi'is the fragile watermark that is the group hash value for integrity protection constructed from the previous and the current group;DW'is the chained delimiter watermark,which extracted by Algorithm 5 for the verification of grouping.The data can be recovered using Algorithm 7.

    Algorithm 4:Data Integrity Authentication 1.clear Buffer (0),Buffer (1);2. b0 = 0 ;3.Cache_sync_buffer (Buffer (b0));4. k= number of data elements in buffer(b0);5. l= number of bits in DW ;6. FWi '= Extraction(Buffer(b0), 0 , k-2-l);//Call Algorithm 7 7.while (true)8.{9. b1 =(b0 +1) mod 2 ;10. if (Cache_sync_buffer (Buffer (b1)) == 1)11. {12. k= number of data elements in Buffer(b1);13. FWi+1 '= Extraction(Buffer(b1), 0 , k-2-l);//Call Algorithm 7 14.for (j = 0 to k-1)15. FWi ”=FWi ”+Hash (Buffer(b1) (j));16.if (FWi ' == FWi ”) 17.return 1;//Integrity 18.else 19.return 0;//Tampered 20.}21.else 22.return 0;//Tampered 23.clear Buffer(j0);24. b0= b1 ;25.}

    Algorithm 5:Delimiter (buffer E' , start,end)1.for (j = start+1 to end)2.{3. dj ' = Ej '- Estart ' ;4. W' [j-start-1] =LSB(dj ') ;5.}6.return W’ ;

    Algorithm 6:Cache_sync_buffer (Buffer(b))1. k= 0; W= 0;2.while (receive a data element Ei)3.{4.Buffer(b) (k ++)= Ei ;5. H= Hash (Key,Ei ) ;6. W=W ⊕ H ;7.if (((H mod m == 0 && Delimiter ( Buffer(b), k-1-l,k-1) == DW) &&(k >= L) && (k <= N)) || (k == N && Delimiter ( Buffer(b), k-l,k) == DW))8.return 1;//Sync Success;9.if ((Delimiter (Buffer(b), k-l,k) ! =DW && k == N)10.return 0;//Sync Failure 11.}

    Algorithm 7:Extraction (buffer E',start,end)1.t= end-start ;2. u' =(Estart ' + Estart+1 ' +…+ Eend ')/t 」;3.for (j = start+1 to end)4.{5. dj ' = Ej '- Estart ' ;6. W' [j-start-1]=LSB(dj ') ;7. dj= ? dj ' /2」;8.}9. Estart '= u ' - (dstart+1 + dstart+2 +…+ dend)/t 」;//Data Recovery10.for (j = start+1 to end) 11. Ej ' =Ej ' +dj ;12.return W’ ;

    4 Experiments and performance evaluation

    In the performance evaluation section,we evaluate the performance of the proposed dualchaining watermark scheme for data integrity protection from multiple perspectives.We use our own real smart meteorological Internet of Things system which is deployed in Nanjing University of Information Science and Technology,as shown in Fig.3.The sensor nodes used in this meteorological IoT system are our self-developed products[Wang,Gu,Ma et al.(2017); Wang,Gu and Yan (2018)],which is shown in Fig.4.The propose DCW scheme is implemented on the node.In this IoT system,the temperature,humidity data are gathered once per minute,and are used for embedding the dualchaining watermarks.

    Figure3:The smart meteorological Internet of Things system deployed in NUIST

    Figure4:The self-developed sensor nodes used in the experiment

    4.1 Data accuracy

    In the people centric Internet of Things systems,such as smart campus application,the data accuracy is very important.The watermark embedding method introduces some data changes.Since these changes are usually very small,and insignificant on the perception results,it is hard to be perceived.So,the data accuracy and the invisibility are acceptable under normal circumstances.Tab.2 shows the statistical comparison in terms of the rate of change of the mean and the variance of data change.Small changes in mean and variance indicate that our proposed dual-chaining watermark scheme has fairly better invisibility.Furthermore,people can recover the original data stream with scarcely error when needed.

    Table2:The statistical comparison of the data change

    2 14.53 0.0012 0.0006 0.0034 14.53 3 23.36 0.0017 0.0018 0.0047 23.36 4 49.45 0.0013 1.0054 0.0946 49.45 5 57.50 0.0026 0.0027 0.0625 57.50

    4.2 Data transmission amount

    In this subsection,we present the comparison of the data transmission amount among the original data,the existing single chaining watermark scheme (FWC-D) and the proposed dual-chaining watermarking scheme (DCW).In Fig.5,the x-axis denotes the sense data amount and the y-axis denotes the corresponding data transmission amount.Because the FWC-D scheme directly adds the additional group delimiters into the data groups,the additional amount of data transmission is extremely high.Furthermore,the LSB-based watermarking embedding also destroys the accuracy of the data.Different from FWC-D,DCW takes the chained delimiter watermarks as the GDs.The experimental results show that the DCW scheme doesn’t increase the amount of data transmission.It can also recover the original data.

    Figure5:Comparison of the amount of the data transmission among three schemes

    4.3 False positive rate comparison

    In all the existing single chaining watermark schemes,such as SGW,FWC,when the watermarked data groups cannot be synchronized by the sink node,false positives happen.In the proposed DCW scheme,the chained watermark delimiters can synchronize the both transmission sides in case of the synchronization points are tampered.Fig.6 shows the comparison of the false positive rate among the SGW scheme,the FWC scheme and the proposed DCW scheme.The false positive rate decreases with the parameterm.Meanwhile,compared with the SGW scheme and the FWC scheme,the false positive rate of DCW reduces significantly.That is because the DCW can locate the SP by delimiter watermark.

    In total,the false positive performance of the proposed dual-chaining watermark scheme is better than anyone of the previous single chaining watermark schemes.

    Figure6:Comparison of the false positive rate

    4.4 Anti-attack capability evaluation

    In this subsection,we evaluate the anti-attack capability of the proposed DCW scheme.We discuss four most common attacks that can be launched in the wireless smart Internet of Thing application scenario,including packet tampering attack,packet forgery attack,selective forwarding and packet replay attack.We define that an attack is successful if it is not detected by the sink node.In our experiments,we randomly select 5 relay sensor nodes as the malicious nodes,which can launch these four attacks.And each type of attack is evaluated 500 times.The experimental results of anti-attack capability of the proposed DCW scheme are shown in Tab.3.

    Table3:Anti-attack capability evaluation

    In our proposed DCW scheme,the well-designed dual-chaining watermarks,including the chaining fragile watermark and the pre-defined chained delimiter watermark,are embedded into the data in a dynamic and reversible way.It is difficult for the adversaries to analysis any data information by capturing the data packets without the data grouping secret key.The DCW scheme embeds chained delimiters watermarks which can prevent the adversaries to track and improve the security greatly compared to the single chaining watermarking scheme.According to the experimental results shown in Tab.3,the prosed DCW scheme achieved 100% detection rate on all the four types of packet attacks.We can see that the proposed DCW scheme can verify the integrity of the data stream.It can be used to ensure the authenticity of the data.

    4.5 Computation overhead and energy consumption analysis

    It is difficult to accurately evaluate the energy consumption of the proposed dualchaining watermark scheme in the real smart meteorological Internet of Things experiment environment.So,we only evaluate energy consumption using the computation overhead analysis according to common practice.Generally,the energy consumed to transmit one bit data over a distance of 100m by radio can execute about 3000 instructions [Kamel and Juma (2011)].That is,if1Erepresents the energy consumed to execute one instruction,the energy consumption to transmit 1-bit data is 3000E.So,we can see that the energy consumption for data transmission is far greater than processing the sensory data.In DCW,the chained delimiter watermarks and the fragile watermark are both embedded into the data elements instead of being transmitted as additional data.It does not introduce any data transmission overhead.So,the total energy consumption of the perceptual layer of the network is reduced.The network lifetime of the smart Internet of Things system is extended significantly.

    5 Conclusion

    In this article,a dual-chaining reversible watermarking method for data integrity protection in the perception layer of the IoT system.The proposed reversible scheme can ensure the integrity of the data with free distortion.In addition,DCW scheme takes the chained watermarking delimiters to synchronize the data source node and the sink node.It makes the adversaries difficult to detect the existence of the watermarking and track the data groups.The dual-chaining watermarks can resist various types of attacks such as packet forgery attack,selective forwarding attack,packet replay and tampering attack,and authenticate the integrity of data effectively.Meanwhile,the proposed dual-chaining watermark scheme does not increase the transmission overhead.Experimental results have shown that the DCW has remarkable advantages over the existing single chaining watermark methods not only in terms of data accuracy,but also data security and the lifetime of the wireless sensor network.

    Acknowledgement:This work is supported by the Major Program of the National Social Science Fund of China under Grant No.17ZDA092; by the Electronic Information and Control of Fujian University Engineering Research Center Fund under Grant No.EIC1704; by the National Key R&D Program of China under grant 2018YFB1003205;by the National Natural Science Foundation of China under grant 61173136,U1836208,U1536206,U1836110,61602253,61672294; by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) fund; by the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET) fund,China.

    美女高潮的动态| 色5月婷婷丁香| 欧美日韩综合久久久久久 | 欧美区成人在线视频| 97碰自拍视频| 少妇丰满av| 欧美日本亚洲视频在线播放| 国产高潮美女av| 神马国产精品三级电影在线观看| 日韩中文字幕欧美一区二区| 亚洲成av人片在线播放无| 日日摸夜夜添夜夜添av毛片 | 亚洲欧美日韩东京热| 久久精品国产亚洲av涩爱 | 草草在线视频免费看| 深夜精品福利| 精品久久国产蜜桃| 亚洲av日韩精品久久久久久密| 免费看美女性在线毛片视频| 一区二区三区免费毛片| 狂野欧美白嫩少妇大欣赏| 欧美最黄视频在线播放免费| 亚洲av二区三区四区| eeuss影院久久| 超碰av人人做人人爽久久| 国内精品久久久久久久电影| a级一级毛片免费在线观看| 99久久久亚洲精品蜜臀av| 久久久久久久久久黄片| 午夜精品久久久久久毛片777| 精品一区二区三区av网在线观看| 一区二区三区高清视频在线| 国产高清三级在线| 日韩欧美 国产精品| 久久人人爽人人爽人人片va | 看十八女毛片水多多多| 国产高清激情床上av| 丝袜美腿在线中文| 观看免费一级毛片| 成人av一区二区三区在线看| 一个人免费在线观看的高清视频| 成年女人毛片免费观看观看9| 小蜜桃在线观看免费完整版高清| .国产精品久久| 日韩中文字幕欧美一区二区| 午夜福利在线在线| 国产伦精品一区二区三区视频9| 男女床上黄色一级片免费看| 长腿黑丝高跟| 亚洲av电影在线进入| 啪啪无遮挡十八禁网站| 18禁黄网站禁片午夜丰满| 亚洲成a人片在线一区二区| 国产单亲对白刺激| 99热这里只有精品一区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲久久久久久中文字幕| 精品一区二区三区av网在线观看| 国产精品人妻久久久久久| 国产精品乱码一区二三区的特点| 99久久九九国产精品国产免费| 亚洲专区国产一区二区| 国产精品亚洲一级av第二区| 12—13女人毛片做爰片一| 深夜a级毛片| 亚洲综合色惰| 成年女人永久免费观看视频| 色精品久久人妻99蜜桃| xxxwww97欧美| 日韩欧美国产在线观看| 国产高清三级在线| 免费看光身美女| 国内少妇人妻偷人精品xxx网站| 国产av在哪里看| 在线免费观看的www视频| 久久久久久国产a免费观看| 免费看美女性在线毛片视频| 夜夜爽天天搞| 青草久久国产| 色综合欧美亚洲国产小说| 日韩欧美国产在线观看| a级一级毛片免费在线观看| 精品福利观看| 色哟哟哟哟哟哟| 此物有八面人人有两片| 国产精品免费一区二区三区在线| 哪里可以看免费的av片| 日韩欧美免费精品| 亚洲欧美日韩卡通动漫| 51午夜福利影视在线观看| 在线观看午夜福利视频| 亚洲精华国产精华精| 国模一区二区三区四区视频| 18禁黄网站禁片午夜丰满| 两人在一起打扑克的视频| 男女那种视频在线观看| 好看av亚洲va欧美ⅴa在| 白带黄色成豆腐渣| 国产爱豆传媒在线观看| www日本黄色视频网| 亚洲国产精品999在线| 欧美黑人欧美精品刺激| 99国产综合亚洲精品| 精品久久久久久久末码| 在线免费观看不下载黄p国产 | 精品午夜福利视频在线观看一区| 夜夜躁狠狠躁天天躁| 99国产精品一区二区三区| 三级国产精品欧美在线观看| 18禁黄网站禁片免费观看直播| 他把我摸到了高潮在线观看| 淫秽高清视频在线观看| 亚洲五月天丁香| 国产69精品久久久久777片| 老女人水多毛片| 在线国产一区二区在线| 成年版毛片免费区| 国产精品一区二区性色av| 日本 av在线| 久久精品国产亚洲av香蕉五月| 麻豆国产97在线/欧美| 两个人的视频大全免费| 国产爱豆传媒在线观看| 日韩欧美 国产精品| 欧美黑人欧美精品刺激| 观看美女的网站| 一边摸一边抽搐一进一小说| 好男人在线观看高清免费视频| 麻豆av噜噜一区二区三区| 99热这里只有是精品50| 内射极品少妇av片p| 亚洲经典国产精华液单 | 亚洲五月天丁香| 99热6这里只有精品| av黄色大香蕉| 日韩国内少妇激情av| ponron亚洲| 一进一出好大好爽视频| 一个人免费在线观看电影| 亚洲国产色片| 别揉我奶头 嗯啊视频| 中文字幕av成人在线电影| 日韩精品青青久久久久久| 国产私拍福利视频在线观看| 免费观看人在逋| 一本一本综合久久| 在线播放国产精品三级| 韩国av一区二区三区四区| 悠悠久久av| 久久精品国产亚洲av香蕉五月| 亚洲内射少妇av| 一个人观看的视频www高清免费观看| 成人av在线播放网站| 99久久成人亚洲精品观看| 欧美乱色亚洲激情| 国产高清视频在线播放一区| 香蕉av资源在线| 日韩av在线大香蕉| 97超级碰碰碰精品色视频在线观看| 亚洲在线观看片| 亚洲中文日韩欧美视频| 国产乱人伦免费视频| 日韩免费av在线播放| 国产精品一及| 在线观看美女被高潮喷水网站 | 啦啦啦观看免费观看视频高清| 欧美精品啪啪一区二区三区| 亚洲一区二区三区色噜噜| 五月伊人婷婷丁香| 我要搜黄色片| 国产精品美女特级片免费视频播放器| 乱码一卡2卡4卡精品| 内射极品少妇av片p| 999久久久精品免费观看国产| 亚洲专区中文字幕在线| 搡女人真爽免费视频火全软件 | 如何舔出高潮| 亚洲午夜理论影院| 少妇高潮的动态图| 91字幕亚洲| 一二三四社区在线视频社区8| 国产精品久久久久久人妻精品电影| 一进一出抽搐动态| www.熟女人妻精品国产| 国产精品乱码一区二三区的特点| 亚洲精品一区av在线观看| 国产av不卡久久| 欧美成狂野欧美在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国内精品一区二区在线观看| 婷婷精品国产亚洲av在线| 长腿黑丝高跟| 男插女下体视频免费在线播放| 欧美黄色淫秽网站| 国产色爽女视频免费观看| 老熟妇乱子伦视频在线观看| 日韩人妻高清精品专区| 久久久久久久久大av| 最近最新免费中文字幕在线| 极品教师在线视频| 91狼人影院| 国产高清视频在线播放一区| 久久精品影院6| 最近在线观看免费完整版| 国产精品一区二区免费欧美| 欧美最新免费一区二区三区 | 国产精品亚洲av一区麻豆| 夜夜看夜夜爽夜夜摸| 美女xxoo啪啪120秒动态图 | 欧美成人性av电影在线观看| 人人妻人人看人人澡| 久久精品国产亚洲av香蕉五月| 国产成人av教育| 亚洲经典国产精华液单 | 国产白丝娇喘喷水9色精品| 有码 亚洲区| 亚洲av不卡在线观看| 我的老师免费观看完整版| 最近中文字幕高清免费大全6 | 欧美+日韩+精品| 亚洲av美国av| 国产成人啪精品午夜网站| 久久热精品热| 毛片女人毛片| 国产精品1区2区在线观看.| 国产一区二区亚洲精品在线观看| 国产aⅴ精品一区二区三区波| 日本与韩国留学比较| 毛片女人毛片| 久久久久国产精品人妻aⅴ院| 精品久久久久久久久av| 欧洲精品卡2卡3卡4卡5卡区| 美女大奶头视频| 别揉我奶头~嗯~啊~动态视频| 99久久九九国产精品国产免费| 国产三级黄色录像| 国产色爽女视频免费观看| 91av网一区二区| 精品熟女少妇八av免费久了| 亚洲精品在线美女| 最近最新免费中文字幕在线| 欧美日韩瑟瑟在线播放| 我要看日韩黄色一级片| 天堂av国产一区二区熟女人妻| 国产高清激情床上av| 99热6这里只有精品| 夜夜看夜夜爽夜夜摸| а√天堂www在线а√下载| 免费在线观看日本一区| 我的女老师完整版在线观看| 亚洲精品乱码久久久v下载方式| 婷婷精品国产亚洲av在线| 禁无遮挡网站| 一级黄色大片毛片| 夜夜爽天天搞| 日日摸夜夜添夜夜添av毛片 | 99精品久久久久人妻精品| 免费无遮挡裸体视频| 成人特级av手机在线观看| av黄色大香蕉| 久久精品国产亚洲av香蕉五月| 国产视频内射| 国产毛片a区久久久久| 又紧又爽又黄一区二区| 51国产日韩欧美| 免费黄网站久久成人精品 | av在线蜜桃| 悠悠久久av| 久久精品影院6| 免费观看的影片在线观看| 成年女人毛片免费观看观看9| 国语自产精品视频在线第100页| 香蕉av资源在线| 久久久国产成人精品二区| 不卡一级毛片| 在线观看午夜福利视频| av福利片在线观看| 欧美成人a在线观看| 好看av亚洲va欧美ⅴa在| 国产黄a三级三级三级人| 中文字幕人妻熟人妻熟丝袜美| 久久国产乱子免费精品| 久久久国产成人精品二区| 亚洲专区中文字幕在线| 久99久视频精品免费| 国产视频一区二区在线看| 日本a在线网址| 日韩欧美在线乱码| 久久久久久久午夜电影| 99热精品在线国产| 少妇的逼好多水| 一本精品99久久精品77| 丰满的人妻完整版| 日本在线视频免费播放| 国产精品av视频在线免费观看| 又爽又黄无遮挡网站| 日韩欧美国产一区二区入口| 热99re8久久精品国产| 亚洲中文字幕一区二区三区有码在线看| 久久亚洲真实| 一个人看的www免费观看视频| 超碰av人人做人人爽久久| 99精品在免费线老司机午夜| 国产国拍精品亚洲av在线观看| 国产aⅴ精品一区二区三区波| 一级毛片久久久久久久久女| 国产成人av教育| 亚洲国产精品成人综合色| 久久久色成人| 中文字幕久久专区| 国产视频一区二区在线看| 久久久精品欧美日韩精品| bbb黄色大片| 内射极品少妇av片p| 久久婷婷人人爽人人干人人爱| 欧美黄色淫秽网站| 亚洲国产精品sss在线观看| 国产日本99.免费观看| 日韩人妻高清精品专区| 能在线免费观看的黄片| 亚洲成人久久性| 久久性视频一级片| 999久久久精品免费观看国产| 18禁裸乳无遮挡免费网站照片| h日本视频在线播放| 精品免费久久久久久久清纯| 内射极品少妇av片p| 欧美性感艳星| 亚洲无线观看免费| 18禁在线播放成人免费| 欧美乱色亚洲激情| 日本a在线网址| 亚洲午夜理论影院| 亚洲av.av天堂| 国产亚洲欧美98| 欧美激情国产日韩精品一区| 亚洲av不卡在线观看| 99久久九九国产精品国产免费| 久久久久久久久大av| 久久九九热精品免费| 99久久99久久久精品蜜桃| av欧美777| 美女cb高潮喷水在线观看| 色5月婷婷丁香| 亚洲,欧美精品.| 一级作爱视频免费观看| 性插视频无遮挡在线免费观看| 成年免费大片在线观看| 亚洲最大成人中文| 宅男免费午夜| 中文字幕精品亚洲无线码一区| 日韩欧美在线乱码| 国产精品爽爽va在线观看网站| 国产激情偷乱视频一区二区| 国产一区二区三区在线臀色熟女| 91狼人影院| 深爱激情五月婷婷| 内射极品少妇av片p| 日韩欧美免费精品| 欧美激情久久久久久爽电影| 国产精品久久久久久人妻精品电影| 日韩精品中文字幕看吧| 亚洲aⅴ乱码一区二区在线播放| 在线十欧美十亚洲十日本专区| 男女之事视频高清在线观看| 老熟妇乱子伦视频在线观看| 日韩欧美精品免费久久 | а√天堂www在线а√下载| 两性午夜刺激爽爽歪歪视频在线观看| 一二三四社区在线视频社区8| 亚洲精华国产精华精| 亚洲av电影在线进入| 日韩 亚洲 欧美在线| 中文字幕高清在线视频| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 99久久成人亚洲精品观看| 国产乱人视频| 中国美女看黄片| 91九色精品人成在线观看| 五月玫瑰六月丁香| 如何舔出高潮| 好男人电影高清在线观看| 午夜精品久久久久久毛片777| 一进一出抽搐gif免费好疼| 麻豆成人午夜福利视频| 此物有八面人人有两片| 国产单亲对白刺激| 久久这里只有精品中国| 观看免费一级毛片| 免费高清视频大片| 9191精品国产免费久久| 性色av乱码一区二区三区2| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩卡通动漫| 日本成人三级电影网站| 欧美成狂野欧美在线观看| 12—13女人毛片做爰片一| bbb黄色大片| 日本五十路高清| 最新在线观看一区二区三区| avwww免费| 欧美高清性xxxxhd video| 草草在线视频免费看| 国产大屁股一区二区在线视频| 国产精品一区二区三区四区久久| 看黄色毛片网站| 欧美性感艳星| 亚洲色图av天堂| 亚洲精华国产精华精| 全区人妻精品视频| 国产精品美女特级片免费视频播放器| 村上凉子中文字幕在线| 日本三级黄在线观看| 久久中文看片网| 精品久久久久久久久久免费视频| 亚洲av日韩精品久久久久久密| 中文资源天堂在线| 亚洲av熟女| 波野结衣二区三区在线| 日韩亚洲欧美综合| av天堂在线播放| 欧美中文日本在线观看视频| 日韩中字成人| 日韩欧美国产在线观看| 国产三级黄色录像| 国产探花极品一区二区| 午夜老司机福利剧场| 国产精品一区二区性色av| 无人区码免费观看不卡| 亚洲精品日韩av片在线观看| 久久精品国产亚洲av天美| 久久精品国产清高在天天线| 精品国内亚洲2022精品成人| 午夜福利免费观看在线| 久久久久国产精品人妻aⅴ院| 一区二区三区免费毛片| 成人av一区二区三区在线看| 久久99热6这里只有精品| 少妇被粗大猛烈的视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 性色avwww在线观看| 国产免费一级a男人的天堂| 无人区码免费观看不卡| 欧美在线黄色| av在线老鸭窝| 欧美日韩中文字幕国产精品一区二区三区| 一本综合久久免费| 性插视频无遮挡在线免费观看| 午夜影院日韩av| 亚洲男人的天堂狠狠| 亚洲av免费在线观看| 国产欧美日韩精品一区二区| 搡老妇女老女人老熟妇| 欧美日韩综合久久久久久 | 国产单亲对白刺激| 久久久久久久久大av| 高清毛片免费观看视频网站| 亚洲黑人精品在线| 国产午夜精品论理片| 露出奶头的视频| 少妇的逼水好多| 国产精品一及| 欧美极品一区二区三区四区| av中文乱码字幕在线| 桃红色精品国产亚洲av| 国产探花极品一区二区| 国产一区二区亚洲精品在线观看| 亚洲在线自拍视频| www.色视频.com| 欧美高清性xxxxhd video| 99久久精品热视频| 99热这里只有是精品50| 18禁在线播放成人免费| 日本成人三级电影网站| 无人区码免费观看不卡| 最新中文字幕久久久久| 夜夜躁狠狠躁天天躁| 听说在线观看完整版免费高清| 少妇高潮的动态图| 久9热在线精品视频| 亚洲av成人不卡在线观看播放网| 一卡2卡三卡四卡精品乱码亚洲| 亚州av有码| 99久久99久久久精品蜜桃| 亚洲国产精品成人综合色| 成年女人看的毛片在线观看| 欧美xxxx性猛交bbbb| 亚洲精品成人久久久久久| 国产大屁股一区二区在线视频| 亚洲av日韩精品久久久久久密| 亚洲国产精品合色在线| 亚洲成av人片免费观看| 人人妻人人澡欧美一区二区| 在线播放国产精品三级| 淫秽高清视频在线观看| .国产精品久久| 精品人妻熟女av久视频| 欧美在线黄色| 日韩大尺度精品在线看网址| 我要搜黄色片| 久久精品91蜜桃| 久久久久性生活片| 色综合亚洲欧美另类图片| 天堂av国产一区二区熟女人妻| 两个人视频免费观看高清| 亚洲中文字幕一区二区三区有码在线看| 亚洲成a人片在线一区二区| www.色视频.com| 赤兔流量卡办理| 夜夜爽天天搞| 久久精品人妻少妇| 亚洲久久久久久中文字幕| 床上黄色一级片| 成人高潮视频无遮挡免费网站| 给我免费播放毛片高清在线观看| 亚洲自拍偷在线| 国产 一区 欧美 日韩| 听说在线观看完整版免费高清| 日本成人三级电影网站| 欧美色欧美亚洲另类二区| 丰满的人妻完整版| 欧美日本视频| 俺也久久电影网| 午夜福利在线在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产成人av教育| 久久这里只有精品中国| 中文字幕av在线有码专区| 国产精品女同一区二区软件 | 欧美激情国产日韩精品一区| 床上黄色一级片| 国产精品人妻久久久久久| 变态另类丝袜制服| 国产激情偷乱视频一区二区| 国产精品爽爽va在线观看网站| 在线观看舔阴道视频| av欧美777| 欧美成人免费av一区二区三区| 国产伦精品一区二区三区视频9| 亚洲国产色片| 黄色日韩在线| 男女之事视频高清在线观看| 欧美日韩瑟瑟在线播放| 啪啪无遮挡十八禁网站| 欧美区成人在线视频| 可以在线观看的亚洲视频| 神马国产精品三级电影在线观看| 国产淫片久久久久久久久 | 久久精品综合一区二区三区| 人人妻人人看人人澡| 性色av乱码一区二区三区2| 波野结衣二区三区在线| 禁无遮挡网站| 午夜福利高清视频| 国产中年淑女户外野战色| 神马国产精品三级电影在线观看| 很黄的视频免费| av国产免费在线观看| 成人一区二区视频在线观看| 男女视频在线观看网站免费| 午夜福利在线在线| 又黄又爽又刺激的免费视频.| 少妇裸体淫交视频免费看高清| 日本黄色视频三级网站网址| 极品教师在线视频| 久久精品综合一区二区三区| 精品不卡国产一区二区三区| 女人被狂操c到高潮| 日本精品一区二区三区蜜桃| 欧美日韩瑟瑟在线播放| 国产美女午夜福利| 国产精品一及| 亚洲va日本ⅴa欧美va伊人久久| 国产人妻一区二区三区在| 草草在线视频免费看| 91在线观看av| 一本一本综合久久| 国内揄拍国产精品人妻在线| 18+在线观看网站| 禁无遮挡网站| 男人舔女人下体高潮全视频| 免费av观看视频| 高清毛片免费观看视频网站| 18禁黄网站禁片免费观看直播| 国产伦精品一区二区三区四那| 18美女黄网站色大片免费观看| 亚洲精品亚洲一区二区| 国产综合懂色| 岛国在线免费视频观看| 精品人妻偷拍中文字幕| 天堂影院成人在线观看| 国产伦人伦偷精品视频| 成人毛片a级毛片在线播放| 黄色丝袜av网址大全| av在线天堂中文字幕| 999久久久精品免费观看国产| 亚洲avbb在线观看| 国产精品自产拍在线观看55亚洲| 欧美日韩黄片免| 女人被狂操c到高潮| 黄色女人牲交| 桃红色精品国产亚洲av| 真人做人爱边吃奶动态| 在线观看美女被高潮喷水网站 | 欧美+亚洲+日韩+国产| 又爽又黄无遮挡网站| 国产精品av视频在线免费观看| 精品久久久久久久久久免费视频| 亚洲av日韩精品久久久久久密| 老司机深夜福利视频在线观看| 久久久久久久精品吃奶| 欧美日韩综合久久久久久 | 亚洲av不卡在线观看| 久久久精品欧美日韩精品|