凌霄霞 張作林 翟景秋 葉樹春 黃見良,*
?
氣候變化對(duì)中國(guó)水稻生產(chǎn)的影響研究進(jìn)展
凌霄霞1張作林1翟景秋2葉樹春3黃見良1,*
1農(nóng)業(yè)部長(zhǎng)江中游作物生理生態(tài)與耕作重點(diǎn)實(shí)驗(yàn)室/ 華中農(nóng)業(yè)大學(xué)植物科學(xué)技術(shù)學(xué)院, 湖北武漢 430070;2中國(guó)人民解放軍31010部隊(duì), 北京 100081;3廣東省云浮市氣象局, 廣東云浮 527300
水稻生產(chǎn)系統(tǒng)是響應(yīng)氣候變化最敏感的農(nóng)業(yè)生態(tài)系統(tǒng)之一, 本文綜述了當(dāng)前和未來氣候變化對(duì)我國(guó)水稻生產(chǎn)的影響。氣候變化背景下, 我國(guó)水稻生長(zhǎng)季的熱量資源增多, 輻射資源減少, 降水不均一性加大。高溫?zé)岷?、干旱、暴雨和洪澇?zāi)害發(fā)生更頻繁, 這可能降低水、熱資源的有效性。氣候變化使我國(guó)單季稻和雙季稻潛在種植邊界顯著北移, 導(dǎo)致單季稻、早稻和晚稻的主要生育期縮短?;诮y(tǒng)計(jì)模型和水稻生長(zhǎng)模型的研究結(jié)果表明, 如果不考慮品種改良和栽培技術(shù)的進(jìn)步, 氣候變化使單季稻、早稻和晚稻產(chǎn)量下降, 但不同稻作區(qū)和方法間存在差異。我國(guó)水稻生產(chǎn)重心北移、實(shí)測(cè)生育期延長(zhǎng)和產(chǎn)量增加的變化趨勢(shì), 反映了水稻生產(chǎn)系統(tǒng)通過種植分布調(diào)整、品種改良和技術(shù)改進(jìn)來適應(yīng)氣候變化的能力。未來氣候變化將進(jìn)一步導(dǎo)致水稻生育期縮短和產(chǎn)量下降, 對(duì)我國(guó)水稻生產(chǎn)和糧食安全帶來嚴(yán)峻挑戰(zhàn)。仍需加強(qiáng)氣候變化影響機(jī)制的研究及其在影響評(píng)估中的應(yīng)用, 減小影響評(píng)估的不確定性并增加其系統(tǒng)性, 為制定有效的應(yīng)對(duì)策略提供可靠的理論支持。
氣候變暖; 種植北界; 稻作制度; 生育期; 產(chǎn)量
政府間氣候變化專門委員會(huì)第五次評(píng)估報(bào)告(IPCC_AR5)指出, 1880—2012年全球地表平均溫度升高約0.85℃, 過去3個(gè)10年歷史時(shí)期全球地表溫度已連續(xù)上升。氣候系統(tǒng)的變化已對(duì)全球糧食生產(chǎn)造成了普遍影響, 未來氣候變化嚴(yán)重影響作物產(chǎn)量的風(fēng)險(xiǎn)也可能增長(zhǎng)[1]。
水稻是中國(guó)最主要的口糧作物, 我國(guó)65%以上的人口以稻米為主食[2]。據(jù)統(tǒng)計(jì), 2012—2016年我國(guó)水稻年均播種面積為3.023×107hm2, 占糧食作物年均播種面積(11.245×107hm2)的26.9%; 水稻年均總產(chǎn)為2.059×108t, 占糧食年均總產(chǎn)(6.072×108t)的33.9%[3]。雖然過去30年來我國(guó)各縣市水稻產(chǎn)量翻倍增長(zhǎng), 但近期有一半以上的縣市出現(xiàn)了水稻增產(chǎn)停滯現(xiàn)象[4], 這可能與溫度和太陽(yáng)輻射等氣候變化有關(guān)[5]。因此, 科學(xué)評(píng)估氣候變化對(duì)水稻生產(chǎn)的影響并制定有效的應(yīng)對(duì)策略比以往更顯重要, 為突破水稻產(chǎn)量瓶頸提供氣候影響的理論支持。
統(tǒng)計(jì)模型和作物生長(zhǎng)模型是評(píng)估氣候變化對(duì)農(nóng)業(yè)生產(chǎn)影響中最常見且有效的方法[6-9]。因此, 本文主要對(duì)2000年以來基于這兩類模型的水稻生產(chǎn)影響評(píng)估研究進(jìn)行綜述, 以期為氣候變化對(duì)農(nóng)業(yè)影響評(píng)估等工作提供參考。
1980—2008年全球水稻生長(zhǎng)季氣溫明顯升高, 65%國(guó)家的增幅已超過年際變化的標(biāo)準(zhǔn)差, 中國(guó)部分稻區(qū)的增幅甚至大于年際變化標(biāo)準(zhǔn)差的2倍[10]。1961—2010年, 我國(guó)水稻生長(zhǎng)季的最低氣溫和平均氣溫分別升高0.61℃和0.47℃, 氣溫日較差則降低0.38℃[11]。氣溫變化特征在水稻種植區(qū)、稻作類型和生育階段間存在明顯差異??傮w而言, 北方稻區(qū)的升溫幅度大于南方[12]; 早稻生長(zhǎng)季平均氣溫和最高氣溫的增溫速率大于晚稻[13]。長(zhǎng)江中下游地區(qū)早稻和晚稻生殖生長(zhǎng)期的增溫趨勢(shì)顯著高于營(yíng)養(yǎng)生長(zhǎng)期, 單季稻則相反[14]。除氣溫的升高, 稻田水溫也呈增加趨勢(shì), 但升高幅度較氣溫小[15]。與1960s相比, 2000s中國(guó)稻作區(qū)≥10℃總有效積溫平均增加9.4%, 東北和西南稻區(qū)的增加幅度大于中部和南部[16]。
從輻射資源來看, 主要稻作區(qū)2000s的日照時(shí)數(shù)比1960s減少11.9%[16], 太陽(yáng)總輻射量降低9.4%[11], 這一現(xiàn)象在長(zhǎng)江中下游單季稻生長(zhǎng)季尤為明顯[14]。從降水情況來看, 降水總量的長(zhǎng)期變化趨勢(shì)并不明顯, 但平均降水強(qiáng)度增加約3.2%[11,16]。Ye等[17]研究表明, 氣候變化降低了南方單、雙季稻生產(chǎn)可利用的水熱資源有效性, 這意味著當(dāng)前氣候變化對(duì)我國(guó)水稻生產(chǎn)的不利影響可能被低估。熱量資源增加、輻射資源減少而降水量的時(shí)空不均一性加大, 這一系列變化對(duì)優(yōu)化我國(guó)稻作制度的空間分布、提高水稻生產(chǎn)資源利用效率提出了新的挑戰(zhàn)。
我國(guó)水稻生產(chǎn)所遭受的農(nóng)業(yè)氣象災(zāi)害種類多、地域性強(qiáng)、時(shí)期明顯, 其中高溫?zé)岷偷蜏乩浜κ亲钪饕臍庀鬄?zāi)害[18]。東北單季稻和南方晚稻抽穗開花期發(fā)生低溫冷害的風(fēng)險(xiǎn)最大, 而高溫?zé)岷t在長(zhǎng)江流域單季稻孕穗期至灌漿期、南方早稻抽穗開花期風(fēng)險(xiǎn)最大[19]。1960—2009年間, 我國(guó)長(zhǎng)江流域單季稻和南方早稻抽穗揚(yáng)花期的高溫脅迫積溫每年增加0.12℃; 東北、長(zhǎng)江流域、云貴高原單季稻和南方晚稻抽穗揚(yáng)花期的低溫脅迫積溫每年減少0.21℃[19]。
據(jù)農(nóng)業(yè)氣象災(zāi)害觀測(cè)數(shù)據(jù)顯示, 與前10年相比, 2000—2009年南方早稻孕穗期至成熟期發(fā)生高溫脅迫的頻次增加6~15次, 東南晚稻移栽期和孕穗期的高溫脅迫增加14次和24次; 湖南和廣西早稻移栽期發(fā)生低溫冷害的頻次增加59次, 單季稻和晚稻孕穗期至成熟期的低溫冷害增加15~42次; 冷害的發(fā)生還表現(xiàn)出延遲型冷害減少而障礙型冷害增多的特征[20]。在干旱和洪澇災(zāi)害變化方面, 早稻、晚稻和單季稻抽穗期之后發(fā)生干旱的頻次增加最多, 而單季稻和晚稻孕穗期遭受洪澇災(zāi)害的頻次增加更顯著[20]。為應(yīng)對(duì)水稻生產(chǎn)當(dāng)前所面臨的災(zāi)變環(huán)境, 需加強(qiáng)防災(zāi)減災(zāi)技術(shù)的創(chuàng)新和應(yīng)用。
評(píng)估正在發(fā)生的氣候變化對(duì)水稻生產(chǎn)的影響, 有利于客觀評(píng)價(jià)氣候變化背景下水稻生產(chǎn)所面臨的挑戰(zhàn), 為提出應(yīng)對(duì)氣候變化對(duì)策提供理論參考[10,21]。
氣候變暖導(dǎo)致熱量資源增多, 有利于擴(kuò)大農(nóng)作物潛在種植面積, 增加糧食生產(chǎn)總能力。1980—2010年間, 氣候變化使我國(guó)水稻適宜種植面積的比例增加約4個(gè)百分點(diǎn), 東北地區(qū)增加幅度最大[22]。黑龍江省水稻潛在種植區(qū)隨2000℃ d等值線北移約4個(gè)緯度[23], 實(shí)際集中種植區(qū)北移約1個(gè)緯度[24]。雨養(yǎng)條件下, 中國(guó)單季稻可種植北界到達(dá)黑龍江漠河縣北部, 灌溉條件下, 單季稻可種植北界則可達(dá)我國(guó)最北端[25]。南方雙季稻潛在種植邊界北移34~60 km, 部分稻-麥兩熟區(qū)可滿足早、晚雙季稻的光熱需求[26-27]。氣候變暖對(duì)我國(guó)北方稻區(qū)種植邊界的影響較南方稻區(qū)明顯。在氣候適宜性方面, 雙季稻低適宜種植面積有所減少, 中、高適宜種植面積有所增加[28]。
近60年來, 我國(guó)水稻實(shí)際種植重心和產(chǎn)量重心分別向東北遷移約2個(gè)和3個(gè)緯度, 水稻種植面積的擴(kuò)張和位置遷移與氣溫變化趨勢(shì)高度一致[22,29-30]。這說明氣候變化是驅(qū)動(dòng)我國(guó)水稻種植區(qū)域調(diào)整的重要因素, 同時(shí)也體現(xiàn)了我國(guó)水稻生產(chǎn)快速適應(yīng)氣候變化的能力[31]。
生育期觀測(cè)數(shù)據(jù)的趨勢(shì)分析表明, 近30年來我國(guó)水稻播種和移栽期提前[14,32-35], 單季稻成熟期推后, 早、晚稻成熟期提前[14,33-35]。此外, 我國(guó)單季稻營(yíng)養(yǎng)生長(zhǎng)期、生殖生長(zhǎng)期和全生育期延長(zhǎng)[14,33-34,36], 晚稻主要生育階段呈縮短趨勢(shì)[14,32-33,37], 早稻生育期的變化并沒有一致結(jié)論。水稻生育期的變化主要受氣候、品種和栽培管理等因素影響。不考慮品種熟期變化和管理措施調(diào)整的情況下, 氣候變暖可導(dǎo)致作物物候期提前和生育期縮短[38]。我國(guó)水稻營(yíng)養(yǎng)生長(zhǎng)期、生殖生長(zhǎng)期和全生育期因氣候變暖而分別縮短0.4~2.8 d 10 yr–1、0.1~1.3 d 10 yr–1和2.9~4.1 d 10 yr–1(或2.0~3.6 d ℃–1、1.1 d ℃–1和3.6~5.5 d ℃–1), 營(yíng)養(yǎng)生長(zhǎng)期的縮短比生殖生長(zhǎng)期明顯[32,36-37]。除溫度外, 光周期、CO2濃度和非生物逆境等因素也可調(diào)節(jié)水稻的生長(zhǎng)發(fā)育速度[33,39-40], 但在評(píng)估氣候變化對(duì)水稻生育期的影響時(shí), 很少考慮這些因素的作用。
在適應(yīng)氣候變化過程中, 農(nóng)民為充分利用熱量資源或?yàn)楸苊鈫渭镜驹诟邷貢r(shí)間段抽穗揚(yáng)花, 往往提早播種或改種生育期較長(zhǎng)的品種[36,41], 這補(bǔ)償了氣候變化的不利影響, 使觀測(cè)到的單季稻生育期延長(zhǎng)。對(duì)晚稻而言, 為躲避成熟期低溫而種植短生育期品種則可能加速生育期的縮短[32]。另有研究表明, 水稻成熟期受其分布地區(qū)、種植模式和移栽時(shí)間的影響比受溫度的影響更大[34], 非氣候因素對(duì)水稻生育期的影響可能大于氣候因素[14,33,42]。
氣候變化對(duì)水稻產(chǎn)量的影響是最受關(guān)注的內(nèi)容, 前人主要研究了氣候變化的影響趨勢(shì)和程度、氣候與非氣候因素的貢獻(xiàn)、關(guān)鍵氣候因素及影響機(jī)制等。
2.3.1 氣候變化對(duì)水稻產(chǎn)量的影響 水稻生產(chǎn)是個(gè)復(fù)雜的自然-社會(huì)系統(tǒng), 產(chǎn)量的長(zhǎng)期變化同時(shí)摻雜了氣候變化和人為因素信號(hào)??傮w而言, 1980—2010年我國(guó)單季稻、早稻和晚稻的實(shí)測(cè)單產(chǎn)每10年增加0.69 (0.37~1.07) t hm–2(表1)。單就氣候因素的影響而言, 近幾十年的氣候變化對(duì)我國(guó)水稻產(chǎn)量造成了不利影響。基于水稻生長(zhǎng)模型的評(píng)估表明(表1), 1980—2010年氣候平均態(tài)的變化使我國(guó)水稻單產(chǎn)減少0.25 (0.01~0.56) t hm–210 yr–1, 1961—2010年間則造成水稻單產(chǎn)減少約12.0% (11.5%~12.4%)。在氣候變化過程中, 改種生育期長(zhǎng)或者灌漿期長(zhǎng)的品種可提高水稻產(chǎn)量[36-37], 種植抗逆性強(qiáng)的品種或提高栽培管理水平則降低了水稻產(chǎn)量的年際波動(dòng)性[43]。品種改良和合理施肥等措施對(duì)水稻產(chǎn)量的正效應(yīng)甚至超過了氣候變化的負(fù)效應(yīng)[44-46]??梢? 氣候變化雖然嚴(yán)重制約了水稻產(chǎn)量的增長(zhǎng), 但我國(guó)水稻生產(chǎn)系統(tǒng)已通過適宜的方式來積極應(yīng)對(duì)這種不利影響, 使水稻產(chǎn)量穩(wěn)步提高。然而, 未來氣候變化仍將嚴(yán)重制約技術(shù)進(jìn)步對(duì)糧食生產(chǎn)的貢獻(xiàn)[39], 增加農(nóng)業(yè)技術(shù)創(chuàng)新的難度。
氣候變化因素對(duì)我國(guó)水稻生產(chǎn)的影響又與地區(qū)和稻作類型有關(guān)?;诮y(tǒng)計(jì)模型與生長(zhǎng)模型的結(jié)果表明(表1), 在氣候長(zhǎng)期變化影響下, 華北、華東、華中(長(zhǎng)江中下游單季稻)和西南(四川盆地單季稻)地區(qū)水稻、南方雙季稻減產(chǎn)顯著, 長(zhǎng)江中下游晚稻、東北和云貴高原單季稻產(chǎn)量有所增加。極端天氣是造成產(chǎn)量損失的另一重要原因, 其對(duì)水稻產(chǎn)量的影響可能大于氣候要素的長(zhǎng)期變化和年際波動(dòng)[47-48]。我國(guó)近30年的極端溫度脅迫導(dǎo)致全國(guó)灌溉稻產(chǎn)量損失約6.1%, 四川盆地單季稻、長(zhǎng)江中下游單季稻、南方早稻因此造成的產(chǎn)量損失顯著上升[49]。此外, 氣候資源的合理配置有利于提高水稻產(chǎn)量和光、溫資源利用效率[50], 資源配置不合理的年份則可造成嚴(yán)重的產(chǎn)量損失[51]。另有研究表明, 氣溶膠濃度影響入射的太陽(yáng)總輻射以及散射輻射所占的比例, 重度大氣污染對(duì)水稻產(chǎn)量將造成不利影響[52-53]。與不利的大氣環(huán)境相反, 大氣CO2濃度升高有利于水稻增產(chǎn)[54], 且晚稻產(chǎn)量對(duì)CO2濃度升高的響應(yīng)大于早稻和單季稻[44-45]。CO2濃度升高的增產(chǎn)效應(yīng)在很大程度上減少了氣候變化造成的產(chǎn)量損失, 近30年來甚至基本補(bǔ)償了氣候變化造成的減產(chǎn)(表1)。
表1 當(dāng)前氣候變化對(duì)中國(guó)水稻產(chǎn)量的影響
(續(xù)表1)
稻作類型Rice system研究區(qū)域Region研究時(shí)段Period變化趨勢(shì)Change trend評(píng)估方法Method參考文獻(xiàn)Reference 統(tǒng)計(jì)模型aStatistical modela(t hm–210 yr–1)作物模型bCrop modelb(t hm–210 yr–1) 單季稻Single rice東北Northeast China1980–20080.59% yr–1—Statistical model[94] 單季稻Single rice云貴高原Yunnan-Guizhou Plateau1980–20080.34% yr–1—Statistical model[94] 單季稻Single rice四川盆地Sichuan Basin1980–2008–0.29% yr–1—Statistical model[94]
a統(tǒng)計(jì)模型列是基于統(tǒng)計(jì)模型對(duì)歷史水稻產(chǎn)量實(shí)測(cè)數(shù)據(jù)的分析結(jié)果, 斜體數(shù)值為實(shí)測(cè)產(chǎn)量隨時(shí)間的變化趨勢(shì), 其他數(shù)值為實(shí)測(cè)產(chǎn)量對(duì)氣候變化的響應(yīng);b作物模型列是基于水稻生長(zhǎng)模型, 將品種和管理參數(shù)設(shè)為定值得到的模擬產(chǎn)量的變化趨勢(shì)或變化百分率, ( )中的值為考慮CO2濃度升高的模擬結(jié)果, 其他數(shù)值是將CO2濃度設(shè)為定值的模擬結(jié)果。
aThe analysis results of historical observed rice yields based on statistical model were listed in the column of statistical model, values in italic represent for the trends of observed yields, and other values represent for the response of observed yields to climate change;bThe trends or percent changes of the simulated yields derived from rice growth model with constant parameters of variety and management were listed in the column of crop model, values in ( ) represent for the simulations with elevated CO2concentration, and other values represent for the simulations with constant CO2concentration.
2.3.2 影響水稻產(chǎn)量的關(guān)鍵氣候因素 影響水稻產(chǎn)量的關(guān)鍵氣候因素, 是制定氣候變化應(yīng)對(duì)策略的重要依據(jù)。然而, 因研究區(qū)域氣候的復(fù)雜性、氣候要素的自相關(guān)性以及稻作類型等原因, 使該問題尚未得出統(tǒng)一結(jié)論。研究表明, 熱帶地區(qū)水稻產(chǎn)量下降的主要原因是最低氣溫的升高[55], 而中國(guó)部分稻作區(qū)的水稻產(chǎn)量卻與溫度呈正相關(guān)[56-57]。在溫度較低的華北地區(qū), 氣溫日較差減小則是水稻產(chǎn)量下降的首要原因[11]。另有研究認(rèn)為, 我國(guó)水稻產(chǎn)量對(duì)太陽(yáng)輻射的長(zhǎng)期變化趨勢(shì)比溫度更敏感[54,56,58], 而作物產(chǎn)量的年際波動(dòng)則更多地由降水量和太陽(yáng)輻射變異以及溫度脅迫解釋[12,18,59-60]。此外, 溫度、輻射和降水量等氣候要素存在自相關(guān)性, 忽略該問題得出的結(jié)論可能是錯(cuò)誤的[12,56,61], 影響產(chǎn)量變化的關(guān)鍵因素或許不應(yīng)歸結(jié)為單個(gè)氣候要素[59,62]。
2.3.3 氣候變化影響水稻產(chǎn)量的機(jī)制 目前, 水稻響應(yīng)氣候變化的機(jī)制研究主要集中在高溫、干旱等非生物逆境方面[63]。氣候變暖一方面縮短水稻生育期, 另一方面造成光合作用減少和呼吸作用增加[64]。水稻孕穗期高溫主要影響花器官發(fā)育, 如影響穎花分化和退化、縮短穎花長(zhǎng)度、抑制花藥充實(shí)[65-66]; 抽穗揚(yáng)花期高溫主要傷害正在開放的穎花, 影響花粉活力、數(shù)量以及穎花授粉受精過程, 增加空、秕粒率[67-70]; 灌漿結(jié)實(shí)期高溫使灌漿過程提早結(jié)束, 造成粒長(zhǎng)和粒寬減小、粒重下降[67,71]。白天高溫造成水稻產(chǎn)量降低最突出的原因是結(jié)實(shí)率下降, 夜間高溫對(duì)結(jié)實(shí)率、每穗穎花數(shù)、粒重和生物量的影響相當(dāng)[64]。水稻遭受低溫脅迫時(shí), 因生殖生長(zhǎng)期絨氈層變厚和營(yíng)養(yǎng)失衡而使花粉失去育性, 還可能導(dǎo)致籽粒敗育[72]。弱光逆境則降低了植株凈光合速率, 使干物質(zhì)生產(chǎn)和積累速度減慢, 干物質(zhì)分配到穗部的比例下降[73]。干旱脅迫下, 葉片氣孔導(dǎo)度的下降使植株蒸騰速率減慢, 胞間CO2通量的減小則限制了光合作用。蒸騰速率的下降又減少了植株對(duì)營(yíng)養(yǎng)物質(zhì)的吸收、升高了冠層溫度, 進(jìn)一步導(dǎo)致呼吸消耗增多以及存儲(chǔ)器官建成的時(shí)間縮短[63]。大氣CO2濃度升高時(shí), 葉片氣孔導(dǎo)度和密度均呈下降趨勢(shì), 造成蒸騰作用降低。但此時(shí)冠層光合作用的增加將促進(jìn)有機(jī)物累積[74], 且地下部干物質(zhì)的增加幅度比地上部更顯著[75]。當(dāng)多種非生物逆境同時(shí)發(fā)生時(shí), 對(duì)植物的影響往往不是單因子影響效應(yīng)的簡(jiǎn)單疊加, 需要在復(fù)雜環(huán)境條件下研究其影響機(jī)制[74-77]。
與2000s相比, 預(yù)計(jì)2030s、2050s、2070s我國(guó)水稻生長(zhǎng)季日均溫分別增加0.8~2.7℃、1.7~3.4℃、2.3~4.1℃[78]。我國(guó)一年兩熟帶和一年三熟帶的潛在邊界將持續(xù)北移[79-80], 21世紀(jì)末三熟制占種植制度總面積的潛在比例最大可達(dá)到75.0%[81]。未來單季稻和雙季稻潛在種植邊界也將繼續(xù)北移。與1961—1990年相比, 2080s我國(guó)單季稻和雙季稻可擴(kuò)種面積約為5.0×105hm2和6.2×106hm2 [82]。熱量資源增多使作物潛在生長(zhǎng)季延長(zhǎng), 大大增加了水稻生長(zhǎng)季節(jié)彈性[15,79], 有利于水稻生產(chǎn)靈活地制定應(yīng)對(duì)氣候變化策略。
IPCC第五次評(píng)估報(bào)告指出, 氣候變化和極端氣候事件對(duì)作物產(chǎn)量的不利影響比較普遍[1]。若未來氣溫升高1~3℃, 我國(guó)水稻生育期縮短的概率為100%[83]。當(dāng)溫度升高1.5℃和2.0℃時(shí), 我國(guó)雙季稻的生育期將縮短4%~8%和6%~10%, 單季稻的生育期約縮短2%[84]。一項(xiàng)集合網(wǎng)格作物模型、單點(diǎn)作物模型、統(tǒng)計(jì)模型和觀測(cè)試驗(yàn)的研究表明, 氣溫每升高1℃可能導(dǎo)致全球水稻產(chǎn)量平均下降3.2%[85]。到21世紀(jì)末, 溫度持續(xù)上升可能使全球水稻產(chǎn)量減少3.3%~10.8% (表2)。未來氣候變化造成我國(guó)水稻產(chǎn)量變化幅度為?40.2%~6.3%, 平均減產(chǎn)10.7%, 且空間差異明顯(表2)。若考慮CO2濃度升高對(duì)產(chǎn)量的影響, 其對(duì)氣候變化造成的減產(chǎn)有一定補(bǔ)償作用(表2)。但這種補(bǔ)償作用在某些情景和地區(qū)仍無(wú)法抵消增溫幅度過高的負(fù)效應(yīng), 也不能降低水稻產(chǎn)量的年際變率[82-83,86]。此外, 降水和溫度變率增大可能導(dǎo)致低產(chǎn)年出現(xiàn)頻次增多, 減產(chǎn)幅度增加[82,87]。水稻產(chǎn)量減少和不穩(wěn)定性增加最明顯的區(qū)域是四川盆地、長(zhǎng)江流域和黃淮海平原, 這些地區(qū)或?qū)⒊蔀樗卷憫?yīng)未來氣候變化的高敏感區(qū)[82]。研究還表明, 若能采用合理的應(yīng)對(duì)策略, 可以有效減緩氣候變化對(duì)水稻產(chǎn)量的不利影響(表2)。未來可以從培育強(qiáng)抗逆性品種和高效利用CO2濃度品種、優(yōu)化栽培管理和抗逆栽培技術(shù)、調(diào)整播期和種植面積等方面, 加強(qiáng)水稻生產(chǎn)應(yīng)對(duì)氣候變化措施的研究。
值得注意的是, 越來越多的影響評(píng)估關(guān)注了極端天氣事件的變化及其對(duì)水稻生產(chǎn)的可能影響[84,88-90]。2000s到2050s, 全球水稻生殖生長(zhǎng)期遭受極端高溫脅迫的面積將由8%增加到27%[91]。我國(guó)水稻生產(chǎn)遭受高溫脅迫的概率、強(qiáng)度和面積也將增加, 這可能抵消熱量資源增多及低溫危害減少帶來的正效應(yīng)[92-94]。若溫度升高1.5℃和2.0℃, 熱脅迫可能導(dǎo)致我國(guó)水稻產(chǎn)量分別下降2%和5%[84]。四川盆地和長(zhǎng)江中下游流域或?qū)⒊蔀楦邷責(zé)岷Ω甙l(fā)區(qū), 東北、云貴高原和華東稻區(qū)經(jīng)歷嚴(yán)重低溫危害的風(fēng)險(xiǎn)比其他地區(qū)大[89,94]。未來降水變率增加則可能導(dǎo)致季節(jié)性干旱和暴雨發(fā)生頻次增多[95], 在江蘇等東部地區(qū), 極端降水事件對(duì)水稻產(chǎn)量的影響可能比極端溫度事件更顯著[88]。此外, 氣溫升高導(dǎo)致參考作物蒸散量普遍增加, 我國(guó)西南地區(qū)將經(jīng)歷濕潤(rùn)指數(shù)明顯減小的干旱化過程[79]。
氣候變化已導(dǎo)致我國(guó)水稻生長(zhǎng)季氣候條件的改變, 對(duì)水稻種植面積、氣候適宜性、生長(zhǎng)發(fā)育、產(chǎn)量等造成一定影響?,F(xiàn)有的評(píng)估工作是在當(dāng)前科學(xué)認(rèn)知和技術(shù)水平上的有益嘗試, 未來還有許多亟待解決的問題需要進(jìn)一步深入探索。
水稻響應(yīng)氣候變化的機(jī)制是氣候變化影響評(píng)估的重要理論基礎(chǔ)。前人主要研究了高、低溫脅迫和干旱脅迫等極端天氣事件的影響, 對(duì)增溫、CO2濃度升高等氣候平均態(tài)變化的影響研究較少; 對(duì)水稻光合作用、白天蒸騰等生理過程的研究較多, 對(duì)夜間蒸騰等其他生理生化過程的研究還比較薄弱; 對(duì)單因子脅迫的影響機(jī)制研究較多, 對(duì)多因子脅迫、非生物逆境與高CO2濃度互作等復(fù)雜環(huán)境的影響機(jī)制研究較少[63,76-77]。更值得注意的是, 基于作物響應(yīng)氣候變化機(jī)制來改進(jìn)生理生態(tài)模型的研究遠(yuǎn)遠(yuǎn)滯后于機(jī)制研究本身, 需要設(shè)計(jì)專門的田間試驗(yàn)并將試驗(yàn)結(jié)果與模型改進(jìn)緊密聯(lián)系起來[63]。重點(diǎn)關(guān)注葉片光合模型參數(shù)在環(huán)境變化中的適應(yīng)性[96]、植株氮素動(dòng)態(tài)的響應(yīng)等[97]受環(huán)境變化影響較大的生理生態(tài)過程, 使水稻響應(yīng)氣候變化的機(jī)制研究在區(qū)域尺度的影響評(píng)估中發(fā)揮更充分的作用。
當(dāng)前氣候變化農(nóng)業(yè)影響評(píng)估的結(jié)果還存在較大的不確定性, 阻礙了應(yīng)對(duì)氣候變化策略的科學(xué)制定[59,98]。目前處理不確定性的方法主要有敏感性分析、模型對(duì)比、集合模擬和概率風(fēng)險(xiǎn)評(píng)估等[83,98], 這些方法對(duì)減少影響評(píng)估的不確定性以及客觀認(rèn)識(shí)氣候變化的影響仍顯不足。未來迫切需要發(fā)展適應(yīng)非生物逆境的作物生長(zhǎng)模型、減小排放情景的不確定性以及改進(jìn)影響評(píng)估方法來獲得更可靠的預(yù)估結(jié)果。
應(yīng)用統(tǒng)計(jì)模型進(jìn)行評(píng)估時(shí)需注意非氣候因素的影響及其與氣候因素的互作、氣候要素的自相關(guān)性以及選擇合適的時(shí)空研究尺度等[62]?;谧魑锷L(zhǎng)模型的評(píng)估則需注意模型參數(shù)不穩(wěn)定性、與氣候模式的空間匹配性、建模機(jī)制不完善等問題。此外, 多方法融合也是改進(jìn)氣候變化影響評(píng)估方法的重要發(fā)展方向[99], 如統(tǒng)計(jì)模型、作物生長(zhǎng)模型與觀測(cè)試驗(yàn)的集合評(píng)估[85], 作物生長(zhǎng)模型與社會(huì)-經(jīng)濟(jì)模型的組合應(yīng)用[100], 作物生長(zhǎng)模型與衛(wèi)星遙感、無(wú)人機(jī)監(jiān)測(cè)及作物表型觀測(cè)相結(jié)合等, 有助于提高評(píng)估結(jié)果的可信度和系統(tǒng)性。
將農(nóng)業(yè)生產(chǎn)系統(tǒng)作為有機(jī)整體來全面評(píng)估氣候變化的影響和適應(yīng)是有待發(fā)展的重要方向[101-102]。如加強(qiáng)評(píng)估氣候變化對(duì)稻米品質(zhì)、病蟲害發(fā)生、生產(chǎn)環(huán)境代價(jià)的影響, 加強(qiáng)評(píng)估適應(yīng)措施、社會(huì)-經(jīng)濟(jì)因素對(duì)減緩氣候變化影響的作用[100], 加強(qiáng)評(píng)估多氣候要素、CO2濃度升高、大氣污染、氣候波動(dòng)和極端天氣事件對(duì)水稻生產(chǎn)的綜合影響。
[1] Core Writing Team, Pachauri R K, Meyer L A. Climate Change 2014: Synthesis Report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC, 2014. pp 1–151.
[2] 章秀福, 王丹英, 方福平, 曾衍坤, 廖西元. 中國(guó)糧食安全和水稻生產(chǎn). 農(nóng)業(yè)現(xiàn)代化研究, 2005, 26(2): 85–88. Zhang X F, Wang D Y, Fang F P, Zeng Y K, Liao X Y. Food safety and rice production in China., 2005, 26(2): 85–88 (in Chinese with English abstract).
[3] 中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局國(guó)家數(shù)據(jù)網(wǎng)站, http://data.stats. gov.cn/. National data website of National Bureau of Statistics of China, http://data.stats.gov.cn/.
[4] Wei X, Zhang Z, Shi P J, Wang P, Chen Y, Song X, Tao F L. Is yield increase sufficient to achieve food security in China?2015, 10: e0116430.
[5] Zhang T Y, Yang X G, Wang H S, Li Y, Ye Q. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis., 2014, 20: 1289–1298.
[6] 李克讓, 陳育峰. 中國(guó)全球氣候變化影響研究方法的進(jìn)展. 地理研究, 1999, 18: 103–108. Li K R, Chen Y F. The progress in methodologies to study impacts of global climate change in China., 1999, 18: 103–108 (in Chinese with English abstract).
[7] 秦鵬程, 姚鳳梅, 曹秀霞, 張佳華, 曹倩. 利用作物模型研究氣候變化對(duì)農(nóng)業(yè)影響的發(fā)展過程. 中國(guó)農(nóng)業(yè)氣象, 2011, 32: 240–245. Qin P C, Yao F M, Cao X X, Zhang J H, Cao Q. Development process of modeling impacts of climate change on agricultural productivity based on crop models., 2011, 32: 240–245 (in Chinese with English abstract).
[8] 王馥棠. 我國(guó)氣候變暖對(duì)農(nóng)業(yè)影響研究的進(jìn)展. 氣象科技, 1994, 22(4): 19–25. Wang F T. Progress in research on the impact of climate warming on agriculture in China., 1994, 22(4): 19–25 (in Chinese).
[9] 孫白妮, 門艷忠, 姚鳳梅. 氣候變化對(duì)農(nóng)業(yè)影響評(píng)價(jià)方法研究進(jìn)展. 環(huán)境科學(xué)與管理, 2007, 32(6): 165–168. Sun B N, Men Y Z, Yao F M. Advancement of study on assessing impacts of climate change on agriculture., 2007, 32(6): 165–168 (in Chinese with English abstract).
[10] Lobell D B, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980., 2011, 333: 616–620.
[11] Yang J, Xiong W, Yang X G, Cao Y, Feng L Z. Geographic variation of rice yield response to past climate change in China., 2014, 13: 1586–1598.
[12] Zhang T Y, Huang Y. Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008.2012, 92: 1643–1652.
[13] 艾治勇, 郭夏宇, 劉文祥, 馬國(guó)輝, 青先國(guó). 農(nóng)業(yè)氣候資源變化對(duì)雙季稻生產(chǎn)的可能影響分析. 自然資源學(xué)報(bào), 2014, 29: 2089–2102. Ai Z Y, Guo X Y, Liu W X, Ma G H, Qing X G. Analysis on possible influences of agricultural climate resources change on double-season rice production., 2014, 29: 2089–2102 (in Chinese with English abstract).
[14] Tao F L, Zhang Z, Shi W J, Liu Y J, Xiao D P, Zhang S, Zhu Z, Wang M, Liu F S. Single rice growth period was prolonged by cultivars shifts but yield was damaged by climate change during 1981–2009 in China, and late rice was just opposite., 2013, 19: 3200–3209.
[15] Ohta S, Kimura A. Impacts of climate changes on the temperature of paddy waters and suitable land for rice cultivation in Japan., 2007, 147: 186–198.
[16] 姜曉劍, 湯亮, 劉小軍, 黃芬, 曹衛(wèi)星, 朱艷. 中國(guó)主要稻作區(qū)水稻生產(chǎn)氣候資源的時(shí)空特征. 農(nóng)業(yè)工程學(xué)報(bào), 2011, 27(7): 238–245. Jiang X J, Tang L, Liu X J, Huang F, Cao W X, Zhu Y. Spatial and temporal characteristics of rice production climatic resources in main growing regions of China., 2011, 27(7): 238–245 (in Chinese with English abstract).
[17] Ye Q, Yang X G, Dai S W, Li Y, Guo J P. Variation characteristics of hydrothermal resources effectiveness under the background of climate change in southern rice production area of China., 2013, 12: 2260–2279.
[18] Sun W, Huang Y. Global warming over the period 1961–2008 did not increase high-temperature stress but did reduce low- temperature stress in irrigated rice across China., 2011, 151: 1193–1201.
[19] Zhang Z, Wang P, Chen Y, Song X, Wei X, Shi P J. Global warming over 1960–2009 did increase heat stress and reduce cold stress in the major rice-planting areas across China., 2014, 59: 49–56.
[20] Tao F L, Zhang S, Zhang Z. Changes in rice disasters across China in recent decades and the meteorological and agronomic causes., 2013, 13: 743–759.
[21] 林而達(dá), 許吟隆, 蔣金荷, 李玉娥, 楊修, 張建云, 李從先, 吳紹洪, 趙宗群, 吳建國(guó), 居輝, 嚴(yán)昌榮, 王守榮, 劉允芬, 杜碧蘭, 趙成義, 秦保芳, 劉春蓁, 黃朝迎, 張小全, 馬世銘. 氣候變化國(guó)家評(píng)估報(bào)告(II): 氣候變化的影響與適應(yīng). 氣候變化研究進(jìn)展, 2006, 2: 51–56. Lin E D, Xu Y L, Jiang J H, Li Y E, Yang X, Zhang J Y, Li C X, Wu S H, Zhao Z Q, Wu J G, Ju H, Yan C R, Wang S R, Liu Y F, Du B L, Zhao C Y, Qin B F, Liu C Z, Huang C Y, Zhang X Q, Ma S M. National Assessment report of climate change (II): Climate change impacts and adaptation., 2006, 2: 51–56 (in Chinese with English abstract).
[22] Liu Z H, Yang P, Tang H J, Wu W B, Zhang L, Yu Q Y, Li Z G. Shifts in the extent and location of rice cropping areas match the climate change pattern in China during 1980–2010., 2015, 15: 919–929.
[23] 云雅如, 方修琦, 王媛, 陶軍德, 喬佃鋒. 黑龍江省過去20年糧食作物種植格局變化及其氣候背景. 自然資源學(xué)報(bào), 2005, 20: 697–705. Yun Y R, Fang X Q, Wang Y, Tao J D, Qiao D F. Main grain crops structural change and its climate background in Heilong-jiang province during the past two decades., 2005, 20: 697–705 (in Chinese with English abstract).
[24] 朱曉禧, 方修琦, 王媛. 基于遙感的黑龍江省西部水稻、玉米種植范圍對(duì)溫度變化的響應(yīng). 地理科學(xué), 2008, 28: 66–71. Zhu X X, Fang X Q, Wang Y. Responses of corn and rice planting area to temperature changes based on RS in the west of Heilongjiang province., 2008, 28: 66–71 (in Chinese with English abstract).
[25] 段居琦, 周廣勝. 中國(guó)單季稻種植北界的初步研究. 氣象學(xué)報(bào), 2012, 70: 1165–1172. Duan J Q, Zhou G S. A preliminary study of plant northern boundary of single harvest rice in China., 2012, 70: 1165–1172 (in Chinese with English abstract).
[26] 楊曉光, 劉志娟, 陳阜. 全球氣候變暖對(duì)中國(guó)種植制度可能影響: I. 氣候變暖對(duì)中國(guó)種植制度北界和糧食產(chǎn)量可能影響的分析. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43: 329–336. Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China: I. The possible effects of climate warming on northern limits of cropping systems and crop yields in China., 2010, 43: 329–336 (in Chinese with English abstract).
[27] 宋艷玲, 劉波, 鐘海玲. 氣候變暖對(duì)我國(guó)南方水稻可種植區(qū)的影響. 氣候變化研究進(jìn)展, 2011, 7: 259–264. Song Y L, Liu B, Zhong H L. Impact of global warming on the rice cultivable area in southern China in 1961–2009., 2011, 7: 259–264 (in Chinese with English abstract).
[28] 段居琦, 周廣勝. 我國(guó)雙季稻種植分布的年代際動(dòng)態(tài). 科學(xué)通報(bào), 2013, 58: 1213–1220. Duan J Q, Zhou G S. Dynamics of decadal changes in the distribution of double-cropping rice cultivation in China., 2013, 58: 1213–1220 (in Chinese with English abstract).
[29] 程勇翔, 王秀珍, 郭建平, 趙艷霞, 黃敬峰. 中國(guó)水稻生產(chǎn)的時(shí)空動(dòng)態(tài)分析. 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45: 3473–3485. Cheng Y X, Wang X Z, Guo J P, Zhao Y X, Huang J F. The temporal-spatial dynamic analysis of China rice production., 2012, 45: 3473–3485 (in Chinese with English abstract).
[30] 劉珍環(huán), 李正國(guó), 唐鵬欽, 李志鵬, 吳文斌, 楊鵬, 游良志, 唐華俊. 近30年中國(guó)水稻種植區(qū)域與產(chǎn)量時(shí)空變化分析. 地理學(xué)報(bào), 2013, 68: 680–693. Liu Z H, Li Z G, Tang P Q, Li Z P, Wu W B, Yang P, You L Z, Tang H J. Spatial-temporal changes of rice area and production in China during 1980–2010.2013, 68: 680–693 (in Chinese with English abstract).
[31] Li Z G, Liu Z H, Anderson W, Yang P, Wu W B, Tang H J, You L Z. Chinese rice production area adaptations to climate changes, 1949–2010., 2015, 49: 2032–2037.
[32] Zhang T Y, Huang Y, Yang X G. Climate warming over the past three decades has shortened rice growth duration in China and cultivar shifts have further accelerated the process for late rice.2013, 19: 563–570.
[33] Zhang S, Tao F L, Zhang Z. Rice reproductive growth duration increased despite of negative impacts of climate warming across China during 1981–2009., 2014, 54: 70–83.
[34] Zhao H F, Fu Y H, Wang X H, Zhao C, Zeng Z Z, Piao S L. Timing of rice maturity in China is affected more by transplanting date than by climate change., 2016, 216: 215–220.
[35] 侯雯嘉, 耿婷, 陳群, 陳長(zhǎng)青. 近20年氣候變暖對(duì)東北水稻生育期和產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26: 249–259. Hou W J, Geng T, Chen Q, Chen C Q. Impacts of climate warming on growth period and yield of rice in northeast China during recent two decades., 2015, 26: 249–259 (in Chinese with English abstract).
[36] Liu L L, Wang E L, Zhu Y, Tang L. Contrasting effects of warming and autonomous breeding on single-rice productivity in China., 2012, 149: 20–29.
[37] Liu L L, Wang E L, Zhu Y, Tang L, Cao W X. Effects of warming and autonomous breeding on the phenological development and grain yield of double-rice systems in China., 2013, 165: 28–38.
[38] Estrella N, Sparks T H, Menzel A. Trends and temperature response in the phenology of crops in Germany., 2007, 13: 1737–1747.
[39] 潘根興. 氣候變化對(duì)中國(guó)農(nóng)業(yè)生產(chǎn)的影響分析與評(píng)估. 北京: 中國(guó)農(nóng)業(yè)出版社, 2010. pp 18, 141–142. Pan G X. Analysis and assessment of the impact of climate change on China's agricultural production. Beijing: China Agriculture Press, 2010. pp 18, 141–142 (in Chinese).
[40] Fukai S. Phenology in rainfed lowland rice., 1999, 64: 51–60.
[41] 張衛(wèi)建, 陳金, 徐志宇, 陳長(zhǎng)青, 鄧艾興, 錢春榮, 董文軍. 東北稻作系統(tǒng)對(duì)氣候變暖的實(shí)際響應(yīng)與適應(yīng). 中國(guó)農(nóng)業(yè)科學(xué), 2012, 45: 1265–1273. Zhang W J, Chen J, Xu Z Y, Chen C Q, Deng A X, Qian C R, Dong W J. Actual responses and adaptations of rice cropping system to global warming in northeast China., 2012, 45: 1265–1273 (in Chinese with English abstract).
[42] Wang X H, Ciais P, Li L, Ruget F, Vuichard N, Viovy N, Zhou F, Chang J F, Wu X C, Zhao H F, Piao S L. Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991–2012., 2017, 233: 1–11.
[43] Osborne T M, Wheeler T R. Evidence for a climate signal in trends of global crop yield variability over the past 50 years., 2013, 8: 279–288.
[44] Yu Y, Huang Y, Zhang W. Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management., 2012, 136: 65–75.
[45] Xiong W, Van Der Velde M, Holman I P, Balkovic J, Lin E, Skalsky R, Porter C, Jones J, Khabarov N, Obersteiner M. Can climate-smart agriculture reverse the recent slowing of rice yield growth in China?, 2014, 196: 125–136.
[46] Li W J, Tang H J, Qin Z H, You F, Wang X F, Chen C L, Ji J H, Liu X M. Climate change impact and its contribution share to paddy rice production in Jiangxi, China., 2014, 13: 1565–1574.
[47] Wang Z, Shi P, Zhang Z, Meng Y, Luan Y, Wang J. Separating out the influence of climatic trend, fluctuations, and extreme events on crop yield: a case study in Hunan province, China., 2018, 51: 4469–4487.
[48] Espe M B, Hill J E, Hijmans R J, McKenzie K, Mutters R, Espino L A, Leinfelder-Miles M, Van Kessel C, Linquist B A. Point stresses during reproductive stage rather than warming seasonal temperature determine yield in temperate rice., 2017, 23: 4386–4395.
[49] Wang P, Zhang Z, Chen Y, Wei X, Feng B Y, Tao F L. How much yield loss has been caused by extreme temperature stress to the irrigated rice production in China?, 2016, 134: 635–650.
[50] Deng N Y, Ling X X, Sun Y, Zhang C D, Fahad S, Peng S B, Cui K H, Nie L X, Huang J L. Influence of temperature and solar radiation on grain yield and quality in irrigated rice system., 2015, 64: 37–46.
[51] Tao F L, Zhang Z, Zhang S, R?tter R P. Variability in crop yields associated with climate anomalies in China over the past three decades., 2016, 16: 1715–1723.
[52] Tie X X, Huang R J, Dai W T, Cao J J, Long X, Su X L, Zhao S Y, Wang Q Y, Li G H. Effect of heavy haze and aerosol pollution on rice and wheat productions in China., 2016, 6: 29612.
[53] Zhang T Y, Li T, Yue X, Yang X G. Impacts of aerosol pollutant mitigation on lowland rice yields in China., 2017, 12(10): 104003.
[54] Xiong W, Holman I, Lin E D, Conway D, Li Y, Wu W B. Untangling relative contributions of recent climate and CO2trends to national cereal production in China., 2012, 7(4): 044014.
[55] Peng S B, Huang J L, Sheehy J E, Laza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming., 2004, 101: 9971–9975.
[56] Zhang T Y, Zhu J, Wassmann R. Responses of rice yields to recent climate change in China: An empirical assessment based on long-term observations at different spatial scales (1981–2005)., 2010, 150: 1128–1137.
[57] Xiong W, Holman I P, You L Z, Yang J, Wu W B. Impacts of observed growing-season warming trends since 1980 on crop yields in China., 2014, 14: 7–16.
[58] 熊偉, 楊婕, 吳文斌, 黃丹丹, 曹陽(yáng). 中國(guó)水稻生產(chǎn)對(duì)歷史氣候變化的敏感性和脆弱性. 生態(tài)學(xué)報(bào), 2013, 33: 509–518. Xiong W, Yang J, Wu W B, Huang D D, Cao Y. Sensitivity and vulnerability of China's rice production to observed climate change., 2013, 33: 509–518 (in Chinese with English abstract).
[59] Lobell D B, Burke M B. Why are agricultural impacts of climate change so uncertain? The importance of temperature relative to precipitation.2008, 3: 034007.
[60] Zhang Z, Liu X F, Wang P, Shuai J B, Chen Y, Song X, Tao F L. The heat deficit index depicts the responses of rice yield to climate change in the northeastern three provinces of China., 2014, 14: 27–38.
[61] Sheehy J E, Mitchell P L, Allen L H, Ferrer A B. Mathematical consequences of using various empirical expressions of crop yield as a function of temperature., 2006, 98: 216–221.
[62] 史文嬌, 陶福祿, 張朝. 基于統(tǒng)計(jì)模型識(shí)別氣候變化對(duì)農(nóng)業(yè)產(chǎn)量貢獻(xiàn)的研究進(jìn)展. 地理學(xué)報(bào), 2012, 67: 1213–1222.Shi W J, Tao F L, Zhang Z. Identifying contributions of climate change to crop yields based on statistical models: a review.2012, 67: 1213–1222 (in Chinese with English abstract).
[63] R?tter R P, Appiah M, Fichtler E, Kersebaum K C, Trnka M, Hoffmann M P. Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes—a review., 2018, 221: 142–156.
[64] Xiong D L, Ling X X, Huang J L, Peng S B. Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality., 2017, 141: 1–9.
[65] 王亞梁, 張玉屏, 朱德峰, 向鏡, 武輝,陳惠哲, 張義凱. 水稻穗分化期高溫脅迫對(duì)穎花退化及籽粒充實(shí)的影響. 作物學(xué)報(bào), 2016, 42: 1402–1410. Wang Y L, Zhang Y P, Zhu D F, Xiang J, Wu H, Chen H Z, Zhang Y K. Effect of heat stress on spikelet degeneration and grain filling at panicle initiation period of rice., 2016, 42: 1402–1410 (in Chinese with English abstract).
[66] 王亞梁, 張玉屏, 曾研華, 武輝, 向鏡, 陳惠哲, 張義凱, 朱德峰. 水稻穗分化期高溫對(duì)穎花分化及退化的影響. 中國(guó)農(nóng)業(yè)氣象, 2015, 36: 724–731. Wang Y L, Zhang Y P, Zeng Y H, Wu H, Xiang J, Chen H Z, Zhang Y K, Zhu D F. Effect of high temperature stress on rice spikelet differentiation and degeneration during panicle initiation stage., 2015, 36: 724–731 (in Chinese with English abstract).
[67] 吳超, 崔克輝. 高溫影響水稻產(chǎn)量形成研究進(jìn)展. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào), 2014, 16(3): 103–111. Wu C, Cui K H. Progress on effect of high temperature on rice yield formation., 2014, 16(3): 103–111 (in Chinese with English abstract).
[68] Yang Z Y, Zhang Z L, Zhang T, Fahad S, Cui K H, Nie L X, Peng S B, Huang J L. The effect of season-long temperature increases on rice cultivars grown in the central and southern regions of China., 2017, 8: 1908.
[69] Kobayashi K, Matsui T, Murata Y, Yamamoto M. Percentage of dehisced thecae and length of dehiscence control pollination stability of rice cultivars at high temperatures., 2011, 14: 89–95.
[70] Jagadish S V, Craufurd P Q, Wheeler T R. High temperature stress and spikelet fertility in rice (L.)., 2007, 58: 1627–1635.
[71] Kim J, Shon J, Lee C K, Yang W, Yoon Y, Yang W H, Kim Y G, Lee B W. Relationship between grain filling duration and leaf senescence of temperate rice under high temperature., 2011, 122: 207–213.
[72] Arshad M S, Farooq M, Asch F, Krishna J S V, Prasad P V V, Siddique K H M. Thermal stress impacts reproductive development and grain yield in rice., 2017, 115: 57–72.
[73] 杜彥修, 季新, 張靜, 李俊周, 孫紅正, 趙全志. 弱光對(duì)水稻生長(zhǎng)發(fā)育影響研究進(jìn)展. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2013, 21: 1307–1317. Du Y X, Ji X, Zhang J, Li J Z, Sun H Z, Zhao Q Z. Research progress on the impacts of low light intensity on rice growth and development., 2013, 21: 1307–1317.
[74] Kumar A, Nayak A K, Das B S, Panigrahi N, Dasgupta P, Mohanty S, Kumar U, Panneerselvam P, Pathak H. Effects of water deficit stress on agronomic and physiological responses of rice and greenhouse gas emission from rice soil under elevated atmospheric CO2., 2019, 650: 2032–2050.
[75] Wang J Y, Wang C, Chen N N, Xiong Z Q, Wolfe D, Zou J W. Response of rice production to elevated CO2and its interaction with rising temperature or nitrogen supply: a meta-analysis., 2015, 130: 529–543.
[76] Cai C, Yin X Y, He S, Jiang W Y, Si C F, Struik P C, Luo W H, Li G, Xie Y T, Xiong Y, Pan G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2and temperature in FACE experiments., 2016, 22: 856–874.
[77] Rang Z W, Jagadish S V K, Zhou Q M, Craufurd P Q, Heuer S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice., 2011, 70: 58–65.
[78] Lv Z F, Zhu Y, Liu X J, Ye H B, Tian Y C, Li F F. Climate change impacts on regional rice production in China., 2018, 147: 523–537.
[79] Tian Z, Yang X C, Sun L X, Fischer G, Liang Z R, Pan J. Agroclimatic conditions in China under climate change scenarios projected from regional climate models.,2014, 34: 2988–3000.
[80] 楊曉光, 劉志娟, 陳阜. 全球氣候變暖對(duì)中國(guó)種植制度可能影響: VI. 未來氣候變化對(duì)中國(guó)種植制度北界的可能影響. 中國(guó)農(nóng)業(yè)科學(xué), 2011, 44: 1562–1570. Yang X G, Liu Z J, Chen F. The possible effects of global warming on cropping systems in China: VI. Possible effects of future climate change on Northern limits of cropping system in China., 2011, 44: 1562–1570 (in Chinese with English abstract).
[81] Yang X G, Chen F, Lin X M, Liu Z J, Zhang H L, Zhao J, Li K N, Ye Q, Li Y, Lv S, Yang P, Wu W B, Li Z G, Lal R, Tang H J. Potential benefits of climate change for crop productivity in China.2015, 208: 76–84.
[82] Xiong W, Conway D, Lin E D, Holman I. Potential impacts of climate change and climate variability on China's rice yield and production.2009, 40: 23–35.
[83] Tao F L, Hayashi Y, Zhang Z, Sakamoto T, Yokozawa M. Global warming, rice production, and water use in China: developing a probabilistic assessment., 2008, 148: 94–110.
[84] Chen Y, Zhang Z, Tao F L. Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0℃., 2018, 9: 543–562.
[85] Zhao C, Liu B, Piao S L, Wang X H, Lobell D B, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens I A, Li T, Lin E D, Liu Q, Martre P, Müller C, Peng S S, Pe?uelas J, Ruane A C, Wallach D, Wang T, Wu D H, Liu Z, Zhu Y, Zhu Z C, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates., 2017, 114: 9326–9331.
[86] 楊沈斌, 申雙和, 趙小艷, 趙艷霞, 許吟隆, 王主玉, 劉娟, 張瑋瑋. 氣候變化對(duì)長(zhǎng)江中下游稻區(qū)水稻產(chǎn)量的影響. 作物學(xué)報(bào), 2010, 36: 1519–1528. Yang S B, Shen S H, Zhao X Y, Zhao Y X, Xu Y L, Wang Z Y, Liu J, Zhang W W. Impacts of climate changes on rice production in the middle and lower reaches of the Yangtze River., 2010, 36: 1519–1528 (in Chinese with English abstract).
[87] Yao F M, Xu Y L, Lin E D, Yokozawa M, Zhang J H. Assessing the impacts of climate change on rice yields in the main rice areas of China., 2007, 80: 395–409.
[88] Huang J, Zhang F M, Zhou L M, Hu Z H, Li Y. Regional changes of climate extremes and its effect on rice yield in Jiangsu pro-vince, southeast China., 2018, 77: 106.
[89] Zhang Z, Chen Y, Wang C Z, Wang P, Tao F L. Future extreme temperature and its impact on rice yield in China., 2017, 37: 4814–4827.
[90] Zhang L, Yang B Y, Li S, Hou Y Y, Huang D P. Potential rice exposure to heat stress along the Yangtze River in China under RCP8.5 scenario., 2018, 248: 185–196.
[91] Gourdji S M, Sibley A M, Lobell D B. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections., 2013, 8: 221–229.
[92] Tao F L, Zhang Z. Climate change, high-temperature stress, rice productivity, and water use in eastern China: a new superensemble-based probabilistic projection., 2013, 52: 531–551.
[93] Zhang S, Tao F L, Zhang Z. Changes in extreme temperatures and their impacts on rice yields in southern China from 1981 to 2009., 2016, 189: 43–50.
[94] Wang P, Zhang Z, Song X, Chen Y, Wei X, Shi P J, Tao F L. Temperature variations and rice yields in China: historical contributions and future trends., 2014, 124: 777–789.
[95] 葛道闊, 金之慶. 氣候及其變率變化對(duì)長(zhǎng)江中下游稻區(qū)水稻生產(chǎn)的影響. 中國(guó)水稻科學(xué), 2009, 23: 57–64. Ge D K, Jin Z Q. Impacts of climate change and its variability on rice production in the middle and lower valley of the Yangtze River, China., 2009, 23: 57–64 (in Chinese with English abstract).
[96] Cai C, Li G, Yang H L, Yang J H, Liu H, Struik P C, Luo W H, Yin X Y, Di L J, Guo X H, Jiang W Y, Si C F, Pan G X, Zhu J G. Do all leaf photosynthesis parameters of rice acclimate to elevated CO2, elevated temperature, and their combination, in FACE environments?, 2018, 24: 1685–1707.
[97] Vanuytrecht E, Thorburn P J. Responses to atmospheric CO2concentrations in crop simulation models: a review of current simple and semicomplex representations and options for model development., 2017, 23: 1806–1820.
[98] 姚鳳梅, 秦鵬程, 張佳華, 林而達(dá), Vijendra B. 基于模型模擬氣候變化對(duì)農(nóng)業(yè)影響評(píng)估的不確定性及處理方法. 科學(xué)通報(bào), 2011, 56: 547–555. Yao F M, Qin P C, Zhang J H, Lin E D, Vijendra B. Uncertainties in assessing the effect of climate change on agriculture using model simulation and uncertainty processing methods., 2011, 56: 547–555 (in Chinese with English abstract).
[99] Ciscar J C, Fisher-Vanden K, Lobell D B. Synthesis and Review: an inter-method comparison of climate change impacts on agriculture., 2018, 13: 070401.
[100] Purola T, Lehtonen H, Liu X, Tao F L, Palosuo T. Production of cereals in northern marginal areas: an integrated assessment of climate change impacts at the farm level., 2018, 162: 191–204.
[101] 覃志豪, 唐華俊, 李文娟, 趙書河. 氣候變化對(duì)農(nóng)業(yè)和糧食生產(chǎn)影響的研究進(jìn)展與發(fā)展方向. 中國(guó)農(nóng)業(yè)資源與區(qū)劃, 2013, 34(5): 1–7. Qin Z H, Tang H J, Li W J, Zhao S H. Progress and directions in studying the impacts of climate change on agriculture and grain production in China., 2013, 34(5): 1–7 (in Chinese with English abstract).
[102] Reidsma P, Wolf J, Kanellopoulos A, Schaap B F, Mandryk M, Verhagen J, Van Ittersum M K. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands., 2015, 10: 045004.
[103] 周曙東, 朱紅根. 氣候變化對(duì)中國(guó)南方水稻產(chǎn)量的經(jīng)濟(jì)影響及其適應(yīng)策略. 中國(guó)人口·資源與環(huán)境, 2010, 20(10): 152–157. Zhou S D, Zhu H G. Economic analysis of climate change impact on the rice yield in southern China and its adaptive strategy., 2010, 20(10): 152–157 (in Chinese with English abstract).
[104] 裘國(guó)旺, 王馥棠. 氣候變化對(duì)我國(guó)江南雙季稻生產(chǎn)可能影響的數(shù)值模擬研究. 應(yīng)用氣象學(xué)報(bào), 1998, 9(2): 24–32. Qiu G W, Wang F T. Numerical simulation study on the potential impact of climate change on double cropping of rice in the south of Yangtze River valley of China., 1998, 9(2): 24–32 (in Chinese with English abstract).
[105] Ye L M, Xiong W, Li Z G, Yang P, Wu W B, Yang G X, Fu Y J, Zou J Q, Chen Z X, Van Ranst E, Tang H J. Climate change impact on China food security in 2050., 2013, 33: 363–374.
[106] Yu Y Q, Zhang W, Huang Y. Impact assessment of climate change, carbon dioxide fertilization and constant growing season on rice yields in China., 2014, 124: 763–775.
A review for impacts of climate change on rice production in China
LING Xiao-Xia1, ZHANG Zuo-Lin1, ZHAI Jing-Qiu2, YE Shu-Chun3, and HUANG Jian-Liang1,*
1Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Ministry of Agriculture / College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China;231010 of PLA Troops, Beijing 100081, China;3Meteo-rological Bureau of Yunfu City, Yunfu 527300, Guangdong, China
Rice production system is one of the most sensitive agricultural ecosystems in response to climate change. Here, we reviewed the effects of current and future climate change on rice production in China. Over the past few decades, the thermal resources during rice growing seasons showed an increasing trend, while solar radiation resources showed a decreasing trend and the precipitation’s heterogeneity increased. The frequencies of high temperature stress, heavy precipitation, drought and flood increased, which may lower down the effectiveness of hydrothermal resources. Climate change has led to a significant northward shift of potential planting boundaries for single and double rice production systems, resulted in a negative impact on the length of growth period for single rice, early rice and late rice. The researches based on statistical models and process-based crop models showed that climate change hampered rice production of China. Most reports indicated a reducing trend of yield caused by climate change for single rice, early rice and late rice, but there were still some differences in results from different methods and rice cropping regions. The trends of prolonging growth period and increasing yield are a reflection of the capability of rice production system in China to adapt to climate change, through regulating planting regionalization and improving variety and culture technics. The impact assessment with different climate scenarios showed that the projected growth period of rice would shorten and projected yield would decrease in future. That means climate change will seriously challenge the rice production and food security in China. For further study, deeper understanding of abiotic stress physiology and its incorporation into ecophysiological models, reducing the uncertainty and extending the systematicness of impact assessment are the important research areas that require much attention.
global warming; northern boundary; rice planting system; growth stage; grain yield
2018-08-19;
2018-12-25;
10.3724/SP.J.1006.2019.82044
黃見良, E-mail: jhuang@mail.hzau.edu.cn, Tel: 027-87284131
E-mail: lingxiaoxia@mail.hzau.edu.cn, Tel: 027-87282213
2019-01-07.
本研究由國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0300210, 2017YFD0300101)資助。
This study was supported by the National Key Research and Development Program of China (2016YFD0300210, 2017YFD0300101).
URL:http://kns.cnki.net/kcms/detail/11.1809.S.20190103.1739.013.html