• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有同質多晶現(xiàn)象的一維和二維鋅Ⅱ配合物的水熱合成及對苦味酸的可循環(huán)熒光檢測性能

    2019-03-13 03:08:04李欣書
    無機化學學報 2019年3期
    關鍵詞:天津師范大學水熱教育部

    李欣書 王 倩*, 丁 斌*,

    (1天津市功能分子結構與性能重點實驗室,無機-有機雜化功能材料化學教育部重點實驗室,天津師范大學化學學院,天津 300387)

    (2南開大學先進能源材料化學教育部重點實驗室,天津 300071)

    0 Introduction

    During the last two decades,rational design and syntheses of novel coordination polymers have received great interest because these materials can be widely utilized in gas storage/separation,drug delivery,photoluminescent materials and magnetic materials[1].In general,the successful preparation of coordination polymers can be correlated with judicious selective of multi-functionalligands,secondarybasicbuilding units(SBUs)and various different reaction conditions[2].Generally,flexible links can give rise to materials that demonstrate crystal-to-crystal breathing and complex adsorption effects such as gating,and sensing,where metal-organic frameworks respond to the nature and/or pressure of the adsorbate[3].Link-derived dynamic behavior carefully controls the flexibility of the ligand.Thus,links with limited degrees of freedom have most successfully been employed in the synthesisof flexible metal-organic frameworks[4].The integration of materials displaying advanced framework flexibility with photoluminescent responsive SBUs underlies one approach to sense and respond to small molecule adsorbents[5].

    With the development of modern society and industry,hazardous chemicals,like toxic organic small molecules,are increasingly released from industrial facilities and other anthropogenic activities,which cause adverse effects on human health and the environment[6].As a class of toxic and hazardous chemicals,nitro explosives should not be neglected.Picric acid(PA),as one of the common nitro explosives,is extensively applied in dyes,fireworks,and the pharmaceutical and leather industries[7].Due to its frequent use,a large quantity of PA is released to the environment,which may cause serious health problems,such as gene mutation,injury to respiratory organs,anemia,and male infertility.Besides,PA has stronger explosive power than other common nitro explosives.Previously,some studies on luminescence-based detection of PA have been reported,especially with luminescent sensors,indicating the current topic has received great interest[8].Consequently,it is necessary todevelop convenient,fast,and highly efficient methods to detect PA in various samples with regard to environmental monitoring,homeland security,forensic science,and military applications[9].

    We also are interesting in the construction of novel metal organic frameworks,which can be utilized as functional materials with intriguing magnetic and photoluminescent properties[10].1,2,4-Triazole,especially its derivatives,have the potential to bridge in bi-dentate and tri-dentate bridging fashions,which are expected to construct novel functional coordination polymers with intriguing structural motifs and novel functional properties[11].On the other hand,tetrazolebased ligands are also a splendid option of N-donor ligands,and the four nitrogen atoms provide enough coordination sites when coordinating to metal centers with certain coordination geometries[12].However,it is noted that the asymmetric semi-rigid bridging N-donor ligands,namely,the ligand possessing different N-containing coordination groups (such as the bifunctional ligands simultaneously containing triazole and tetrazole groups)have rarely been investigated.5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole(HL)simultaneously contains one triazole group,one aromatic benzene group and one tetrazole group.As a matter of fact,HL has six potentially coordinated N atoms in a molecule,which may exhibit various bridging modes.Additionally there also exist flexible dihedral angles between triazole,phenyl and tetrazole aromatic rings within HL (Scheme 1).The conformational freedom of these semi-rigid flexible ligands should provide more possibilities for the construction of coordination polymers with interesting structures and appealing functional properties.

    Scheme 1 (a)Bi-dentate coordination mode of flexible multi-dentate HL ligand;(b)Flexible dihedral angles between triazole,phenyl and tetrazole moieties within HL

    In this work,the semi-rigid HL containing bifunctional triazole and tetrazole moieties has been employed,and two polymorphic zincⅡcoordination polymers,namely[Zn(μ2-L)2]n(1)and[Zn(μ2-L)2]n(2),have been isolated under the hydrothermal conditions.1 and 2 present temperature induced polymorphic zincⅡ-L 1D (1)and 2D (1)coordination polymers.Further photo-luminescence experiment illustrate that complex 1 exhibits highly sensitive luminescence for PA in aqueous solutions with high quenching efficiency(KSV=3.65×103L·mol-1)and low detection limit(3.004 μmol·L-1,S/N=3),which make it a promising candidate for sensing PA in the measurement process.The detection platform based on 1 has its own advantage in the detecting process of PA since it possess high KSVvalue and low detection limit,additionally the detection method is simple,rapid,cost effectiveness and recyclable.The polymorphic phenomena about the sensing coordination polymer 1 also are scarcely reported.

    1 Experimental

    1.1 General

    Ligand L was prepared according to the literature methods[13].All the other reagents were commercially available and utilized without further purification.Perkin-Elmer 240 elemental analyzer was ulitilized to perform C,H and N microanalyses.FT-IR spectra(4 000~500 cm-1)were recorded by utilizing a NICOLET 6700 FT-IR spectroscope with KBr pellets(NICOLET,USA).Powder X-ray diffraction analysis was performed on a D/Max-2500 X-ray diffractometer using Cu Kα radiation (λ=0.154 1 nm,U=40 kV,I=40 mA)with a 2θ range of 5°~50°.Photoluminescent emission fluorescence spectra were recorded on a RF-5301 spectrophotometer(Shimadzu,Japan).

    1.2 Preparation of complexes 1 and 2

    A mixture of Zn(NO3)2·6H2O(29.8 mg,0.1 mmol)and HL(44 mg,0.2 mmol)in 10 mL H2O was placed in a Teflon vessel in a steel autoclave,heated at 120℃for 12 h and then cooled to room temperature over 72 h.The resulting colorless block-shaped crystals of 1 were washed several times by water and diethyl ether.Elemental analysis Calcd.for C20H16N14Zn(%):C 46.39,H 3.11,N 37.87;Found(%):C 46.65,H 3.31,N 37.98.FT-IR(cm-1,KBr):3 387(m),3 085(w),2 924(w),1 604(m),1 532(w),1 369(w),1 280(m),1 134(s),999(m),863(m),744(m),700(w),673(w),633(w),569(w).

    Complex 2 was synthesized by the same methods as1 exceptthatdifferenthydrothermalreaction temperature 160℃was used.The resulting colorless block-shaped crystals of 2 were washed several times by water and diethyl ether.Elemental analysis Calcd.for C20H16N14Zn(%):C 46.39,H 3.11,N 37.87;Found(%):C 46.68,H 3.38,N 37.96.FT-IR(cm-1,KBr):3 780(m),3 691(w),3 445(s),2 921(m),2 356(s),1 594(m),1 382(m),1 063(w),670(m).

    1.3 X-ray crystallography

    Diffraction intensities for complexes 1 and 2 were collected on a Bruker SMART 1000 CCD diffractometer with graphite-monochromated Mo Kα radiation(λ=0.071 073 nm)by using the ω-φ scan technique.Lorentz polarization and absorption corrections were applied.The structures were solved by direct methods and refined with the full-matrix least-squares technique using the SHELXTL-2013 program[14-15].Anisotropic thermal parameters were assigned to all non-hydrogen atoms.The hydrogen atoms were generated geometrically.The crystallographic data and details of refinements for complexes 1 and 2 are summarized in Table 1.Selected bond lengths and angles are listed in Table 2.Corresponding hydrogen bonds lengths and angles for 1 and 2 are listed in Table 3.

    CCDC:1865772,1;1486544,2.

    Table 1 Crystal data and structure refinement information for complexes 1 and 2

    Continued Table 1

    Table 2 Selected bond lengths(nm)and angles(°)of 1 and 2

    Table 3 Hydrogen bond parameters for 1 and 2

    2 Results and discussion

    2.1 Syntheses of polymorphic complexes 1 and 2

    Complexes 1 and 2 are air-stable and can retain their structural integrity at room temperature for a considerable length of time.Notably,hydrothermal reaction conditions are essential for preparing 1 and 2.HL ligand contains rich nitrogen atoms,and two nitrogen atoms of triazole moieteis and four nitrogen atoms oftetrazole moieteis can participate in coordination.As shown in Scheme 1,the L-ligands in these coordination polymers contain the bi-dentate bridging coordination mode.For 1 and 2,bidentate coordination modes draw the self-assembly of coordination polymers to form 1D and 2D coordination polymers.On the other hand,it is also noted that dihedral angles between triazole,phenyl and tetrazole aromatic rings are also flexible.For example,as listed in Table 4,these dihedral angles between triazole and aromatic benzene rings are 81.01(2)°in 1,while these dihedral angles in the polymorphic complex 2 are 72.08(1)°indicating great change of these flexible dihedral angles.Flexible dihedral angles together with diverse coordination modes make the fact that we could not succeed to anticipate the self-assembly results of L-ligand and metal ions.Therefore the building block of HL has great potential in the construction of these flexible dynamic coordination frameworks[16].

    Table 4 Different flexible dihedral angles between triazole,phenyl and tetrazole aromatic rings within the multi-dentate HL ligand for 1 and 2

    2.2 Structure of polymorphic zincⅡcoordination polymers[Zn(μ2-L)2]n(1)and[Zn(μ2-L)2]n(2)

    Colorless crystals of polymorphic complexes 1 and 2 can be obtained at different hydrothermal reaction temperature (120℃for 1 and 160℃for 2).1 crystallizes in orthorhombic Pbcn space group while 2 crystallizes in monoclinic P21/c space group.Complex 1 is a 1D chain zincⅡ-L coordination framework.As shown in Fig.1 and Fig.2,each symmetric unit of the 1D framework[Zn(μ2-L)2]n(1)contains one ZnⅡ ion in tetrahedral geometry and two bridging L-ligand.The central ZnⅡion is four-coordinated by four nitrogen atoms(N(1),N(5)i,N(9)and N(12)i)from four L-forming ZnN4donor set.The Zn-N distances are 0.198 37(17)~0.201 03(17)nm,and all the N-Zn-N angles are in a range of 100.46(7)°~127.80(8)°.Such coordination geometry is in accordance with a tetrahedral coordinated ZnⅡ center[17].ZnⅡ…ZnⅡdistances across the bridging L-ligand in 1 are 1.213(4)nm.These bridging L-ligands connect the adjacent ZnⅡions forming 1D left-and right-handed helical chains.The helical pitch for these 1D helical chains is 2.302 7(8)nm.It is noted that the C-H…N nonclassical hydrogen bonding interactions(C(1)…N(6)i0.335 5(3)nm,C(2)…N(11)ii0.324 48(3)nm,C(18)…N(4)iii0.326 6(3)nm,C(19)…N(10)iv0.315 5(3)nm,C(20)…N(6)v0.312 72(3)nm,C(20)…N(7)v0.334 39(3)nm)also can be found in 1(Symmetry codes:ix+1,-y+1/2,z+1/2;ii-x+2,-y+1,-z+1;iii-x+1,y-1/2,-z+1/2;ivx-1,-y+1/2,z-1/2;v-x+1,-y,-z),which also further stabilized the 1D coordination chain of 1.

    Fig.1 Structure of[Zn(μ2-L)2]n(1)

    Fig.2 Left-and right-handed single helical chains in[Zn(μ2-L)2]n(1)

    Complex2isapolymorphic2D zincⅡ-L framework,in which central ZnⅡions are also linked by the bridging L-ligands(Fig.3).As shown in Fig.3 and 4,The fundamental structural unit of 2 contains one ZnⅡion in tetrahedral geometry and two bridging L-ligands.The central ZnⅡion is four-coordinated by four nitrogen atoms(N(2),N(2)i,N(7)iand N(7)ii)from four L-forming ZnN4donor set.The Zn-N distances are 0.197 3(3)~0.199 2(3)nm,and all the NZn-N angles are in a range of 108.43(13)°~113.0(2)°.Such coordination geometry is in accord with a tetrahedral coordinated ZnⅡ centers.The ZnⅡ…ZnⅡ distance across the bridging L-ligand in 2 is 1.173 0(1)nm.All the N-Zn-N and N-Zn-O angles are in the normal range,such coordination geometry is in accord with a four-coordinated ZnⅡcenters.

    Fig.3 Fundamental structural unit of[Zn(μ2-L)2]n(2)

    Fig.4 Two dimensional coordination framework of[Zn(μ2-L)2]n(2)containing alternative 1D righthanded and left-handed helical chains

    As shown in Fig.4,the 1D left-and right-handed helical chains can also be observed,which are further interlinked via central zincⅡions forming a twodimensional(2D)coordination framework.The helical pitches for these 1D helical chains are 1.382 6(2)nm.It is noted that the C-H…N non-classical hydrogen bonding interactions(C(9)…N(4)i,0.319 47(5)nm)also can be found in 2(Symmetry codes:i-x+1/2,-y+1/2,z+1/2),which also further stabilized the 2D coordination framework of 2.

    2.3 Photoluminescent emission spectroscopy of 1 and 2

    Inorganic-organic hybrid coordination polymers have been investigated for fluorescence properties and for potential applications as luminescent materials,such as light-emitting diodes (LEDs)[18].Owing to the abilityofaffectingtheemission wavelength and strength of organic materials,syntheses of inorganicorganic coordination polymers by the judicious choice of conjugated organic spacers and transition metal centers can be an efficient method for obtaining new types of electroluminescent materials,especially for d10or d10-d10systems.In the present work,we have explored the luminescentpropertiesofHL and organic/inorganic coordination polymers 1 and 2 based on the ligands in aqueous solutions.

    As shown in Fig.5,at ambient temperature,the freeligandsHL in theaqueoussolutionswere luminescent and showed the broad emission maximum at 303 nm (λmax=260 nm).The chromospheres are the aromatic rings and the observed emission is ascribed to π-π*transition.The fluorescence spectra of 1 and 2 at room temperature have been determined.In comparison with that of free HL,the main emission bands of complexes 1 and 2 also almost were located at the same position exhibiting fluorescence(λmax=260 nm)with slightly different band shape,which also should be ascribed to intra-ligand fluorescent emissions.The syntheses of new polymorphic ZnⅡcomplexes with the combination of triazole and tetrzole bifunctional groups can be an efficient method for obtaining new types of luminescent materials.On the other hand,in order to examine the stability of 2 in aqueous solutions,the resulting materials were dispersed in waterfollowed bythe fluorescence intensity measurement at different time intervals.The fluorescence intensity ratio was independent of time and almost remained constant within 12 h indicating 2 can behavegood fluorescentstability.Thegood fluorescent stability results from good solvent stability and dispersibility of complex 2 in aqueous solution.Therefore,2 can be employed asa prominent candidate for fluorescent detection in aqueous solution.

    Fig.5 Photoluminescent spectra of HL and complexes 1 and 2

    2.4 Photoluminescent sensing PA by complex 2

    To explore the potential of 2 toward the sensing ofPA,itsluminescence propertieswere further investigated.The solventsuspension of2 were prepared by placing its finely ground samples(3 mg)into 4 mL of H2O,then PA was further added into the resulting aqueous solutions.As shown in Fig.6a,it is noted that the emission intensities of solvent suspensions were largely dependent on the addition of PA,which exhibits a significant quenching effect,resulting in nearly photoluminescence quenching.These results indicated that complex 2 can be used as a luminescent probe for detecting PA molecules.Moreover,powder XRD analysis of 2 after immersing it in different analytes revealed that the original framework structure is retained.

    To further investigate the quenching effect of PA molecules on the luminescence intensity of 2,complex 2 was dispersed in aqueous solutions as the standard emulsion,then the analyst PA gradually increased while the emissive response was monitored.It is obvious that the photoluminescent intensity of2 gradually decreases with the addition of PA(Fig.6b and 6c)[19].For 2,with the addition of 1 mmol·L-1PA to the aqueous emulsion,the corresponding emission intensity is attenuated by approximately 42.15%,and the emission spectra shows 74.3%photoluminescent quenching after the addition of 1.4 mmol·L-1PA.

    In order to further display the detection sensitivity,the photoluminescent quenching efficiency can be rationalized using Stern-Volmer(SV)equation:I0/I=KSVcA+1,where I0and I are the suspension luminescence intensities of complex 2 without and with the addition of the analyte,respectively,cAis the concentration of analyte,and KSVis the quenching coefficient.The Stern-Volmer plot for PA is typically linear at low concentrations,and the KSVvalue for PA can be calculated (For 2:3.65×103L·mol-1).The high sensitivity of the photoluminescent response of 2 to PA shows that these ZnⅡcoordination frameworks could be used as the excellent sensors for identifying and quantifying these PA molecules.As we all know,the practical applications of sensors are always restricted,since luminescent probes are costly and can be hard to reuse.Hence,fast and simple regeneration methods are important for luminescent probe applications.Herein,to investigate the recyclable performance of 2,we attempted to immerse 2 in an aqueous solution of 1 mmol·L-1PA for 20 s to completely form 2-PA,and then 2-PA was washed with water several times.Five runs were performed(Fig.6d),while the luminescence intensity and the PXRD pattern of the recycled 2 were wellconsistentwith the original2 (Supporting Information,Fig.S1).The results clearly showed that 2 can be recycled by a fast and simple method,and the framework of 2 still remains intact,indicating that 2 is a recyclable probe for detecting PA[20-21].

    Fig.6 (a)Photoluminescent spectra of 2 in the absence and presence of PA with different concentrations;(b)Photoluminescent intensity of 2 at 303 nm in the presence of PA with different concentrations;(c)Linear correlation of luminescence intensity vs PAconcentration;(d)Recyclable photoluminescent detection of PA by 2

    Although various analytical and spectroscopic methods have been developed for the detection of PA,a simple and rapid technique using ZnⅡcoordination framework 2 might be an ideal photoluminescent sensing platform,since it seems more attractive by virtue of its high sensitivity,simple operation,rapid response time and cost effectiveness.

    3 Conclusions

    In conclusion,a flexible bi-functional multidentate 5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole(HL)has been employed,to obtain two novel polymorphic one-and two-dimensional zincⅡcoordination polymers,namely[Zn(μ2-L)2]n(1)and[Zn(μ2-L)2]n(2).1 and 2 present temperature induced polymorphic zincⅡ-L 1D(1)and 2D(2)coordination frameworks.Furthermore,the luminescence properties of 1 and 2 have been investigated,indicating strong photoluminescent emissions.Additionally,photoluminescent measurements illustrate that complex 2 exhibits highly sensitive luminescence for PA in aqueous solution with high quenching efficiency(KSV=3.65×103L·mol-1)and low detection limit(3.004 μmol·L-1,S/N=3).The results also reveal great potential in the construction of these flexible frameworks employing these semi-rigid multi-dentate ligands as basic building blocks.On the basis of this work,the syntheses,structures and properties studies of these coordination polymers using HL as basic building blocks are also under way in our laboratory.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    天津師范大學水熱教育部
    “不速之客”
    天津師范大學美術與設計學院作品選登
    An Experimental Study of Tone and Tone Sandhi in the New School of Nanjing Dialect
    蘭花
    教育部召開座談會推進一流大學和一流學科建設
    新課程研究(2016年1期)2016-12-01 05:52:14
    水熱還是空氣熱?
    教育部:高考地方性加分項目2018年減至35個
    我校兩教育部重大課題攻關項目開題
    簡述ZSM-5分子篩水熱合成工藝
    一維Bi2Fe4O9納米棒陣列的無模板水熱合成
    久久久久视频综合| 亚洲欧美成人综合另类久久久| 悠悠久久av| 精品久久久精品久久久| 成人国产av品久久久| 免费av中文字幕在线| 黄色视频,在线免费观看| 激情视频va一区二区三区| 欧美国产精品一级二级三级| 丝袜人妻中文字幕| 日韩三级视频一区二区三区| 亚洲精品一区蜜桃| 日韩 亚洲 欧美在线| 黄片播放在线免费| 制服诱惑二区| av网站免费在线观看视频| 在线永久观看黄色视频| 国产成人欧美| 久久久久久亚洲精品国产蜜桃av| 色精品久久人妻99蜜桃| 亚洲成人国产一区在线观看| 三上悠亚av全集在线观看| 黑人操中国人逼视频| 极品少妇高潮喷水抽搐| 中国国产av一级| 视频区图区小说| 精品福利永久在线观看| 美女高潮喷水抽搐中文字幕| 少妇精品久久久久久久| 欧美精品亚洲一区二区| 男男h啪啪无遮挡| 熟女少妇亚洲综合色aaa.| 少妇人妻久久综合中文| 久久这里只有精品19| 久久精品成人免费网站| 老鸭窝网址在线观看| 大香蕉久久网| 亚洲国产精品999| 日韩精品免费视频一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 新久久久久国产一级毛片| 国产精品久久久久久精品古装| 国产视频一区二区在线看| 国产精品99久久99久久久不卡| 国产成+人综合+亚洲专区| 国产一区二区 视频在线| 亚洲国产中文字幕在线视频| 午夜精品久久久久久毛片777| 久久免费观看电影| 香蕉丝袜av| 色94色欧美一区二区| 国产精品国产av在线观看| 搡老岳熟女国产| 国产一区有黄有色的免费视频| 亚洲精品国产av蜜桃| 性色av一级| 99热全是精品| 亚洲精品第二区| 97人妻天天添夜夜摸| 女人爽到高潮嗷嗷叫在线视频| 一本久久精品| 啦啦啦视频在线资源免费观看| 中文字幕av电影在线播放| 50天的宝宝边吃奶边哭怎么回事| 欧美另类亚洲清纯唯美| www.熟女人妻精品国产| 亚洲精品国产一区二区精华液| 法律面前人人平等表现在哪些方面 | 亚洲精品久久成人aⅴ小说| 久久狼人影院| 欧美精品高潮呻吟av久久| 欧美精品亚洲一区二区| 91精品国产国语对白视频| 亚洲av电影在线观看一区二区三区| 夜夜夜夜夜久久久久| 亚洲第一欧美日韩一区二区三区 | 日本91视频免费播放| 伊人久久大香线蕉亚洲五| 在线观看人妻少妇| av在线app专区| 韩国精品一区二区三区| 91字幕亚洲| 亚洲全国av大片| 国产野战对白在线观看| 国产精品影院久久| av在线app专区| 美女中出高潮动态图| 国产精品香港三级国产av潘金莲| 精品国产一区二区三区四区第35| 国产主播在线观看一区二区| 高清视频免费观看一区二区| 欧美激情极品国产一区二区三区| 午夜福利,免费看| 国产又色又爽无遮挡免| 美女中出高潮动态图| av在线老鸭窝| 人人妻,人人澡人人爽秒播| 狠狠精品人妻久久久久久综合| 三上悠亚av全集在线观看| 女人高潮潮喷娇喘18禁视频| av线在线观看网站| av在线app专区| 午夜福利视频在线观看免费| 波多野结衣av一区二区av| 巨乳人妻的诱惑在线观看| 久久精品国产a三级三级三级| 亚洲专区中文字幕在线| 18禁观看日本| 亚洲成人免费av在线播放| 欧美97在线视频| 在线观看一区二区三区激情| 国产真人三级小视频在线观看| 欧美黑人精品巨大| 午夜福利一区二区在线看| 国产在线视频一区二区| 久久中文字幕一级| 99精国产麻豆久久婷婷| 久久亚洲精品不卡| 一区福利在线观看| 国产精品久久久人人做人人爽| 国产精品二区激情视频| 亚洲av日韩精品久久久久久密| 男女床上黄色一级片免费看| 亚洲精品国产精品久久久不卡| 国产在线视频一区二区| 俄罗斯特黄特色一大片| 久久精品成人免费网站| 国产麻豆69| 成人国语在线视频| √禁漫天堂资源中文www| av一本久久久久| 成人18禁高潮啪啪吃奶动态图| 高潮久久久久久久久久久不卡| 大片免费播放器 马上看| 男人爽女人下面视频在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 动漫黄色视频在线观看| 欧美日韩亚洲高清精品| 亚洲少妇的诱惑av| 热99久久久久精品小说推荐| 人人妻人人澡人人爽人人夜夜| 美女脱内裤让男人舔精品视频| 国产一区二区三区综合在线观看| 日韩欧美免费精品| 中国美女看黄片| 人人妻人人澡人人看| 午夜激情久久久久久久| 人人妻人人添人人爽欧美一区卜| 亚洲国产中文字幕在线视频| 成人18禁高潮啪啪吃奶动态图| 美国免费a级毛片| 岛国在线观看网站| 老司机靠b影院| 国产精品麻豆人妻色哟哟久久| 人妻一区二区av| 亚洲欧美精品自产自拍| 99国产精品一区二区蜜桃av | 国产男女超爽视频在线观看| 91成年电影在线观看| 午夜福利在线免费观看网站| 天天添夜夜摸| 亚洲九九香蕉| 天天操日日干夜夜撸| 国产亚洲精品久久久久5区| 在线观看免费视频网站a站| 亚洲成av片中文字幕在线观看| 欧美黑人欧美精品刺激| 大香蕉久久网| 久久精品成人免费网站| 99精品久久久久人妻精品| 欧美另类一区| 热99国产精品久久久久久7| 国产高清视频在线播放一区 | 亚洲精华国产精华精| 国产成人一区二区三区免费视频网站| 法律面前人人平等表现在哪些方面 | 丝袜美足系列| 亚洲精品国产av成人精品| 99久久综合免费| 久久久久网色| 亚洲 国产 在线| 美女中出高潮动态图| 亚洲国产精品999| 久久久久久人人人人人| 王馨瑶露胸无遮挡在线观看| 国产高清国产精品国产三级| 亚洲情色 制服丝袜| 日韩视频一区二区在线观看| 久久人妻熟女aⅴ| 国产成人精品无人区| 国产亚洲精品久久久久5区| 两性夫妻黄色片| 亚洲avbb在线观看| 国产免费视频播放在线视频| 老司机亚洲免费影院| 丝袜在线中文字幕| 一个人免费看片子| 99re6热这里在线精品视频| 狠狠狠狠99中文字幕| 超色免费av| 国产亚洲欧美精品永久| 国产免费视频播放在线视频| 老司机在亚洲福利影院| 亚洲国产欧美日韩在线播放| 国产又爽黄色视频| 女人久久www免费人成看片| 男女无遮挡免费网站观看| 国产精品香港三级国产av潘金莲| 99re6热这里在线精品视频| 国内毛片毛片毛片毛片毛片| 亚洲av国产av综合av卡| 久久久精品国产亚洲av高清涩受| 国产精品 欧美亚洲| 窝窝影院91人妻| 黄网站色视频无遮挡免费观看| 久久国产精品男人的天堂亚洲| 十八禁网站免费在线| 亚洲精品自拍成人| 日韩一卡2卡3卡4卡2021年| 制服人妻中文乱码| 久久久久网色| 亚洲国产欧美日韩在线播放| 国产精品香港三级国产av潘金莲| 精品久久久久久久毛片微露脸 | 大码成人一级视频| 亚洲成人手机| 手机成人av网站| 老熟妇仑乱视频hdxx| 91麻豆精品激情在线观看国产 | 51午夜福利影视在线观看| 一区二区三区精品91| 99热国产这里只有精品6| 久久久国产一区二区| 黄片播放在线免费| 咕卡用的链子| 亚洲精品第二区| 国产亚洲av片在线观看秒播厂| 亚洲成av片中文字幕在线观看| 大型av网站在线播放| 欧美日韩视频精品一区| 欧美中文综合在线视频| 一本综合久久免费| 伊人久久大香线蕉亚洲五| 亚洲视频免费观看视频| 国产伦人伦偷精品视频| 日本av免费视频播放| av一本久久久久| 老司机影院成人| 极品少妇高潮喷水抽搐| 亚洲av美国av| 中亚洲国语对白在线视频| av又黄又爽大尺度在线免费看| 国产99久久九九免费精品| 亚洲av成人一区二区三| 成年av动漫网址| 精品少妇黑人巨大在线播放| 久久精品国产亚洲av高清一级| 老司机午夜十八禁免费视频| 高潮久久久久久久久久久不卡| 下体分泌物呈黄色| 国产深夜福利视频在线观看| 精品乱码久久久久久99久播| 精品福利永久在线观看| 国产精品秋霞免费鲁丝片| 黄色怎么调成土黄色| 亚洲午夜精品一区,二区,三区| 午夜影院在线不卡| 精品少妇黑人巨大在线播放| 久久久久久久久久久久大奶| 国产国语露脸激情在线看| 久久久久久久久免费视频了| 侵犯人妻中文字幕一二三四区| 91成人精品电影| 亚洲中文av在线| 久久九九热精品免费| 久久午夜综合久久蜜桃| 亚洲精品成人av观看孕妇| 日韩电影二区| 肉色欧美久久久久久久蜜桃| 国产欧美日韩综合在线一区二区| 久久ye,这里只有精品| 97精品久久久久久久久久精品| 美女午夜性视频免费| 在线天堂中文资源库| 国产色视频综合| 正在播放国产对白刺激| 秋霞在线观看毛片| 男女无遮挡免费网站观看| 亚洲欧美精品自产自拍| 老司机午夜十八禁免费视频| 久久影院123| 欧美乱码精品一区二区三区| 新久久久久国产一级毛片| 一个人免费在线观看的高清视频 | 亚洲av电影在线观看一区二区三区| 日韩 亚洲 欧美在线| 日韩电影二区| 欧美精品一区二区大全| 欧美一级毛片孕妇| 亚洲中文日韩欧美视频| 国产亚洲一区二区精品| 亚洲成人国产一区在线观看| 久久天躁狠狠躁夜夜2o2o| 十八禁高潮呻吟视频| 成人亚洲精品一区在线观看| 国产麻豆69| 亚洲精品国产色婷婷电影| 丝袜美足系列| 午夜福利一区二区在线看| 欧美精品人与动牲交sv欧美| 久久久国产一区二区| 亚洲中文字幕日韩| 午夜福利,免费看| 99久久国产精品久久久| 国产老妇伦熟女老妇高清| 免费少妇av软件| 久久久久国内视频| av在线播放精品| 国产一区有黄有色的免费视频| 亚洲国产欧美一区二区综合| av网站在线播放免费| 天堂俺去俺来也www色官网| 黄片小视频在线播放| 午夜老司机福利片| 免费在线观看日本一区| 好男人电影高清在线观看| 国产亚洲精品久久久久5区| 欧美另类一区| 欧美亚洲日本最大视频资源| 99精国产麻豆久久婷婷| 国产精品一区二区在线不卡| 久久久久久久国产电影| 亚洲精品日韩在线中文字幕| 精品少妇一区二区三区视频日本电影| 电影成人av| 在线 av 中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 精品卡一卡二卡四卡免费| 中文字幕人妻丝袜一区二区| 国产高清国产精品国产三级| 欧美黑人精品巨大| 国产男女内射视频| 国产av一区二区精品久久| 99热网站在线观看| 久久久国产欧美日韩av| 老司机午夜福利在线观看视频 | 手机成人av网站| 男女之事视频高清在线观看| 亚洲中文日韩欧美视频| 免费高清在线观看日韩| 99久久综合免费| 国产精品.久久久| 青青草视频在线视频观看| 他把我摸到了高潮在线观看 | 久热爱精品视频在线9| 69av精品久久久久久 | 国产淫语在线视频| 国产激情久久老熟女| 久久精品熟女亚洲av麻豆精品| 精品久久蜜臀av无| 日本欧美视频一区| 婷婷丁香在线五月| 亚洲国产看品久久| 国产激情久久老熟女| 青春草视频在线免费观看| 可以免费在线观看a视频的电影网站| 午夜免费成人在线视频| 国产精品亚洲av一区麻豆| 97在线人人人人妻| av又黄又爽大尺度在线免费看| 少妇精品久久久久久久| 亚洲国产欧美在线一区| 亚洲国产看品久久| 欧美少妇被猛烈插入视频| 精品国产一区二区三区四区第35| 法律面前人人平等表现在哪些方面 | 亚洲人成电影观看| 另类精品久久| 亚洲人成电影免费在线| 老熟女久久久| 国产精品成人在线| 建设人人有责人人尽责人人享有的| 国产亚洲精品久久久久5区| 欧美人与性动交α欧美软件| 男女下面插进去视频免费观看| 老熟妇乱子伦视频在线观看 | av电影中文网址| 精品国产乱码久久久久久男人| 亚洲欧美清纯卡通| 狠狠狠狠99中文字幕| 久久精品亚洲熟妇少妇任你| 老鸭窝网址在线观看| 亚洲欧美精品综合一区二区三区| 在线观看免费日韩欧美大片| 女人被躁到高潮嗷嗷叫费观| 欧美人与性动交α欧美精品济南到| 成人av一区二区三区在线看 | 亚洲国产看品久久| 欧美另类一区| 午夜福利,免费看| 黑人欧美特级aaaaaa片| 国产欧美亚洲国产| 91精品伊人久久大香线蕉| 欧美激情极品国产一区二区三区| 亚洲成人手机| 国产伦人伦偷精品视频| 国产精品1区2区在线观看. | 91精品三级在线观看| 精品国产乱子伦一区二区三区 | 在线十欧美十亚洲十日本专区| 免费观看av网站的网址| 国产老妇伦熟女老妇高清| 久久精品国产亚洲av高清一级| 手机成人av网站| 麻豆av在线久日| 国产精品熟女久久久久浪| 亚洲精品中文字幕一二三四区 | 老司机影院成人| 中文字幕人妻丝袜制服| 国产成人精品久久二区二区免费| 国产免费av片在线观看野外av| 老司机午夜十八禁免费视频| 久久人人爽人人片av| 久久女婷五月综合色啪小说| 各种免费的搞黄视频| 成人av一区二区三区在线看 | 9热在线视频观看99| 久久精品人人爽人人爽视色| 国产人伦9x9x在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲天堂av无毛| 精品福利观看| 国产av精品麻豆| 久久热在线av| 黑人巨大精品欧美一区二区蜜桃| 又大又爽又粗| 我要看黄色一级片免费的| 91精品三级在线观看| 午夜老司机福利片| 亚洲av成人一区二区三| 国产精品二区激情视频| 美女主播在线视频| av电影中文网址| 国产三级黄色录像| 欧美久久黑人一区二区| 亚洲欧美激情在线| 宅男免费午夜| 两人在一起打扑克的视频| 超碰97精品在线观看| 欧美精品人与动牲交sv欧美| 女人爽到高潮嗷嗷叫在线视频| 国产欧美亚洲国产| 成人影院久久| 国产xxxxx性猛交| 国产麻豆69| 国产精品久久久久久精品古装| 人成视频在线观看免费观看| 男女国产视频网站| 天天影视国产精品| 最黄视频免费看| 超碰成人久久| 欧美激情极品国产一区二区三区| 亚洲av男天堂| 女人高潮潮喷娇喘18禁视频| 亚洲七黄色美女视频| 久久99热这里只频精品6学生| 啦啦啦免费观看视频1| 久久精品久久久久久噜噜老黄| 亚洲熟女毛片儿| 人成视频在线观看免费观看| 又黄又粗又硬又大视频| 性高湖久久久久久久久免费观看| 午夜成年电影在线免费观看| 女人高潮潮喷娇喘18禁视频| 久久精品亚洲av国产电影网| 欧美精品亚洲一区二区| 久久人妻熟女aⅴ| 又黄又粗又硬又大视频| 亚洲九九香蕉| 精品少妇内射三级| 国内毛片毛片毛片毛片毛片| 高清欧美精品videossex| 伊人亚洲综合成人网| 侵犯人妻中文字幕一二三四区| 嫁个100分男人电影在线观看| 久久久久久人人人人人| 老司机午夜福利在线观看视频 | 亚洲国产精品999| 99国产精品99久久久久| 欧美精品一区二区大全| 一区二区三区激情视频| 菩萨蛮人人尽说江南好唐韦庄| 日韩精品免费视频一区二区三区| 9色porny在线观看| 日韩视频一区二区在线观看| 97人妻天天添夜夜摸| 免费观看a级毛片全部| 自线自在国产av| av网站在线播放免费| 一本一本久久a久久精品综合妖精| 啦啦啦视频在线资源免费观看| 国产伦人伦偷精品视频| av免费在线观看网站| 免费观看a级毛片全部| 91成人精品电影| 国产精品欧美亚洲77777| 高清视频免费观看一区二区| 欧美日韩国产mv在线观看视频| 中亚洲国语对白在线视频| 久久久久久久大尺度免费视频| 性少妇av在线| 80岁老熟妇乱子伦牲交| 午夜福利视频精品| 高清黄色对白视频在线免费看| 久久久久久免费高清国产稀缺| 性少妇av在线| 另类亚洲欧美激情| 精品卡一卡二卡四卡免费| 欧美精品一区二区大全| 在线亚洲精品国产二区图片欧美| 久久久久国产一级毛片高清牌| 午夜福利,免费看| 亚洲情色 制服丝袜| 国产一区二区三区综合在线观看| 两个人看的免费小视频| 国产又色又爽无遮挡免| 两个人看的免费小视频| 深夜精品福利| 丁香六月欧美| 亚洲av日韩精品久久久久久密| av国产精品久久久久影院| 人人妻人人爽人人添夜夜欢视频| 免费av中文字幕在线| 国产精品久久久人人做人人爽| 狂野欧美激情性xxxx| 精品亚洲乱码少妇综合久久| 国产成人av教育| 日韩中文字幕欧美一区二区| 一区二区三区精品91| 97精品久久久久久久久久精品| 亚洲人成电影观看| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 另类精品久久| 国产色视频综合| 丝袜在线中文字幕| bbb黄色大片| 激情视频va一区二区三区| 久久性视频一级片| 国产亚洲一区二区精品| 中文欧美无线码| 亚洲精品国产区一区二| 在线观看免费午夜福利视频| 成年av动漫网址| 久久久精品国产亚洲av高清涩受| 国产精品影院久久| 精品欧美一区二区三区在线| 亚洲国产日韩一区二区| 一边摸一边抽搐一进一出视频| 精品国产乱码久久久久久小说| 在线观看免费视频网站a站| 精品少妇久久久久久888优播| 日韩欧美免费精品| 欧美亚洲日本最大视频资源| 精品一区二区三区四区五区乱码| kizo精华| 欧美 亚洲 国产 日韩一| 桃红色精品国产亚洲av| 丝袜喷水一区| 久久99热这里只频精品6学生| 在线看a的网站| 久久久久久久大尺度免费视频| 夫妻午夜视频| 亚洲中文av在线| 久久久久国产精品人妻一区二区| 色婷婷av一区二区三区视频| 午夜福利,免费看| 国产精品久久久久成人av| 亚洲天堂av无毛| 美女中出高潮动态图| 亚洲精品av麻豆狂野| 欧美在线一区亚洲| 伊人久久大香线蕉亚洲五| 亚洲欧洲精品一区二区精品久久久| 亚洲av电影在线进入| 国产亚洲av高清不卡| 99久久国产精品久久久| 国产欧美日韩一区二区三 | 亚洲久久久国产精品| 久久久久网色| 欧美日韩福利视频一区二区| 国产av一区二区精品久久| 一本综合久久免费| 久久性视频一级片| 日本欧美视频一区| 亚洲成人手机| 亚洲精品久久久久久婷婷小说| 国产野战对白在线观看| 看免费av毛片| 亚洲激情五月婷婷啪啪| 国产一区有黄有色的免费视频| 久久影院123| 男女免费视频国产| 99久久人妻综合| 国产一区二区 视频在线| 99国产精品一区二区蜜桃av | 777久久人妻少妇嫩草av网站| 18禁黄网站禁片午夜丰满| 欧美午夜高清在线| 不卡av一区二区三区| 99热国产这里只有精品6| 欧美变态另类bdsm刘玥| 一本综合久久免费| 一区二区三区精品91| 久久狼人影院|