• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      品種及含水率對谷子籽粒力學性質(zhì)的影響

      2019-03-05 04:05:00邱述金原向陽郭玉明崔清亮武新慧張志勇
      農(nóng)業(yè)工程學報 2019年24期
      關鍵詞:谷子力學籽粒

      邱述金,原向陽,郭玉明,崔清亮,武新慧,張志勇

      品種及含水率對谷子籽粒力學性質(zhì)的影響

      邱述金1,原向陽2,郭玉明1,崔清亮1※,武新慧1,張志勇1

      (1. 山西農(nóng)業(yè)大學工學院,太谷 030801;2. 山西農(nóng)業(yè)大學農(nóng)學院,太谷 030801)

      谷子籽粒群是具有黏彈性性質(zhì)的生物材料,谷子加工儲藏和機械收獲等作業(yè)環(huán)節(jié)需考慮其黏彈性,該文研究了不同品種、不同含水率對谷子籽粒群黏彈性力學指標的影響。該試驗以不同品種、不同含水率為試驗因素,以谷子籽粒群的瞬時彈性模量、遲滯彈性模量、松弛時間和黏度系數(shù)為試驗指標進行蠕變試驗,并對試驗結(jié)果進行方差分析。結(jié)果表明:谷子籽粒群的蠕變特性可由四元件Burgers模型描述,不同含水率、不同品種谷子籽粒群的蠕變參數(shù)各異。品種對谷子籽粒群的遲滯彈性模量影響顯著,晉谷21號谷子籽粒群的遲滯彈性模量均值為0.609 3 MPa,顯著高于張雜10號的0.522 2 MPa。含水率對谷子籽粒群的瞬時彈性模量、遲滯彈性模量和黏度系數(shù)影響均顯著,均呈隨含水率升高而降低的趨勢,含水率為12.10%的谷子籽粒群的瞬時彈性模量0.752 6 MPa顯著高于含水率為16.05%的0.613 6 MPa和20.00%的0.569 7 MPa,含水率為12.10%、16.05%、20.00%的谷子籽粒群的遲滯彈性模量分別為0.706 4、0.583 5、0.407 5 MPa,含水率為12.10%的谷子籽粒群的黏度系數(shù)1 234.7 MPa·s顯著高于20.00%的796.8 MPa·s,含水率對谷子籽粒群的松弛時間影響不顯著。該文通過試驗研究了不同品種和不同含水率的谷子籽粒群的蠕變特性,為谷子低損收獲、加工儲藏及參數(shù)優(yōu)化提供了理論支持。

      含水率;力學性能;模型;谷子籽粒群;蠕變特性;品種

      0 引 言

      谷子是中國丘陵山地有機旱作農(nóng)業(yè)重要的雜糧作物之一[1],其機械收獲與加工生產(chǎn)過程中持續(xù)受到復雜外力的作用,比如聯(lián)合收獲機攪龍輸送過程中谷子籽粒群受持續(xù)推進力的作用,運輸儲藏環(huán)節(jié)中的隨機碰撞等機械作用會導致谷子種子破裂、胚胎受損等問題[2]。谷子籽粒群的流變學特性是相關裝備研發(fā)、工藝制定的理論基礎,可為低損收獲、低損加工、低損儲藏等提供新的思路及參數(shù)優(yōu)化。

      目前,國內(nèi)外學者對農(nóng)業(yè)物料的流變學特性研究已經(jīng)取得了較大進展。梁麗等[3]研究了小麥莖稈流變性質(zhì),建立了為小麥優(yōu)種指標評價流變模型。Ma等[4]研究了麥麩膳食纖維對小麥面團的流變學指標影響,結(jié)果表明添加麥麩膳食纖維后降低了面團的黏彈性應變極限,但機械強度得到增強。宮澤奇[5]結(jié)合流變學參數(shù)研究了青貯玉米秸稈螺旋致密成型工藝,建立了2個經(jīng)典Maxwell模型并聯(lián)的應力松弛模型,獲得螺旋致密成型物料應力松弛規(guī)律。盛韶陽[2]研究了不同含水率玉米籽粒的黏彈性,得到蠕變過程玉米籽粒的應變隨含水率增加而增大,松弛過程玉米籽粒的應力隨含水率增加而減小的結(jié)論。嚴平宇等[6]利用機械動態(tài)熱分析儀對水稻種子進行了流變特性研究,建立了水稻種子的五元件開爾文模型和三元件麥克斯韋模型。還有其他學者研究了大豆[7]、豌豆等作物的流變學特性,獲得了碰撞損傷及籽粒應力開裂的影響規(guī)律[8]。針對小籽粒谷物的流動特性[9]、摩擦特性運動學[10-11]、作物莖稈、種子及其加工產(chǎn)品面粉等的流變特性的研究較多[12-13]。程緒鐸等[14]曾指出國內(nèi)糧倉堆高大、儲藏溫度高、含水率大、時間久會使大豆彈性變小。馬小愚等[15]通過應力松弛試驗,得到不規(guī)則形狀的大豆、小麥種子的擠壓方程,提出了可識別松弛參數(shù)的Z變換法。張洪霞[16]對稻米及米飯籽粒進行了應力松弛試驗,獲得了應力松弛指標,建立了力學指標隨影響因素變化的回歸方程。還有學者應用有限元分析方法研究物料流變特性,如王芳等[17-18]利用有限元法仿真研究了西瓜的力學特性,驗證了仿真數(shù)值解的可行性;藏楠[19]用ANSYS對馬鈴薯的力學特性進行仿真,仿真結(jié)果較好地反應馬鈴薯的蠕變特性。

      我們團隊前期對谷子單個籽粒的靜態(tài)力學特性[20-21]、谷子莖稈力學特性[22-23]及谷子葉片摩擦特性[24-25]等方面進行了研究,在此基礎上研究不同含水率的谷子籽粒群的蠕變特性,獲取不同品種、不同含水率谷子籽粒群在聯(lián)合收獲機收獲、輸送及儲藏等過程的蠕變參數(shù),為谷子等雜糧作物的低損機械收獲、加工、儲藏及參數(shù)優(yōu)化等提供理論依據(jù)。

      1 試驗材料和方法

      1.1 試驗材料

      本試驗所用谷子取自山西農(nóng)業(yè)大學谷子試驗田,品種為晉谷21號和張雜10號,這些品種大面種植于山西乃至全國,具有較強的代表性??紤]谷子貯藏、加工時的含水率為10%~13%,谷子收獲時的含水率約為18%~20.00%,合理劃分谷子的含水率,分別為12.10%、16.05%、20.00%。為配置不同含水率的谷子籽粒群,用精度為0.01g的分析天平對谷子籽粒群稱質(zhì)量。含水率為16.05%、20.00%的樣品需要分2次進行,期間每隔兩個小時需要均勻搖晃。配水的過程在塑封袋中完成,將處理好的樣品密封,放入冷藏箱中備用,試驗前將樣品拿出恢復至室溫。按式(1)配置含水率。

      式中為所需配水的質(zhì)量,g;為谷子籽粒群的質(zhì)量, g;1為谷子籽粒群的初始含水率,%;2為需要調(diào)配后的含水率,%。

      將谷粒試樣稱質(zhì)量,準確至0.01 g,并將試樣放入溫度為105 ℃的干燥箱中干燥4.5 h,時間到后打開干燥箱將樣品立即蓋上盒蓋,取出稱質(zhì)量,記錄數(shù)據(jù),再放入干燥箱中干燥0.5 h,時間到后重復上述操作,若質(zhì)量差小于0.02 g,則認為谷子干燥完成。計算含水率,重復3次取其平均值。含水率按式(2)進行計算。

      式中為含水率,%;為初始鮮質(zhì)量,g;為最后干質(zhì)量,g。

      1.2 試驗方法

      試驗采用CMT-6104型萬能試驗機,設計加工了用于谷子籽粒群流變特性試驗的專用夾具,如圖1所示,加載壓頭采用圓柱壓頭,壓頭直徑為100 mm。試驗前進行預試驗以了解谷子籽粒群在保證不脫殼、不破殼的前提下所能承受的最大載荷。蠕變試驗參數(shù)設置為:試驗方向為壓向,力控制40.0 N/s,目標力控制4 000 N,力保載900 s,試驗結(jié)束后不自動返車,測定應變與時間關系。

      圖1 谷子籽粒群蠕變試驗夾具

      1.3 理論基礎

      楊明韶等[26-28]認為,農(nóng)業(yè)物料中的大多數(shù)是黏彈性體,可分為線性黏彈性體和非線性黏彈性體,目前尚未有成熟的研究支持用非線性黏彈性理論解釋農(nóng)業(yè)物料的流變特性,為簡化模型,本文擬采用四元件Burgers模型研究谷子籽粒群的蠕變特性,如式(3)所示。

      式中()為蠕變過程中時刻的應變,為蠕變時間,s,0為施加的恒定應力,MPa;0為瞬時彈性模量,MPa;E為遲滯彈性模量,MPa;為黏滯系數(shù),MPa·s,τ為延遲時間,s。

      2 結(jié)論與分析

      試驗獲得了應力保持為0.127 MPa下的谷子籽粒群的蠕變特性曲線,根據(jù)公式(3),采用本質(zhì)非線性回歸方法計算蠕變參數(shù),用SAS軟件擬合不同品種、不同含水率的谷子籽粒群Burgers蠕變模型[29-30],結(jié)果如表1所示。

      表1 Burgers蠕變模型擬合參數(shù)

      注:數(shù)據(jù)采用3次重復取平均值±標準偏差的形式。

      Note: Data were averaged in the form of triplicates ± standard deviation.

      2.1 品種對蠕變參數(shù)的影響

      晉谷21號、張雜10號蠕變試驗的應變-時間關系曲線如圖2所示。

      谷子籽粒群蠕變曲線表明,在試驗開始至設定載荷過程中,谷子籽粒群的應變隨載荷的增加呈線性增長的趨勢,在應力保持階段谷子籽粒群的應變隨時間的增加緩慢增大,不同品種的谷子籽粒群蠕變曲線有差異。

      為研究品種對蠕變特性參數(shù)的影響,本文選取0.05作為顯著性檢驗標準[26],對試驗數(shù)據(jù)進行方式分析,結(jié)果如表2所示。

      注:圖中jg21代表晉谷21號,zz10代表張雜10號,下同。

      表2 不同品種谷子籽粒群蠕變參數(shù)的比較

      注:同一列數(shù)據(jù)后不同字母表示數(shù)據(jù)間有顯著差別(<0.05),下同。

      Notes: Values in the column with different superscripts were significantly different (<0.05) , the same below.

      不同品種的谷子籽粒群的方差分析結(jié)果表明:品種對于谷子籽粒群遲滯彈性模量的影響顯著,顯著性值為0.023 3,晉谷21號谷子籽粒群的遲滯彈性模量均值為0.609 3 MPa,顯著高于張雜10號的0.522 2 MPa。遲滯彈性模量表征了谷子籽粒群的硬度,即晉谷21號谷子籽粒群的硬度高于張雜10號,決定系數(shù)為0.994 6,分析結(jié)論可靠;品種對谷子籽粒群的瞬時彈性模量、松弛時間和黏度系數(shù)影響不顯著。

      2.2 含水率對蠕變參數(shù)的影響

      含水率分別為12.10%、16.05%、20.00%的谷子籽粒群蠕變試驗的應變-時間關系曲線如圖3所示。

      為研究含水率對蠕變特性參數(shù)的影響,本文選取0.05作為顯著性檢驗標準[26],對試驗數(shù)據(jù)進行方式分析,結(jié)果如表3所示。

      不同含水率的谷子籽粒群的方差分析表明:含水率對瞬時彈性模量影響顯著,顯著性值達0.047 3,瞬時彈性模量隨含水率升高而減小,在0.05水平上,含水率為12.10%的谷子籽粒群的瞬時彈性模量0.752 6 MPa顯著高于含水率為16.05%的0.613 6 MPa和20.00%的0.569 7 MPa,決定系數(shù)為0.968 2,說明分析結(jié)論可靠;含水率對遲滯彈性模量影響顯著,顯著性值為0.006 1,隨含水率升高,遲滯彈性模量降低,含水率為12.10%、16.05%、20.00%的谷子籽粒群的遲滯彈性模量分別為0.706 4、0.583 5、0.407 5 MPa,決定系數(shù)為0.994 6;含水率對谷子籽粒群的黏度系數(shù)影響較顯著,含水率為12.10%的谷子籽粒群的黏度系數(shù)1 234.7 MPa·s顯著高于20.00%的796.8 MPa·s,隨含水率升高,黏度系數(shù)降低,決定系數(shù)為0.935 3;含水率對谷子籽粒群的松弛時間影響不顯著。

      圖3 不同含水率的谷子籽粒群蠕變曲線圖

      表3 不同含水率谷子籽粒群蠕變參數(shù)比較

      瞬時彈性模量和遲滯彈性模量分別表征谷子籽粒群的彈性和硬度,隨谷子籽粒群含水率的升高,其瞬時彈性模量和遲滯彈性模量降低,導致蠕變曲線高度增加,籽粒群的應變隨之增加。

      3 結(jié) 論

      本文通過試驗研究了不同品種、不同含水率的谷子籽粒群的流變特性,結(jié)果表明:

      1)對晉谷21號和張雜10號2個品種的谷子籽粒群進行了蠕變試驗,擬合獲得蠕變模型參數(shù),并以四元件Burgers模型描述了谷子籽粒群的蠕變行為。

      2)不同品種、不同含水率的谷子籽粒群均可采用Burgers研究其蠕變特性,但其流變學參數(shù)各異。品種對谷子籽粒群的遲滯彈性模量影響顯著,晉谷21號谷子籽粒群的遲滯彈性模量高于張雜10號。含水率對谷子籽粒群的瞬時彈性模量、遲滯彈性模量和黏度系數(shù)影響均顯著,均呈隨含水率升高而降低的趨勢。

      本研究為谷子等農(nóng)業(yè)松散物料的儲藏、加工、收獲及運輸?shù)忍峁┲匾睦碚撘罁?jù),影響農(nóng)業(yè)物料流變性能的因素較多,除含水率和品種的影響外,還與溫度、物料的內(nèi)部分子結(jié)構(gòu)及化學成分組成等眾多因素相關,農(nóng)業(yè)松散物料的流變特性還需要結(jié)合生命科學原理進一步深入研究。

      [1]李順國,劉斐,劉猛,等. 新時期中國谷子產(chǎn)業(yè)發(fā)展技術需求與展望[J]. 農(nóng)學學報,2018,8(6):96-100.

      [2]盛韶陽. 玉米干燥特性及黏彈性研究[D]. 北京:中國農(nóng)業(yè)大學,2016. Sheng Shaoyang. Study on Drying Characteristics and Viscoelastic Behaviors of Maize Kernels[D]. Beijing: China Agricultural University, 2016. (in Chinese with English abstract)

      [3]梁莉,李玉萍,郭玉明. 小麥莖稈黏彈性力學性質(zhì)試驗研究[J]. 農(nóng)機化研究,2011,33(5):174-177,185. Liang Li, Li Yuping, Guo Yuming. Experimental research on the viscoelastic mechanical properties of winter wheat stalks[J]. Journal of Agricultural Mechanization Research, 2011, 33(5): 174-177, 185. (in Chinese with English abstract)

      [4]Ma Senhan, Wen Lili, Wang Xiaoxi. Small and large strain rheology of gluten and gluten-starch doughs containing wheat bran dietary fiber[J]. Journal of the Science of Food and Agriculture, 2019, 100(1): 400-409.

      [5]宮澤奇. 青貯玉米秸稈螺旋致密成型工藝及壓縮過程流變學試驗研究[D]. 中國農(nóng)業(yè)大學,2017. Gong Zeqi. The Experimental Study on Rheology of Silage-corn Stalk in the Mechanized Spiral Dense Forming Process[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

      [6]嚴平宇,李棟,毛志懷,等. 水稻種子熱力學及流變特性測定與數(shù)學模擬分析[J]. 農(nóng)業(yè)機械學報,2015,46(7):245-250. Yan Pingyu, Li Dong, Mao Zhihuai, et al. Mathematical simulation analysis of rice seeds on thermal dynamical and rheological properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 245-250. (in Chinese with English abstract)

      [7]王揚,呂鳳妍,徐天月,等. 大豆籽粒形狀和尺寸分析及其建模[J]. 吉林大學學報(工學版),2018,48(2):507-517. Wang Yang, Lv Fengyan, Xu Tianyue, et al. Shape and size analysis of soybean kernel and modeling[J]. Journal of Jinlin University (Engineering and Technology Edition), 2018, 48(2): 507-517. (in Chinese with English abstract)

      [8]張濤. 谷物力學特性與理化指標及其關聯(lián)性研究[D]. 蘭州:甘肅農(nóng)業(yè)大學,2015. Zhang Tao. Related Study on Mechanical Characteristic And Physicochemical Property of Corn[D]. Lanzhou: Gansu Agricultural University, 2015. (in Chinese with English abstract)

      [9]趙曉根. 谷物顆粒流動特性的試驗研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學,2007. Zhao Xiaogen. Experimental Research on Flow Characteristics of Grain[D]. Hohhot: Inner Mongolia Agricultural University, 2007. (in Chinese with English abstract)

      [10]張燁,李長友,李建民,等. 稻谷摩擦特性研究[J]. 廣東農(nóng)業(yè)科學,2011,38(13):15-17. Zhang Ye, Li Changyou, Li Jianmin, et al. Experimental study on frictional characteristic of Grain[J]. Guangdong Agricultural Sciences, 2011, 38(13): 15-17. (in Chinese with English abstract)

      [11]劉曉. 小籽粒谷物散體力學性質(zhì)研究及應用[D]. 太谷:山西農(nóng)業(yè)大學,2015. Liu Xiao. Study and Application Agricultural Material Mechanics[D]. Taigu: Shanxi Agricultural University, 2015. (in Chinese with English abstract)

      [12]Nuttinee T, Rungtiwa W, Manop S. Physicochemical and rheological properties of flour and starch from Thai pigmented rice cultivars[J]. International Journal of Biological Macromolecules, 2019, 137: 666-675.

      [13]Ning Liu, Sen Ma, Li Li, et al. Study on the effect of wheat bran dietary fiber on the rheological properties of dough[J]. Grain & Oil Science and Technology, 2019, 2(1): 1-5.

      [14]程緒鐸,嚴曉婕,黃之斌. 儲藏條件對大豆籽粒力學特性的影響[J]. 中國糧油學報,2014,29(2):67-71. Cheng Xuduo, Yan Xiaojie, Huang Zhibin. Effects of storage conditions on mechanical properties of soybean[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(2): 67-71. (in Chinese with English abstract)

      [15]馬小愚,雷得天,趙淑紅,等. 東北地區(qū)大豆與小麥籽粒的力學—流變學性質(zhì)研究[J]. 農(nóng)業(yè)工程學報,1999,15(3):70-75. Ma Xiaoyu, Lei Detian, Zhao Shuhong, et al. Study on the mechanical-rheological properties of soybean and wheat grain grown in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1999, 15(3): 70-75. (in Chinese with English abstract)

      [16]張洪霞. 稻米及米飯的力學流變學特性的研究及其應用探討[D]. 哈爾濱:東北農(nóng)業(yè)大學,2004. Zhang Hongxia. Studies on the Mechanical and Rheological Properties of Brown Rice and Cooked Rice and Discuss of Application[D]. Harbin: Northeast Agricultural University, 2004. (in Chinese with English abstract)

      [17]王芳. 西瓜壓縮及蠕變特性的研究[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學,2008. Wang Fang. Study on Compressive and Creep Characteristics of Watermelon[D]. Hohhot: Inner Mongolia Agricultural University, 2008. (in Chinese with English abstract)

      [18]王芳,王春光,楊曉清. 西瓜的力學特性及其有限元分析[J]. 農(nóng)業(yè)工程學報,2008,24(11):118-121. Wang Fang, Wang Chunguang, Yang Xiaoqing. Mechanics characteristics and finite element analysis of watermelon[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(11): 118-121. (in Chinese with English abstract)

      [19]藏楠. 馬鈴薯蠕變特性的研究與仿真[D]. 呼和浩特:內(nèi)蒙古農(nóng)業(yè)大學,2006. Zang Nan. Study and Simulation on Potato Creep Behavior[D]. Hohhot: Inner Mongolia Agricultural University, 2006. (in Chinese with English abstract)

      [20]楊作梅,孫靜鑫,郭玉明. 不同含水率對谷子籽粒壓縮力學性質(zhì)與摩擦特性的影響[J]. 農(nóng)業(yè)工程學報,2015,31(23):253-260. Yang Zuomei, Sun Jingxin, Guo Yuming. Effect of moisture content on compression mechanical properties and frictional characteristics of millet grain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 253-260. (in Chinese with English abstract)

      [21]孫靜鑫,楊作梅,郭玉明,等. 谷子籽粒壓縮力學性質(zhì)及損傷裂紋形成機理[J]. 農(nóng)業(yè)工程學報,2017,33(18):306-314. Sun Jingxin, Yang Zuomei, Guo Yuming, et al. Compression mechanical properties and crack formation law of millet grain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 306-314. (in Chinese with English abstract)

      [22]武翠卿,李楠,張帥,等. 谷子秸稈生物力學性質(zhì)試驗研究[J]. 山西農(nóng)業(yè)大學學報(自然科學版),2016,36(5):377-380. Wu Cuiqing, Li Nan, Zhang Shuai, et al. Experimental study on the biomechanical properties of millet stem[J]. Journal of Shanxi Agricultural University. (Natural Science Edition), 2016, 36(5): 377-380. (in Chinese with English abstract)

      [23]梁莉,李玉萍,郭玉明. 小麥莖稈黏彈性力學性質(zhì)試驗研究[J]. 農(nóng)機化研究,2011,33(5):174-177, 185. Liang Li, Li Yuping, Guo Yuming. Experimental research on the viscoelastic mechanical properties of winter wheat stalks[J]. Journal of Agricultural Mechanization Research, 2011, 33(5): 174-177, 185. (in Chinese with English abstract)

      [24]楊作梅,郭玉明,崔清亮,等. 谷子摩擦特性試驗及其影響因素分析[J]. 農(nóng)業(yè)工程學報,2016,32(16):258-264. Yang Zuomei, Guo Yuming, Cui Qingliang, et al. Test and influence factors analysis of friction characteristics of millet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 258-264. (in Chinese with English abstract)

      [25]張寧,李紅波,張燕青,等. 收獲期谷子葉片摩擦特性的試驗研究[J]. 農(nóng)機化研究,2019,41(6):154-161. Zhang Ning, Li Hongbo, Zhang Yanqing, et al. Experimental study on the friction characteristics of millet leaves at harvest time[J]. Journal of Agricultural Mechanization Research, 2019, 41(6): 154-161. (in Chinese with English abstract)

      [26]楊明韶,馬彥華. 農(nóng)業(yè)流變學模型概念分析[M]. 北京:中國農(nóng)業(yè)科學技術出版社,2017:31-56.

      [27]李翰如,潘君拯. 農(nóng)業(yè)流變學導論[M]. 北京:農(nóng)業(yè)出版社,1990:51-54.

      [28]周祖鍔. 農(nóng)業(yè)物料學[M]. 北京:農(nóng)業(yè)出版社,1994:29-34.

      [29]GB/T 4889—2008,數(shù)據(jù)的統(tǒng)計處理和解釋正態(tài)分布均值和方差的估計與檢驗[S]. 中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局;中國國家標準化管理委員會.

      [30]王玉順,武志明,李曉斌,等. 試驗設計與統(tǒng)計分析SAS實踐教程[M]. 西安:西安電子科技大學出版社,2012:166-167.

      Effects of variety and moisture content on mechanical properties of millet

      Qiu Shujin1, Yuan Xiangyang2, Guo Yuming1, Cui Qingliang1※, Wu Xinhui1, Zhang Zhiyong1

      (1.,,030801; 2.,,030801,)

      In order to clarify the rheological mechanical properties of millet grain group during mechanical harvesting and processing, this paper studied the effects of different varieties and different moisture contents on the creep characteristics of millet grain group. In this experiment, different varieties (Jingu 21, Zhangza 10), and different moisture contents (12.10%, 16.05%, 20.00%) of millet grain group were selected as creep experimental factors. The creep characteristics (instantaneous elastic modulus, delayed elastic modulus, relaxation time and viscosity coefficient) of millet seed group were used as experimental indicators, and one-way analysis of variance and multi-factor analysis of variance were performed. Based on the original contents of millet seed group, the target moisture contents of the millet grain group were formulated to be 12.10%, 16.05%, 20.00%. The experiment was conducted on the CMT-6104 universal testing machine, and the special fixture for testing the creep characteristics of millet grain group was designed. Combining the Burgers model, nonlinear programming method was used to optimize search regression parameters, and creep parameters of millet grain group were obtained. The creep curve of millet grain group of different varieties showed that, as time going on, the amount of deformation caused by creep tended to be constant, which reaching the strain saturation. There were differences in the millet grain group creep characteristic curves of the different varieties. The significance test standard was 0.05, and the variance analysis was performed. The results showed that the creep characteristics of millet grain group could be described by the four-element Burgers model, and the creep parameters of millet grain group with different moisture content and different varieties were different. The variety had a significant effect on the delayed elastic modulus of the millet grain group. The delayed elastic modulus of the Jingu 21 millet grain group was higher than that of Zhangza 10. The moisture content had significant effects on the instantaneous elastic modulus, delayed elastic modulus and viscosity coefficient of the millet grain group, which was decreasing while the moisture increasing. The instantaneous elastic modulus of the millet grain group with the water content of 12.10% was significantly higher than the water content of 16.05% and 20.00%. The delayed elastic modulus of the millet grain group with the moisture content of 12.10% was significantly higher than the water content of 20.00%. The instantaneous elastic modulus and the delayed elastic modulus represented elasticity and hardness of the millet grain group, respectively. With the increasing of the moisture content of the millet grain group, the instantaneous elastic modulus and the delayed elastic modulus of millet grain group decreased, resulting in a high increasing of the creep curve. The strain in the screw conveyor of combine harvester was correspondingly larger. In this paper, the creep properties of millet grain group with different varieties and different moisture contents were studied experimentally, which provided theoretical support for low-loss harvesting, processing and storage and parameter optimization of millet. There are many factors affecting the mechanical properties of the material, in addition to the influence of moisture contents and varieties, it is also related to many factors such as temperature, internal molecular structure and chemical composition of the material, et al. The rheological properties of agricultural materials need to be further studied in conjunction with the principles of life sciences.

      moisture content; mechanical properties; model; millet grain group; creep characteristics; variety

      邱述金,原向陽,郭玉明,崔清亮,武新慧,張志勇. 品種及含水率對谷子籽粒力學性質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2019,35(24):322-326. doi:10.11975/j.issn.1002-6819.2019.24.038 http://www.tcsae.org

      Qiu Shujin, Yuan Xiangyang, Guo Yuming, Cui Qingliang, Wu Xinhui, Zhang Zhiyong. Effects of variety and moisture content on mechanical properties of millet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 322-326. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.038 http://www.tcsae.org

      2019-07-28

      2019-11-27

      “十三五”國家重點研發(fā)項目(2016YFD0701801);國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)體系(CARS-06-13.5-A28);山西農(nóng)業(yè)大學博士科研啟動項目(2015YJ01);晉中市科技重點研發(fā)計劃(Y182013)

      邱述金,副教授,博士,主要從事農(nóng)業(yè)物料機械特性與農(nóng)業(yè)機械化裝備研究。Email:sxauqsj@sina.com

      崔清亮,教授,博士,主要從事農(nóng)業(yè)物料機械特性與農(nóng)業(yè)機械化裝備研究。Email:qlcui@126.com

      10.11975/j.issn.1002-6819.2019.24.038

      S183

      A

      1002-6819(2019)-24-0322-05

      猜你喜歡
      谷子力學籽粒
      力學
      打谷子
      當代陜西(2021年21期)2022-01-19 02:00:32
      籽粒莧的飼用價值和高產(chǎn)栽培技術
      籽粒莧的特性和種植技術
      弟子規(guī)·余力學文(十)
      快樂語文(2021年11期)2021-07-20 07:41:32
      弟子規(guī)·余力學文(四)
      快樂語文(2020年30期)2021-01-14 01:05:28
      玉米機械脫粒籽粒含水量與破碎率的相關研究
      商麥1619 籽粒灌漿的特性
      力學 等
      谷子栽培技術
      八宿县| 岑巩县| 隆林| 江华| 甘南县| 定陶县| 广宁县| 和林格尔县| 习水县| 富宁县| 陆良县| 临沧市| 江安县| 郁南县| 新民市| 连云港市| 云霄县| 鄱阳县| 宣化县| 库尔勒市| 汶川县| 鹿邑县| 淮南市| 喀喇沁旗| 南开区| 平罗县| 洪湖市| 东乌珠穆沁旗| 长沙市| 右玉县| 宽甸| 蓬莱市| 营口市| 文山县| 内丘县| 灌阳县| 襄汾县| 蒙自县| 施甸县| 巴南区| 清苑县|