• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫化銅空心球的合成和生長(zhǎng)機(jī)理及其在抗腫瘤中的應(yīng)用

    2019-02-27 06:53:22黃慶利王麗麗吳永平
    關(guān)鍵詞:王麗麗硫化銅空心球

    黃慶利 王麗麗 李 婷 吳永平

    (徐州醫(yī)科大學(xué)形態(tài)科研實(shí)驗(yàn)中心,徐州 221004)

    0 Introduction

    Cancer is one of the leading causes of death worldwide and the incidence rate is increasing year by year.However,current chemo-and radiation therapies have many well-known disadvantages, including systemic side effects,relatively poor specificity toward malignant tissues,drug resistance and low efficacy.Recently,near-infrared (NIR)photo-thermal therapy(PTT)has gained popularity[1-4].Various kinds of NIR laser-induced photo-thermal agents have been widely investigated such as noble metal nanostructures[5-6],carbon-based materials[7-8],chalcogenide semiconductors[9-14].Among these photo-thermal agents,copper chalcogenide semiconductors have attracted increasing attention due to their variations in stoichio-metric composition,valence states and different unique properties[10-18].The physical/chemical properties of nanomaterials are seriously depended on their morphology,size,composition,phase,structure and so on[18-19].Over the past decades,considerable efforts have been focused on synthesizing various morphologies of CuS nanomaterials,such as plate-like[4,15,20],tubular[21-22],flower-like[23],sphere-like[24-26]and dendritelike[27]morphologies.However,cage-like hollow CuS structures were not reported.

    Hollow structures of inorganic materials have received much attention because of their widespread potential applications in catalysis,drug delivery,chromatography separation,chemical reactors,controlled release of various substances,protection of environmentally sensitive biological molecules and cancer therapy[28-32].Various hollow structures of inorganic materials have been prepared by different methods[28-32].Nevertheless,most of the approaches for hollow structures rely on the use of either hard templates(e.g.,polymer latex and mono-dispersed silica)or soft templates(e.g.,ionic liquids,surfactants and micelles),which involve the adsorption of nanoparticles or polymerization on modified polymeric or inorganic template surface and subsequent removal of the templates by calcinations or dissolution with solvents.These methods often bring difficulties related to materials compatibility,high cost and complex synthetic procedures,which may prevent them from potential applications.It remains a major challenge to develop a facile,one-pot solution route for the preparation of inorganic hollow nanostructures.

    Here,a simple one-pot sacrificing template synthesis of CuShollow sphere was reported based on a mild and simple reaction between cupric nitrate trihydrate(Cu(NO3)2·3H2O),oxalic acid (H2C2O4)and sodium sulphide nonahydrate(Na2S·9H2O).A possible formation process of this novel hollow structure has been proposed on the basis of experiments.The CuS hollow sphere had the good photo-thermal conversion performance,which could be used as a photo-thermal agent for treating breast cancer and melanoma under NIR irradiation.

    1 Experimetal

    1.1 Material

    All the chemical reagents used in this work,including Cu(NO3)2·3H2O,H2C2O4and Na2S·9H2O,Dulbecco′s Modified Eagles medium(DMEM)containing 1%(V/V)penicillin-streptomycin,10%(V/V)fetal calf serum (FBS),Roswell Park Memorial Institute medium (RPMI 1640)and cell counting kit-8(CCK-8).All chemicals are analytically pure and were used as received without further purification.Deionized water was used throughout the experiment.

    1.2 Methods

    CuS cage-like hollow structures were prepared according to the following procedure:Firstly,1.0 mmol of Cu(NO3)2·3H2O was dissolved in 24 mL of distilled water with magnetic stirring for 5 min and a transparent blue solution was formed.Then,1.0 mmol H2C2O4was added into the above solution with stirring and a blue suspension was formed.Finally,2.0 mmol of Na2S·9H2O was added into the above suspension with magnetic stirring.The mixed solution was transferred into a Teflon-lined autoclave of 30 mL capacity,sealed and heated at 180℃for 6 h,then air-cooled to room temperature.The resulting black products were collected by centrifugation,washed with distilled water and ethanol for several times,and finally dried in air at 70℃for 6 h.

    1.3 Characterization

    The phase purity of the products was characterized by X-ray diffraction(XRD,German Bruker AXSD8 ADVANCE X-ray diffractometer)using a X-ray diffractometer with Cu Kα radiation(λ=0.154 18 nm),hybrid monochromators,and X accelerator dectector.Corresponding working voltage and current,scan range (2θ)were 40 kV,40 mA and 10°~70°respectively.Field emission scanning electron microscopy(FE-SEM)images were taken on a HITACHI S-4800 scanning electron microscope,operating at accelerating voltage of 15 kV.Transmission electron microscopy (TEM)and high resolution transmission electron microscopy (HRTEM)images were obtained on a FEIF-30 instrument(America),using accelerating voltage of 300 kV.A 808 nm laser(2 W,LWIRL808-10W-F,Laserwave Co.)as a selected NIR light was utilized to irradiate copper sulfide aqueous dispersion(3 mL,1 mg·mL-1)to induce photo-thermal effect.Cytotoxicity assays were conducted on amicroplate reader(Bio-rad,USA)according to a standard CCK-8 method.The relative cell viability was measured by comparing the control well containing only the cells.

    1.4 Cell culture and viability assay

    Cell culture:breast cancer cell MBA-MD-231 and melanoma cell B16 cells were cultured in DMEM containing 1%(V/V)penicillin-streptomycin,10%(V/V)FBS,and incubated at 37℃in an atmosphere of 5%(V/V)CO2for 24 h.The media were changed every two days.

    Cell viability assay:cytotoxicity assays were conducted according to a standard CCK-8 method.Cells were seeded in 96-well plates at a density of 1×105per well in 100μL of DMEM containing 10%(V/V)FBS,and incubated at 37℃in an atmosphere of 5%(V/V)CO2for 24 h.Cells were then treated with the medium containing as-prepared samples.All samples were controlled equivalent,at final concentrations of 0,7.8,15.6,31.2,62.5,125,250 or 500 μg·mL-1for 24 h.After addition of 10μL of CCK-8 in each well,all cells were incubated for another 2 h.The absorbance of the solution at 450 nm was measured using amicroplate reader.The relative cell viability was measured by comparing the control well containing only the cells.

    2 Results and discussion

    The crystalline phase and purity of the asprepared samples were determined by XRD,and the obtained results were shown in Fig.1.The pure monoclinic CuC2O4(PDF No.21-0297)was prepared only using Cu(NO3)2·3H2O and H2C2O4at the reaction temperatures of 180℃for 0.1 h (Fig.1a).Hexagonal phase CuS (PDF No.06-0464)was obtained at the reaction temperatures of 180℃for 6 h by adding Na2S·9H2O(Fig.1b).The strong and sharp XRD peaks of Fig.1b indicate that the as-prepared CuS crystals were highly crystalline.No other diffraction peaks were found,indicating that the products were pure CuS(Fig.1b).

    Fig.1 XRD patterns of(a)CuC2O4 prepared only using Cu(NO3)2·3H2O and H2C2O4 at the reaction temperatures of 180℃for 0.1 h and(b)cage-like CuShollow spheres prepared using Cu(NO3)2·3H2O,H2C2O4 and Na2S·9H2O at 180℃for 6 h

    The morphologies and microstructure were studied by FESEM and TEM.Fig.2a shows that the as-obtained samples were composed of many cage-like hollow architectures ranging from 1 to 2μm in diameters. High magnification FESEM images revealed that these microspheres were built from small 2D nanoplates with diameter of about 200 nm(Fig.2b).In addition,the TEM images further convinced that each sphere-like structure was made up of many small 2D nanoplates with the diameter of about 200 nm(Fig.2(c,d)).In Fig.2e,the HRTEM image shows sharp lattice fringes with 0.31 nm spacings,corresponding to the (102)planes of hexagonal phase CuS crystals.Most of the samples displayed sharp lattice fringes with no lattice defects such as stacking faults,indicating good crystallinity.This was also consistent with the result of their XRD patterns.

    To investigate the formation mechanism of the hollow cage-like CuSsphere,their growth process was followed by examining the products collected at different aging time intervals.Fig.3 shows the typical FESEM images of the as-prepared products at the reaction temperatures of 180℃at different reaction times.Fig.3a shows the FESEM images of the precursor(CuC2O4)obtained under hydrothermal condition for 0.1 h at 180 ℃ only using Cu(NO3)2·3H2Oand H2C2O4.The resultant products consisted of many microspheres with the diameter of 1~2 μm (Fig.3a).These spheres were constructed tightly by lots of nanoparticles(100~150 nm).By adding Na2S·9H2O and keeping 180 ℃for 0.1 h(Fig.3b),the size of the spheres became a bit small and these spheres were constructed loosely by lots of the smaller nanoparticles(about 50 nm).Some microspheres with hollow interior could be observed(Fig.3b),indicating that the hollow structures began to form.When the reaction time was prolonged to 1 h,the size of these spheres was hardly changed but the size of the particles which constructed these spheres became larger (ca.120 nm)and the shells of the spheres became thinner,as shown in Fig.3c.After reaction for 4 h (Fig.3d),the size of the spheres still kept unchanged and the size of the small particles which constructed these spheres further became larger(ca.200 nm).The shells of the spheres further became thinner and all microspheres were hollow structures.

    Fig.2 (a,b)SEM,(c,d)TEM and(e)HRTEM images of CuShollow structures prepared using Cu(NO3)2·3H2O,H2C2O4 and Na2S·9H2Oat 180 ℃ for 6 h

    Fig.3 FESEM images of(a)CuC2O4 prepared only using Cu(NO3)2·3H2Oand H2C2O4 at the reaction temperatures of 180℃for 0.1 h and CuShollow spheres at different reaction times of(b)0.1,(c)1 and(d)4 h

    The EDS analysis of the precursor in Fig.4a shows Cu,C and O elements in the sample,indicating the formation of pure CuC2O4precursor.Cu,C,O and Selements were included in Fig.4b,by adding Na2S·9H2O,coupled with a subsequent hydrothermal treatment at 180℃for 0.1 h,indicating the partial transformation from CuC2O4precursor to CuS crystal.As increasing the aging time to 6 h,only Cu and S elements were determined in Fig.4c,indicating the complete transformation from CuC2O4precursor to CuS hollow spheres.It is obviously that the reactions involved in the formation of CuScan be described by the following two equations:

    Cu(NO3)2·3H2O+H2C2O4=CuC2O4+2HNO3+3H2O (1)By adding Na2S·9H2O,CuC2O4behave as self sacrificing templates in the following process of the reaction:

    Fig.4 EDSspretra of(a)CuC2O4 prepared only using Cu(NO3)2·3H2O and H2C2O4 at the reaction temperatures of 180℃for 0.1 h and CuShollow spheres for different reaction times of(b)0.1 and(c)6 h

    In addition,the amount of Na2S·9H2O was found to play an important role in the microstructures of the products.Fig.5 shows the diffraction peaks of asprepared from different amounts of Na2S·9H2O(1,4,6 and 10 mmol),respectively.It can be found that the as-prepared samples obtained with 1 and 4 mmol in Fig.5a and 5b,respectively,were indexed to CuSwith the hexagonal structure (PDF No.06-0464).However,with the amount of Na2S·9H2O increasing to 4 mmol,the intensity of some peaks became weak in Fig.5b.When the addition of Na2S·9H2O reached 6 and 10 mmol,orthorhombic Cu1.8S (PDF No.23-0962)were obtained in Fig.5c and 5d.Obviously,the phase of copper sulfides depended on the amount of Na2S·9H2O.

    Fig.5 XRD patterns of the samples prepared with different amounts of Na2S·9H2O at 180 ℃ for 6 h and keeping other reaction parameter constant

    The FESEM was used further to convice the role of Na2S·9H2O.Fig.6 shows the typical FESEM images of the products prepared with different amounts of Na2S·9H2O,keeping the amount of Cu(NO3)2·3H2O and H2C2O4constant.When the addition of Na2S·9H2O were 1 mmol,monodispersed and homogeneous hollow spheres with diameters of about 1.5μm could be found in Fig.6a.With the inceasing of the addition of Na2S·9H2O to 2 mmol,cage-like hollow structures were obtained as shown in Fig.2.These cages were built from small nanoplates with diameter of about 200 nm.When the addition of Na2S·9H2O reached 4 mmol,as illustrated in Fig.6b,a totally different morphology of irregular plates with a diameter of about 300 nm could be observed.When the addition of Na2S·9H2O reached 6 mmol,as shown in Fig.6c,no plates but only some polyhedrons with a diameter of about 2μm were fabricated and well distributed in a large area.Fig.6d indicated that the morphology were the same irregular polyhedrons but a rather smaller diameter of about 1 μm,when the addition of Na2S·9H2O reached 10 mmol.Obviously,the concentration of Na2S·9H2O was responsible for the formation of the as-prepared samples with different morphologies.

    Fig.6 SEM images of the CuSproducts prepared at 180℃for 6 h with different amounts of Na2S·9H2Oand keeping the amount of H2C2O4 being 1 mmol

    It is reasonable to presume that the formation of cage-like hollow CuS microspheres is based on Kirkendall effect and the Ostwald ripening mechanism,and the schematic illustration was shown in Schematic 1[33-35].At the first stage,tiny CuC2O4precursor nanoparticles were quickly produced when the C2O42-was added into the solution containing Cu2+and spontaneously aggregated to form large spheres to minimize their surface energy.By adding Na2S·9H2O at a low S2-concentration,CuC2O4behaved as templates in the following process of the reaction.S2-ions reacted with CuC2O4microspheres to form a thin layer of CuS on the surfaces of the CuC2O4microspheres.The thin layers were actually composed of many small CuS crystallites.With the aging time increasing,on one hand,the small CuScrystallites grew larger by Ostwald ripening;on the other hand,CuC2O4gradually dissolved into Cu2+and C2O42-,and Cu2+diffused outward to continue the reaction with S2-.In this way,CuS with hollow structures were finally formed.However,high S2-concentration will destroy thesphere-like struc-tures of CuC2O4and easily result in the formation of copperrich sulfides,which should be attributed to more easily partial reduction of Cu2+to Cu+in thepresence of S2-with the higher concentration.Hence,the concentration of S2-is a important factor for the preparation of hollow CuS.

    Scheme 1 Schematic illustration of the growth mechanism of CuShollow structures

    Copper sulfide has good photo-thermal conversion performance,which could be used as photo-thermal agents for treat cancer under NIR irradiation.Photothermal performances of copper sulfides nanostructures with different morphologies and phase were investigated in their aqueous dispersion (1 mg·mL-1).Each sample was exposed to the same NIR irradiation(808 nm,continuous wave,2 W,180 s)and the temperature change was recorded using a temperature controller model CH702.The cage-like hollow CuS possessed the best photo-thermal efficiency in Fig.7a(the temperature increased~23℃ after NIR irradiation),which are consistent with early reports[36-37].To be specific,it is noted that an amount incremental of photo-thermal conversion effect was achieved.The assynthesized hollow CuSmicrospheres presented a rosy photo-thermal conversion effect due to the approach of constructing a special nanostructure with nanoparticles and cavities.Further studies showed that the photothermal performance also depended on the concentration of CuS aqueous suspension and laser power(Fig.7b and 7c).

    Among the wide range of nanostructures,hollow CuSnanostructures have a large specific surface area,numerous pores and good photo-thermal conversion effect[38].These features make them have great potential in the application as both photo-thermal agents and drug-delivery carriers.Several groups have reported good anti-cancer effect of hollow CuS nanostructures[38-40].To test the cell toxicity of unique cage-like hollow CuS,the breast cancer cell MBA-MD-231 and melanoma cell B16 were incubated with a concentration range of CuS prepared with 2 mmol Na2S·9H2O in Fig.8a and 8b.It can be found that the viability of cells was higher than 70%when the concentration of cage-like CuS was increased to 500 μg·mL-1.This means that cage-like CuS were low toxic to cells.However,these cells were significantly inhibited after NIR light irradiation of low power density (600 mW·cm-2)for 3 min(Fig.8c and 8d).In contrast,there was almost no change for the pure medium group under the same condition (Fig.8c and 8d).This means 808 nm activated cage-like CuS,which had a lethal effect on cancer cells.

    Fig.7 Photo-thermal performance of samples:(a)Pure water and copper sulfides nanostructures prepared with different amount of Na2S·9H2O;(b)Different concentrations of cage-like CuSprepared with 2 mmol Na2S·9H2O upon NIR irradiation;(c)Photo-thermal performance of cage-like CuS(1 mg·mL-1)prepared with 2 mmol Na2S·9H2O with different laser power

    Fig.8 Viabilities of(a)B16 and(b)MD231cells incubated with different dosages of cage-like hollow CuSprepared with 2 mmol Na2S·9H2Oand viabilities of(c)B16 cells and(d)MD231 cell incubated with cage-like hollow CuS(500 μg·mL-1)prepared with 2 mmol Na2S·9H2Ofor 24 h after NIR light irradiation for 3 min

    CuSas an agent for PTT,the possible mechanism was discussed.The interaction of infrared with nanomaterials,heating is the major effect[41].It was found that elevated active oxygen species(ROS)generated with elevation of temperature to 37~50 ℃.Absorption of infrared energy stirs up the motion of charged particles and rotation of water molecules,therefore,rising the temperature.Then the formation of ROSand 8-oxoguanine were found[42].Heat-induced ROS can damage and/or inhibit proteins in several waysone is the direct oxidation of amino acids by ROS.Here,we apply the ROS produced by CuS mediated NIR heating for cancer treatment.

    3 Conclusions

    Pure hexagonal phase CuS with hollow spherelike structures was obtained by a hydrothermal process at180℃,and verified by XRD,SEM,TEMand HRTEM.The possible formation mechanism of CuS hollow spheres was discussed.the cage-like CuS exhibited excellent photo-thermal conversion performance under the irradiation of 808 nm laser,and therefore had the great potential as photo-thermal agent for anticancer.The present method is simple,reliable and can be further developed for the preparation of more metal sulfide nanostructures.

    猜你喜歡
    王麗麗硫化銅空心球
    某銅礦山硫化銅浮選段技改工業(yè)化應(yīng)用
    Existence and Uniqueness Theorems of Almost Periodic Solution in Shifts δ±on Time Scales
    基于空心球滑移條件下的雙梯度鉆井井筒溫壓場(chǎng)的研究
    硫化銅/石墨烯的制備及光催化性能研究
    Fe2TiO5/C空心球光催化劑的可見光光催化和重復(fù)利用性能研究
    聚苯胺/硫化銅復(fù)合材料的制備及其近紅外吸收性能
    用于高性能硫化鎘敏化太陽(yáng)能電池對(duì)電極的硫化銅/還原氧化石墨烯納米復(fù)合材料的合成
    新型炭材料(2018年1期)2018-03-15 10:49:23
    The Classi6cation of Inappropriate Diction in the English Descriptions
    The effect of viscosity on the cavitation characteristics of high speed sleeve bearing*
    空心球包覆處理制備氧化鋁多孔陶瓷
    亚洲欧洲日产国产| 欧美激情国产日韩精品一区| 最后的刺客免费高清国语| 日韩精品有码人妻一区| 97超碰精品成人国产| 啦啦啦啦在线视频资源| 国产视频内射| АⅤ资源中文在线天堂| 九草在线视频观看| 国产午夜精品论理片| 一级av片app| 欧美3d第一页| 日本黄色片子视频| 最近2019中文字幕mv第一页| 日本一二三区视频观看| 在线观看午夜福利视频| av视频在线观看入口| 99国产精品一区二区蜜桃av| 超碰av人人做人人爽久久| 午夜福利在线观看免费完整高清在 | 最近中文字幕高清免费大全6| 欧美一区二区国产精品久久精品| 亚洲av成人av| 日日撸夜夜添| 久久精品国产亚洲av香蕉五月| 国产三级在线视频| 波多野结衣高清无吗| 在线观看av片永久免费下载| 国产精品一区二区性色av| 99久久成人亚洲精品观看| 特大巨黑吊av在线直播| 成人鲁丝片一二三区免费| 青青草视频在线视频观看| 久久精品影院6| 国产三级在线视频| 日韩欧美精品v在线| 国产亚洲5aaaaa淫片| 国产精品久久久久久亚洲av鲁大| 日韩人妻高清精品专区| 22中文网久久字幕| 日韩精品青青久久久久久| 久久精品人妻少妇| 午夜福利在线在线| 深夜a级毛片| 在线观看一区二区三区| 欧美日韩在线观看h| 欧美bdsm另类| 国产蜜桃级精品一区二区三区| 精品一区二区免费观看| 少妇被粗大猛烈的视频| 三级经典国产精品| 色综合色国产| 岛国毛片在线播放| 变态另类成人亚洲欧美熟女| 1000部很黄的大片| 寂寞人妻少妇视频99o| 永久网站在线| 全区人妻精品视频| 熟女电影av网| 免费av不卡在线播放| 国语自产精品视频在线第100页| 亚洲第一电影网av| 18禁在线播放成人免费| 日日撸夜夜添| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久人妻综合| 国产亚洲欧美98| 国产精品美女特级片免费视频播放器| 久久午夜福利片| 六月丁香七月| 性插视频无遮挡在线免费观看| 毛片一级片免费看久久久久| 99在线人妻在线中文字幕| 精品久久国产蜜桃| 久久久久久久午夜电影| 99在线人妻在线中文字幕| 亚洲精品国产成人久久av| 99九九线精品视频在线观看视频| 舔av片在线| 激情 狠狠 欧美| 听说在线观看完整版免费高清| 久久久久久大精品| 最近视频中文字幕2019在线8| 观看美女的网站| 一区二区三区四区激情视频 | 日本一本二区三区精品| 一卡2卡三卡四卡精品乱码亚洲| 久久99热6这里只有精品| 三级毛片av免费| 麻豆精品久久久久久蜜桃| 国产日本99.免费观看| 国产精品久久久久久久久免| 婷婷色av中文字幕| 性欧美人与动物交配| 亚洲av第一区精品v没综合| 边亲边吃奶的免费视频| 欧美区成人在线视频| 久久鲁丝午夜福利片| 白带黄色成豆腐渣| 在线观看免费视频日本深夜| 熟女电影av网| 在线天堂最新版资源| 国产精品99久久久久久久久| 97超碰精品成人国产| 亚洲,欧美,日韩| 一个人看视频在线观看www免费| 少妇高潮的动态图| 天天一区二区日本电影三级| 日本黄色视频三级网站网址| 亚洲精品乱码久久久久久按摩| 18禁黄网站禁片免费观看直播| 哪个播放器可以免费观看大片| 少妇被粗大猛烈的视频| av免费在线看不卡| 爱豆传媒免费全集在线观看| 久久久久久久久久黄片| 波多野结衣高清作品| 亚洲精品粉嫩美女一区| 最近中文字幕高清免费大全6| 插阴视频在线观看视频| 可以在线观看的亚洲视频| 51国产日韩欧美| 亚洲av不卡在线观看| 色尼玛亚洲综合影院| 99热这里只有是精品50| 老师上课跳d突然被开到最大视频| 国产探花在线观看一区二区| 国产午夜精品一二区理论片| 国产伦一二天堂av在线观看| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线观看免费完整高清在 | 国产真实伦视频高清在线观看| 日日撸夜夜添| 91av网一区二区| 久久亚洲精品不卡| 亚洲国产欧洲综合997久久,| 男女边吃奶边做爰视频| 综合色av麻豆| 亚洲国产精品成人综合色| 日韩高清综合在线| 日韩 亚洲 欧美在线| 亚洲av不卡在线观看| 久久久精品大字幕| 亚洲,欧美,日韩| 国产精品久久久久久久电影| 波多野结衣高清无吗| 久久精品夜夜夜夜夜久久蜜豆| 美女国产视频在线观看| 成人漫画全彩无遮挡| 亚洲七黄色美女视频| 精品欧美国产一区二区三| 嘟嘟电影网在线观看| 日本撒尿小便嘘嘘汇集6| 蜜桃久久精品国产亚洲av| 亚洲图色成人| 久久久久久久久中文| 男女那种视频在线观看| 日日摸夜夜添夜夜添av毛片| 成人永久免费在线观看视频| 欧美区成人在线视频| 日韩大尺度精品在线看网址| 波多野结衣巨乳人妻| 中文资源天堂在线| 在线天堂最新版资源| 午夜福利在线在线| 黄片wwwwww| 国产国拍精品亚洲av在线观看| 黄色视频,在线免费观看| 99久久无色码亚洲精品果冻| 久久久色成人| 国产精品蜜桃在线观看 | 国产伦在线观看视频一区| .国产精品久久| 此物有八面人人有两片| 久久这里只有精品中国| 床上黄色一级片| 女人十人毛片免费观看3o分钟| 午夜福利在线观看吧| 99热6这里只有精品| 午夜久久久久精精品| 91精品一卡2卡3卡4卡| 婷婷精品国产亚洲av| 亚洲精品自拍成人| 色综合亚洲欧美另类图片| 成人漫画全彩无遮挡| 亚洲欧美日韩高清专用| 性欧美人与动物交配| 国产精品野战在线观看| 欧美日韩国产亚洲二区| 国产成人精品久久久久久| av国产免费在线观看| 国产av不卡久久| 成人漫画全彩无遮挡| 久99久视频精品免费| 久久精品国产亚洲av天美| 国产精品不卡视频一区二区| 老熟妇乱子伦视频在线观看| av天堂中文字幕网| 91午夜精品亚洲一区二区三区| 男女下面进入的视频免费午夜| 国产精品一区二区三区四区久久| 91在线精品国自产拍蜜月| 久99久视频精品免费| 精品久久久久久久久久久久久| 麻豆成人av视频| 成人毛片60女人毛片免费| 少妇被粗大猛烈的视频| 国产精品精品国产色婷婷| 国产成人a∨麻豆精品| 久久久久性生活片| 国产在视频线在精品| 国产伦在线观看视频一区| 欧美精品一区二区大全| 亚洲综合色惰| 黄色视频,在线免费观看| 久久久久网色| 如何舔出高潮| 国产精品人妻久久久久久| 熟女电影av网| 久久精品久久久久久噜噜老黄 | 亚洲精品粉嫩美女一区| 成人无遮挡网站| 国产精华一区二区三区| 男插女下体视频免费在线播放| 亚洲一级一片aⅴ在线观看| 深夜a级毛片| 国产亚洲精品久久久久久毛片| 成人性生交大片免费视频hd| 中国国产av一级| 在线天堂最新版资源| 国产乱人偷精品视频| 国产精品,欧美在线| 久久综合国产亚洲精品| 国产精品久久久久久久久免| 亚洲性久久影院| 日韩欧美 国产精品| 99热只有精品国产| 亚洲va在线va天堂va国产| 久久人妻av系列| 日本成人三级电影网站| 成人国产麻豆网| 丝袜美腿在线中文| 性欧美人与动物交配| 亚洲人成网站在线观看播放| 欧美精品一区二区大全| 国产成人福利小说| 99久久精品国产国产毛片| 亚洲不卡免费看| .国产精品久久| 少妇人妻一区二区三区视频| 国产在线精品亚洲第一网站| 在线播放国产精品三级| 丝袜喷水一区| 精品久久久噜噜| 国产爱豆传媒在线观看| 国产精品一区二区三区四区久久| 亚洲欧美日韩卡通动漫| 校园春色视频在线观看| 欧美日韩综合久久久久久| 亚洲精品色激情综合| 99久国产av精品国产电影| 精品久久久噜噜| 91久久精品电影网| 亚洲欧美成人综合另类久久久 | 最后的刺客免费高清国语| 九九爱精品视频在线观看| 国产高清不卡午夜福利| 国产精品国产三级国产av玫瑰| 一本久久精品| 亚洲av成人精品一区久久| 亚洲一区二区三区色噜噜| 久久精品影院6| 美女 人体艺术 gogo| 欧美最黄视频在线播放免费| 日本-黄色视频高清免费观看| 国产精品人妻久久久影院| 男插女下体视频免费在线播放| 日韩欧美国产在线观看| 欧美最新免费一区二区三区| 日韩制服骚丝袜av| 男插女下体视频免费在线播放| 联通29元200g的流量卡| 99久久久亚洲精品蜜臀av| 变态另类丝袜制服| 午夜激情福利司机影院| 国产在线男女| 日本与韩国留学比较| 在线观看美女被高潮喷水网站| 麻豆精品久久久久久蜜桃| 欧美日韩国产亚洲二区| 哪个播放器可以免费观看大片| 岛国在线免费视频观看| 美女高潮的动态| 网址你懂的国产日韩在线| 国产精品免费一区二区三区在线| 美女cb高潮喷水在线观看| 免费观看精品视频网站| 91午夜精品亚洲一区二区三区| 久久久精品欧美日韩精品| 男人狂女人下面高潮的视频| 欧美区成人在线视频| 九色成人免费人妻av| 好男人在线观看高清免费视频| 99热精品在线国产| 男的添女的下面高潮视频| 国国产精品蜜臀av免费| 成人av在线播放网站| 在线播放无遮挡| 亚洲乱码一区二区免费版| 少妇猛男粗大的猛烈进出视频 | 欧美人与善性xxx| 黄片wwwwww| 午夜免费激情av| 国产午夜精品一二区理论片| 成人三级黄色视频| 嫩草影院新地址| 国产av一区在线观看免费| 日本-黄色视频高清免费观看| 亚洲欧洲日产国产| 少妇熟女欧美另类| 国产午夜精品一二区理论片| 久久国产乱子免费精品| 18禁在线无遮挡免费观看视频| 国产日韩欧美在线精品| av在线蜜桃| 国产精品爽爽va在线观看网站| 国产日本99.免费观看| 国产亚洲精品av在线| 精华霜和精华液先用哪个| 免费人成视频x8x8入口观看| 内地一区二区视频在线| 高清午夜精品一区二区三区 | 国产 一区 欧美 日韩| 日本成人三级电影网站| 又粗又硬又长又爽又黄的视频 | 啦啦啦韩国在线观看视频| 蜜臀久久99精品久久宅男| 天天躁日日操中文字幕| 精品久久久噜噜| 99国产极品粉嫩在线观看| 69人妻影院| 国产亚洲av片在线观看秒播厂 | 王馨瑶露胸无遮挡在线观看| 久久久国产欧美日韩av| 亚洲av欧美aⅴ国产| 国产日韩一区二区三区精品不卡 | 高清视频免费观看一区二区| 国产伦精品一区二区三区视频9| 2021少妇久久久久久久久久久| 在线观看免费视频网站a站| 成人手机av| 男男h啪啪无遮挡| 亚洲欧美色中文字幕在线| 亚洲精品日韩在线中文字幕| 日本爱情动作片www.在线观看| 精品亚洲成a人片在线观看| 国产免费一级a男人的天堂| 亚洲欧洲精品一区二区精品久久久 | xxx大片免费视频| 国产老妇伦熟女老妇高清| 国产不卡av网站在线观看| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说| 日韩成人伦理影院| 少妇被粗大猛烈的视频| 国产精品熟女久久久久浪| 18+在线观看网站| 国产熟女午夜一区二区三区 | 欧美日韩综合久久久久久| 一级a做视频免费观看| 婷婷成人精品国产| 久久人妻熟女aⅴ| 一级二级三级毛片免费看| 三上悠亚av全集在线观看| 亚洲av日韩在线播放| 天美传媒精品一区二区| av有码第一页| 久久久久久久久大av| 国产精品99久久99久久久不卡 | 亚洲av国产av综合av卡| 午夜福利视频精品| 热99久久久久精品小说推荐| 国产精品无大码| 亚洲高清免费不卡视频| videos熟女内射| 免费人妻精品一区二区三区视频| 久久青草综合色| 免费人成在线观看视频色| 最黄视频免费看| 久久国内精品自在自线图片| 亚洲国产精品999| 成人国语在线视频| 国产无遮挡羞羞视频在线观看| 日本免费在线观看一区| 国产精品三级大全| 午夜精品国产一区二区电影| 日本-黄色视频高清免费观看| 人人澡人人妻人| 国产一区有黄有色的免费视频| 一区二区三区精品91| 夜夜骑夜夜射夜夜干| 国产精品人妻久久久久久| 精品一区二区免费观看| 99热这里只有是精品在线观看| 欧美最新免费一区二区三区| 成人影院久久| 精品人妻一区二区三区麻豆| 亚洲精品久久久久久婷婷小说| 王馨瑶露胸无遮挡在线观看| 国产又色又爽无遮挡免| 亚洲av男天堂| 亚洲av综合色区一区| 我的老师免费观看完整版| 日日爽夜夜爽网站| 久久这里有精品视频免费| 3wmmmm亚洲av在线观看| 美女国产高潮福利片在线看| 欧美日本中文国产一区发布| 爱豆传媒免费全集在线观看| 韩国高清视频一区二区三区| 亚洲人成77777在线视频| 中国国产av一级| 国产免费又黄又爽又色| 免费观看a级毛片全部| a 毛片基地| 欧美+日韩+精品| 一级毛片 在线播放| 久久精品久久久久久久性| 免费观看在线日韩| 欧美精品国产亚洲| 亚洲欧美日韩另类电影网站| 国产成人精品福利久久| 亚洲欧洲国产日韩| 国产精品99久久99久久久不卡 | 日本爱情动作片www.在线观看| 日韩视频在线欧美| 少妇被粗大猛烈的视频| 丝袜喷水一区| 高清黄色对白视频在线免费看| 搡老乐熟女国产| 精品人妻一区二区三区麻豆| 欧美精品一区二区免费开放| 免费日韩欧美在线观看| 免费看光身美女| 国产亚洲午夜精品一区二区久久| 国产精品蜜桃在线观看| 国产永久视频网站| 能在线免费看毛片的网站| 欧美激情 高清一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 一边摸一边做爽爽视频免费| 久久久久久久久久久免费av| 极品人妻少妇av视频| 久久国内精品自在自线图片| 看免费成人av毛片| 在线观看免费日韩欧美大片 | 日本wwww免费看| 免费观看的影片在线观看| 免费人成在线观看视频色| 亚洲美女视频黄频| 王馨瑶露胸无遮挡在线观看| 日韩精品免费视频一区二区三区 | 高清毛片免费看| 一级毛片黄色毛片免费观看视频| 观看美女的网站| 亚洲国产精品国产精品| 男女边摸边吃奶| 免费观看无遮挡的男女| 日韩一区二区视频免费看| 国产精品无大码| av女优亚洲男人天堂| 亚洲久久久国产精品| 精品久久蜜臀av无| 老司机亚洲免费影院| 国产欧美亚洲国产| 色吧在线观看| 91精品国产九色| 色94色欧美一区二区| 黑人高潮一二区| 欧美成人午夜免费资源| 日本免费在线观看一区| 18禁在线播放成人免费| 欧美成人精品欧美一级黄| 亚洲精品日韩在线中文字幕| 哪个播放器可以免费观看大片| 欧美精品亚洲一区二区| 大陆偷拍与自拍| 一边亲一边摸免费视频| 99久久人妻综合| 你懂的网址亚洲精品在线观看| 精品少妇久久久久久888优播| 亚洲精品一区蜜桃| 最新中文字幕久久久久| 在线 av 中文字幕| 国产日韩欧美亚洲二区| av在线观看视频网站免费| 亚洲欧美清纯卡通| 国产av精品麻豆| av国产精品久久久久影院| 在线观看一区二区三区激情| 美女主播在线视频| 亚洲国产最新在线播放| 黄色配什么色好看| 七月丁香在线播放| 日韩一区二区三区影片| 色94色欧美一区二区| 欧美人与性动交α欧美精品济南到 | 欧美老熟妇乱子伦牲交| 国产熟女午夜一区二区三区 | 黄色欧美视频在线观看| 久久久久久久久久人人人人人人| 中国国产av一级| 婷婷色综合www| 伦理电影大哥的女人| 人人澡人人妻人| 国产亚洲精品第一综合不卡 | 国产男女超爽视频在线观看| xxxhd国产人妻xxx| videos熟女内射| 国产一区二区在线观看av| 在线免费观看不下载黄p国产| 纵有疾风起免费观看全集完整版| 性色avwww在线观看| 99re6热这里在线精品视频| 搡老乐熟女国产| 精品亚洲成国产av| 26uuu在线亚洲综合色| 2021少妇久久久久久久久久久| 国产高清不卡午夜福利| 日本vs欧美在线观看视频| 99久久人妻综合| 少妇人妻 视频| 水蜜桃什么品种好| 亚洲欧美精品自产自拍| 国产日韩一区二区三区精品不卡 | 日本黄色片子视频| 国产黄频视频在线观看| 三级国产精品片| 99视频精品全部免费 在线| 亚洲高清免费不卡视频| 免费黄频网站在线观看国产| 亚洲av成人精品一二三区| 九色亚洲精品在线播放| 欧美日韩一区二区视频在线观看视频在线| av一本久久久久| 在线观看免费视频网站a站| 亚洲一区二区三区欧美精品| 欧美日韩av久久| 99国产精品免费福利视频| 视频中文字幕在线观看| 久久毛片免费看一区二区三区| 黄色视频在线播放观看不卡| 岛国毛片在线播放| 91精品国产国语对白视频| 精品人妻熟女毛片av久久网站| 欧美性感艳星| 亚洲无线观看免费| 青青草视频在线视频观看| 国产精品麻豆人妻色哟哟久久| 十分钟在线观看高清视频www| 国产亚洲精品第一综合不卡 | videos熟女内射| 国产精品国产三级国产av玫瑰| 丝袜喷水一区| 三级国产精品欧美在线观看| 免费观看的影片在线观看| 人妻夜夜爽99麻豆av| 一本大道久久a久久精品| 不卡视频在线观看欧美| 国产成人av激情在线播放 | 日本欧美视频一区| 精品久久久久久久久av| 国产精品蜜桃在线观看| 精品国产乱码久久久久久小说| 久久久久久人妻| 2022亚洲国产成人精品| 免费看av在线观看网站| 欧美精品一区二区免费开放| 日韩 亚洲 欧美在线| 视频在线观看一区二区三区| 日本爱情动作片www.在线观看| 欧美人与善性xxx| 成人影院久久| 久久婷婷青草| av一本久久久久| 亚洲精品乱码久久久v下载方式| 3wmmmm亚洲av在线观看| 久久久久网色| 这个男人来自地球电影免费观看 | 少妇人妻 视频| 亚洲欧美一区二区三区国产| 肉色欧美久久久久久久蜜桃| 黄色毛片三级朝国网站| 免费看光身美女| 亚洲内射少妇av| 男人添女人高潮全过程视频| 亚洲国产欧美在线一区| 久久精品国产a三级三级三级| 视频区图区小说| 欧美3d第一页| 亚洲av国产av综合av卡| 综合色丁香网| 久久婷婷青草| 一级毛片电影观看| 久久久a久久爽久久v久久| av免费在线看不卡| 啦啦啦视频在线资源免费观看| 国产精品国产av在线观看| 男女边吃奶边做爰视频| 一级爰片在线观看| 国产熟女午夜一区二区三区 | 国产成人午夜福利电影在线观看| 亚洲欧洲国产日韩| 青春草国产在线视频| 午夜视频国产福利|