• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics?

    2019-02-25 07:22:44TingXu許婷JuanZhao趙娟XianLongWang王憲龍andQingTianMeng孟慶田
    Chinese Physics B 2019年2期

    Ting Xu(許婷),Juan Zhao(趙娟),Xian-Long Wang(王憲龍),and Qing-Tian Meng(孟慶田),?

    1 School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    2 College of Science,Shandong Jiaotong University,Jinan 250357,China

    Keywords:state-to-state quantum dynamics,time-dependent wave packet,D+ND,differential cross section

    1.Introduction

    The nitrogen(N)atom is one of the most abundant elements in the atmosphere.Furthermore,the reactions containing N atom play important roles in atmospheric chemistry,combustion chemistry and some explosion processes.[1-3]Consequently,the reactions of the N atom especially with the H atom and their isotopes,have attracted much attention from both theoristsand experimentalists.[4-19]Experimentally,Koshi et al.[4]and Davison and Hanson[5]directly detected N atoms by the atomic resonance absorption technique,and studied the N+H2reaction at the high temperatures(1950 K-2850 K)in a shock tube.Furthermore,the rate coefficients of the reactions NH+H[6]and NH+D[7]were given in a quasistatic laser- flash photolysis,laser-induced fluorescence system at room-temperature.

    The theoretical investigation of the related reaction dynamics,such as with time-dependent wave packet(TDWP)[8]and quasi-classical trajectory(QCT),[9]was generally based on the accurate potential energy surface(PES).Takayanagi et al.[10]calculated the PESs for the N+H2reaction by using the ab initio multireference configuration interaction(MRCI)method.Pascual et al.[11]employed the modified GROW program developed in Refs.[12]-[15]to select the points and calculated the PES at the MCQDPT2//FORS-MCSCF(7,6)/6-311++G**level of theory by using GAMESS.Later,Adam et al.[6]and Qu et al.[7]proposed the global PESs for4A′′and2A′′states,which are based on the internally contracted MRCI method.Recently,Zhai and Han[16]constructed a high-quality global PES(hereafter denoted as ZH PES)for the ground4A′′state by using the many-body expansion method and the neural network method.For the ZH PES used in this work,all ab initio calculations are carried out in the MOLPRO package and 8645 ab initio energy points are used for fitting the PES with a basis set of aug-cc-pV5Z.The reaction heat of the ZH PES is closer to the experimental value and the predicted potential barrier height is lower than the theoretical value reported in previous work,which can therefore increase the reaction probability,especially at the lower collision energy.

    With this ZH PES,the relevant reactions including their isotopic reactions have been studied.Yu X and Yu Y J[17]and Zhang et al.[18]used the QCT method to calculate the polarization-dependent differential cross sections(DCSs)and the three angular distributions of P(θr),P(φr),P(θr,φr)for the reaction N+H2→NH+H.The state-to-state dynamics of the N(4S)+H2(X1Σ+)reaction in ZH PES has been reported by Zhang et al.[19]Furthermore,the reaction H+NH and its isotopic variants have been studied in previous work.Yao et al.[20]studied the state-to-state quantum dynamics of H+NH reaction,calculated and discussed the in fluences of collision energy on the product state-resolved integral cross sections(ICSs)and DCSs.Besides,Li et al.[21]implemented the TDWP and QCT methods to investigate the H+ND reaction and its isotopic reaction.

    However,for the title reaction,there are as yet no relevant calculations at the state-to-state level.In this work,we discuss the state-to-state dynamics calculations of the D+ND→N+D2reaction on the4A′′PES.To obtain the more precise information,we calculate state-resolved ICSs and DCSs of the reaction with considering all J values.The rest of the present article is arranged as follows.In Section 2 we brie fly describe the theoretical methods used in our quantum dynamical calculation.Our results are presented and discussed in Section 3.Finally,the main conclusions are dawn from the present study in Section 4.

    2.Theoretical method

    2.1.PES

    In this work,we use an adiabatic ZH PES constructed by Zhai and Han[16]and the PES is a fully dimensional analytic PES composed of 8645 ab initio energy points.The main features of this ZH PES are shown in Fig.1.It can be seen from this figure that there is an energy barrier located at the entrance channel,no well exists and the minimum reaction path occurs in the collinear configuration of the three nuclei.Besides,the title reaction is an exothermic reaction with a heat release of 1.17 eV.More information about ZH PES can be found in Ref.[16].

    Fig.1.Potential energy versus reaction path for H+NH reaction on ZH PES.

    2.2.Method

    When a collision of two molecules happens,its state-tostate quantum dynamics can provide more detailed information and profound observation of the chemical reaction process.But for general systems,the state-to-state quantum scattering calculation takes a long time to obtain the information about accurate dynamics.[22-28]To solve this problem,Zhang and Han[29-31]carefully studied the algorithm of the TDWP method and found that it had a high degree of parallelism.Based on this feature of the algorithm,they modified the program of TDWP into a parallel accelerated version of graphic processing units(GPUs). The relevant calculation shows that this version of GPUs can give high-efficiency dynamical results.[29]In this work,we used the GPUs to perform the calculation about the dynamics of reaction D+ND→N+D2.For the given J value,the Hamiltonian in body- fixed(BF)product Jacobi coordinate can be written as

    where R is the distance between N and the center of mass of D2;r is the internuclear distance of diatomic molecule D2;two reduced massμRand μrcan be expressed asμR=2mNmD/(mN+2mD)andμr=mD/2,respectively;is the total angular moment operator;is the rotational angular moment operator of D2;Vpesis the PES used in this work.

    The reactant was prepared in the space- fixed(SF)Jacobi coordinate system by using the Gaussian wave packet in R direction and can be expressed as

    with

    where L=J-j,V=Vpes-Vr(r),Vr(r)is the potential of the product molecule D2.

    The radial component of the product wave packet is chosen to be a delta function multiplied by the outgoing asymptotic radial function

    where R∞is a fixed radial coordinate of asymptotic region,ν′and j′are the final vibrational and rotational quantum number,respectively.Using this method,the scattering matrix can be obtained in BF Jacobi coordinate as follows:

    The coefficients are given by

    where i and f denote the initial and final states,h(1)and h(2)are the first and second kind of spherical Hankel functions,respectively.Finally,the state-to-state DCS and ICS can be calculated by the scattering matrix summed over all useful total angular momentum J values,and expressed as follows:

    Here,θ is the scattering angle between the reactants and the products,(θ)the reduced rotation matrix,K0and K′are the initial and final projection of the total angular momentum J,andis the transition matrix from initial state ν0j0to final state ν′j′.

    3.Result and discussion

    3.1.Number aspects

    In this work,we perform the state-to-state dynamics calculation for the reaction D+ND→N+D2with the TDWP method developed on the GPUs.To obtain the converged ICSs,the maximum value of J is 49 for collision energies up to 0.5 eV.In order to obtain the result of convergence,many tests have been carried out for ν=0 and j=0 to determine the optimal parameters.The test results are shown in Table 1.It is noted that K is one of the main convergence parameters,which sets an upper limit on the helicity quantum number.From Table 2,we can know that for the selected J and collision energy Ec=0.5 eV,the number of K(K=min(14,J+1))is enough to obtain the converged results.

    Table 1.Numerical parameters used in present quantum wavepacket calculations(all parameters are given in a.u.(atomic unit)unless otherwise stated).

    Table 2.Convergence test results of title reaction probability as a function of K(with E c=0.5 eV and J=20,30,and 40).

    3.2.Total reaction probability and ICS

    First,the reaction probability of the title reaction at five selected total angular momenta(J=0,10,20,30,40)are shown in Fig.2.For J=0,because of the existence of the tunneling effect,the threshold energy of the reaction is about 0.03 eV,lower than the barrier height(Ec≈0.08 eV).A broad resonance structure is displayed and it gradually disappears with the increase of J,which has been also found in H+H2[32]and H+Li2[33]reactions.This phenomenon can be partly attributed to the shift of the minimum of PES to higher energy as J increases.Moreover,because of the existence of centrifugal potential,the threshold energy also increases as the J value increases.The total ICSs are displayed in Fig.3.Obviously,the curves of the total ICS are consistent with the results in Ref.[21],so we can conclude that our calculations are reasonable.

    Fig.2.Total reaction probabilities versus collision energy for the D+ND→N+D2 reaction at several values of J.

    Fig.3.Total ICSs versus collision energy for different product vibrational state distributions in D+ND(ν=0,j=0)reaction.

    Fig.4. Plots of(2J+1)weighted opacity function versus J for D+ND→N+D2 reaction at different collision energies.

    Figure 4 shows the plots of opacity function versus J for the reaction D+ND at five different values of collision energy.The contribution of J-dependent partial wave to the ICSs is through a 2J+1 factor,which is analogous to the opacity function P(b).As we can see from Fig.4,all the curves show the arch shapes approximately,i.e.,each of the distribution curves reaches the maximum at a certain J value and then decreases to zero at the last accessible value of J.As the collision energy increases,the maximum value of J dependence shifts to the larger values of J.The reactions occur at the smaller values of J at the lower collision energy,and the larger values of J take part in the reaction with the increasing collision energy.Different J dependence corresponds to the different impact parameter b dependence.So,we can think that there are two mechanisms for the title reaction,i.e.,the rebound collision and the stripping collision.The rebound collision is associated with small impact parameter b and leads to the backward scattering,while the stripping collision corresponds to the big impact parameter b and tends to generate the sideward and forward scattering.Overall,we can think that the backward scattering is dominated at low collision energy,and the sideward and forward scattering begin to appear as the collision energy increases.

    3.3.Product state distribution

    The D2vibrational state-resolved ICSs are also shown in Fig.3.As we can see,ν′=0,1,2,3 vibrationallevels are open in the energy range considered and the D2product is mainly formed in the ν′=0 and ν′=1 states.The curve of ν′=0 increases monotonically as the collision energy increases,while the ν′=1 increases and then decreases with the increase of collision energy.Besides,the result of ν′=1 state is higher than that of ν′=0 before Ec≈ 0.3 eV and the opposite behavior appears after about 0.3 eV.This phenomenon can be due to the fact that the direct mechanism proceeds through a rebound mechanism in which the head-on collision plays an important role at low collision energy.In the head-on collision,the vibrational excitation of the reactant molecule is produced and then transferred to the product molecule.But,the stripping mechanism emerges and dominates as the collision energy increases,and the rotational excitation is more advantageous in this case.

    Fig.5.Product rotational state distributions for D+ND(ν=0,j=0)reaction at three different values of collision energy.

    Fig.6.(a)3D product vibrational state-resolved reaction cross section and(b)3D product rotational state-resolved cross section.

    Figure 5 shows the product rotational state-resolved ICSs at three values of collision energy.All curves reveal the similar features and the peaks lie between j′=0 and the maximum j′value allowed by energy.Unlike the vibrational state distribution,the rotational inversion population appears in all rotational states for the considered energy values.Although the behaviors are similar under different energy values,there are also some differences among them.With the increase of collision energy,the peak value of ICS tends to the higher j′,and the magnitude of the maximum value increases.This indicates that the number of product rotational channels increases as the collision energy increases,and more rotating channels are effectively opened at the higher collision energy.In addition,there is a negative correlation between vibrational excitation and rotational excitation,i.e.,with the increase of product vibrational number ν′,the density of the rotational state decreases gradually.To give a much more indicative view of the product rovibrational state distributions,we plot threedimensional diagram in Fig.6.As shown in this figure,the products mainly concentrate on ν′=0,1 and 0 < j′< 15,which is consistent with the distributions shown in Figs.3 and 5.

    3.4.DCS

    Figure 7 shows the total DCSs of the title reaction at five values of collision energy.It can be seen that the distribution is dominated by the backward scattering at low collision energy.The sideward scattering and the forward scattering begin to appear as the collision energy increases.Besides,the sideward scattering and the forward scattering are obviously enhanced as the collision energy increases.The details of the distribution from the scattering angle 0°to 12°are shown in Fig.7,in which we can find that there is a weak forward scattering at Ec=0.5 eV.This is due to the collision with larger impact parameters involved in the reaction,which fits our guess in Fig.4.From this drawing of partial enlargement,we can find that the DCSs decrease with the decrease of the collision energy in the forward scattering region.When the collision energy is 0.2 eV,the DCSs in the angle range from 0°to 12°are close to zero.As the collision energy continues to decrease to a smaller energy(such as 0.1 eV),the DCS oscillates slightly in the forward scattering region.This can be attributed to the fact that the scattering direction of the product is weakly affected by the smaller collision energy,and the scattering in each direction will have a certain probability.Due to these reasons,the DCS of Ec=0.1 eV is larger than that of Ec=0.2 eV in the small scattering angle region.

    Fig.7.Total DCSs versus scattering angle for D+ND→N+D2 reaction at five different values of collision energy.

    To show more details of the reaction,we calculate the state-resolved DCSs at three values of collision energy,which are shown in Fig.8.Forlow collision energy case,Ec=0.1 eV,the product experiences predominately the backward scattering in two vibrational states.For the higher energy case,the distribution of the DCS at Ec=0.3 eV is similar to that at Ec=0.5 eV.We can find that the backward scattering relates to the relatively small rotational states.Besides,the sideward scattering is enhanced with the increase of rotational quantum number.

    Fig.8.State-resolved DCSs for title reaction at three typical collision energy values.

    4.Conclusions

    In this work,the efficient GPU version of the TDWP code is used to study the reaction D+ND on a new ab initio PES.The total ICS increases as the collision energy increases after the threshold value,barely having the oscillatory structure.In addition,there is no obvious inversion of quantum number in the vibrational state-resolved ICS,while the rotational state-resolved ICS has inversion phenomenon.Because of the low impact parameter b collisions at low collision energy,the products experience mainly backward scattering.With the increase of collision energy,the sideward scattering and the forward scattering begin to appear and increase gradually,and the product molecules are excited to high rovibrational states.The backward scattering of the product is also observed at high energy,which means that there exist rebound and stripping mechanisms at high energy.

    18禁在线无遮挡免费观看视频| 熟女电影av网| 国产欧美日韩精品一区二区| 亚洲丝袜综合中文字幕| 欧美人与善性xxx| 黄色配什么色好看| 欧美激情国产日韩精品一区| 亚洲欧美成人精品一区二区| 国产在线男女| 国产精品不卡视频一区二区| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产欧美在线一区| 亚洲一级一片aⅴ在线观看| 高清日韩中文字幕在线| 日韩av免费高清视频| av又黄又爽大尺度在线免费看| 天美传媒精品一区二区| 91久久精品国产一区二区成人| 嫩草影院入口| 我要看黄色一级片免费的| 亚洲国产色片| 最近2019中文字幕mv第一页| 干丝袜人妻中文字幕| 久久精品国产亚洲av天美| av在线app专区| 成人综合一区亚洲| 在线观看免费视频网站a站| 欧美激情国产日韩精品一区| 亚洲色图av天堂| 久久久久久久久久人人人人人人| 国产白丝娇喘喷水9色精品| 国产伦在线观看视频一区| 亚洲国产日韩一区二区| 精品酒店卫生间| 亚洲电影在线观看av| 91精品一卡2卡3卡4卡| 国产精品.久久久| 欧美一级a爱片免费观看看| 国产欧美日韩一区二区三区在线 | 国产成人一区二区在线| 亚洲国产日韩一区二区| 男女免费视频国产| 男的添女的下面高潮视频| 日本午夜av视频| 99热网站在线观看| 久久ye,这里只有精品| 最近手机中文字幕大全| 久热久热在线精品观看| 久久久久久人妻| 免费观看性生交大片5| 久久久久久久精品精品| 亚洲四区av| 免费在线观看成人毛片| 亚洲第一av免费看| 欧美日韩一区二区视频在线观看视频在线| 亚洲激情五月婷婷啪啪| 欧美日韩视频精品一区| 一区二区av电影网| 亚洲av福利一区| 搡女人真爽免费视频火全软件| 一级毛片aaaaaa免费看小| 亚洲av中文字字幕乱码综合| 亚洲伊人久久精品综合| av国产免费在线观看| 搡女人真爽免费视频火全软件| 我的女老师完整版在线观看| 一级片'在线观看视频| 一级二级三级毛片免费看| 亚洲欧美日韩卡通动漫| 久久久色成人| 久久人人爽人人片av| 高清毛片免费看| 一级爰片在线观看| 亚洲在久久综合| 身体一侧抽搐| 亚洲欧美精品专区久久| 亚洲成人中文字幕在线播放| 久久久久久伊人网av| 日韩av免费高清视频| 91久久精品国产一区二区成人| 国产精品熟女久久久久浪| 日韩一区二区三区影片| 国产深夜福利视频在线观看| 日韩电影二区| 国产伦理片在线播放av一区| 亚洲中文av在线| 最近中文字幕2019免费版| 欧美亚洲 丝袜 人妻 在线| 精品久久久久久电影网| 777米奇影视久久| 啦啦啦中文免费视频观看日本| av国产久精品久网站免费入址| 久久精品夜色国产| 久久精品国产亚洲av天美| 男女无遮挡免费网站观看| 国产成人一区二区在线| 欧美xxⅹ黑人| 亚洲美女黄色视频免费看| 18禁裸乳无遮挡动漫免费视频| 国国产精品蜜臀av免费| 久久人人爽av亚洲精品天堂 | 九九爱精品视频在线观看| 日本欧美视频一区| 欧美人与善性xxx| 在线天堂最新版资源| 亚洲激情五月婷婷啪啪| 九九久久精品国产亚洲av麻豆| 搡老乐熟女国产| 日韩免费高清中文字幕av| 国产美女午夜福利| 久久精品国产亚洲av天美| 人人妻人人爽人人添夜夜欢视频 | 午夜免费男女啪啪视频观看| 最近中文字幕2019免费版| 亚洲av国产av综合av卡| 亚洲怡红院男人天堂| 美女xxoo啪啪120秒动态图| 最近手机中文字幕大全| 女的被弄到高潮叫床怎么办| 国产伦精品一区二区三区四那| 人妻制服诱惑在线中文字幕| 三级国产精品欧美在线观看| 久久精品国产自在天天线| 2018国产大陆天天弄谢| 一区二区三区四区激情视频| 五月天丁香电影| 国产无遮挡羞羞视频在线观看| 国产色婷婷99| 女人久久www免费人成看片| 91午夜精品亚洲一区二区三区| 精品久久久久久久久亚洲| 国产精品国产三级国产av玫瑰| 日韩成人av中文字幕在线观看| 亚洲国产精品成人久久小说| 老女人水多毛片| 一级爰片在线观看| 黄色一级大片看看| 成人毛片60女人毛片免费| 91aial.com中文字幕在线观看| 欧美少妇被猛烈插入视频| 王馨瑶露胸无遮挡在线观看| 三级国产精品片| 黄色欧美视频在线观看| 成人免费观看视频高清| 亚洲欧美精品专区久久| 男女国产视频网站| av国产久精品久网站免费入址| 久久久久久久大尺度免费视频| 欧美日本视频| 成人毛片60女人毛片免费| 日韩制服骚丝袜av| 欧美日韩视频高清一区二区三区二| 亚洲精品日本国产第一区| 欧美高清性xxxxhd video| 中国美白少妇内射xxxbb| 高清黄色对白视频在线免费看 | 亚洲欧洲国产日韩| 亚洲av电影在线观看一区二区三区| 午夜老司机福利剧场| 中文字幕亚洲精品专区| 91精品一卡2卡3卡4卡| 欧美精品人与动牲交sv欧美| 久久久成人免费电影| 久久久久久久精品精品| 少妇人妻精品综合一区二区| 亚洲av成人精品一区久久| 插逼视频在线观看| 日韩一区二区视频免费看| 亚洲欧美日韩东京热| 久久99精品国语久久久| 免费不卡的大黄色大毛片视频在线观看| 青青草视频在线视频观看| 免费黄色在线免费观看| 欧美97在线视频| 一个人看的www免费观看视频| 汤姆久久久久久久影院中文字幕| 一级片'在线观看视频| 欧美xxxx黑人xx丫x性爽| 亚洲精品中文字幕在线视频 | 在线免费观看不下载黄p国产| 少妇精品久久久久久久| 国产av精品麻豆| 最新中文字幕久久久久| 色视频在线一区二区三区| 99热全是精品| av视频免费观看在线观看| 色网站视频免费| 视频区图区小说| 嫩草影院新地址| 国产亚洲一区二区精品| 国产淫语在线视频| 三级国产精品欧美在线观看| 丰满人妻一区二区三区视频av| 久久国产亚洲av麻豆专区| 亚洲成人一二三区av| 亚洲精品一二三| 国产乱人视频| 高清日韩中文字幕在线| 好男人视频免费观看在线| 女的被弄到高潮叫床怎么办| 熟女av电影| 汤姆久久久久久久影院中文字幕| 免费久久久久久久精品成人欧美视频 | 免费大片黄手机在线观看| 你懂的网址亚洲精品在线观看| 国产精品成人在线| 日韩强制内射视频| 国产美女午夜福利| 成年女人在线观看亚洲视频| av天堂中文字幕网| 亚洲av.av天堂| 一区二区三区免费毛片| 18禁动态无遮挡网站| 亚洲无线观看免费| 久久99蜜桃精品久久| 欧美一区二区亚洲| 国产片特级美女逼逼视频| 涩涩av久久男人的天堂| 免费av不卡在线播放| 国内揄拍国产精品人妻在线| 久久6这里有精品| 久久人人爽人人片av| 18+在线观看网站| 亚洲精品自拍成人| 免费久久久久久久精品成人欧美视频 | 欧美高清成人免费视频www| 纵有疾风起免费观看全集完整版| 精品午夜福利在线看| 国内精品宾馆在线| 国产高清三级在线| 国产熟女欧美一区二区| 精品久久久久久电影网| 王馨瑶露胸无遮挡在线观看| 亚洲美女搞黄在线观看| 色综合色国产| 少妇人妻 视频| 国语对白做爰xxxⅹ性视频网站| 日日啪夜夜爽| 波野结衣二区三区在线| 搡女人真爽免费视频火全软件| 国产高清有码在线观看视频| 极品教师在线视频| 不卡视频在线观看欧美| av国产免费在线观看| 一区二区三区四区激情视频| 香蕉精品网在线| 人妻制服诱惑在线中文字幕| 最新中文字幕久久久久| 卡戴珊不雅视频在线播放| 老熟女久久久| 人人妻人人澡人人爽人人夜夜| 欧美日韩视频精品一区| 在线观看美女被高潮喷水网站| 久久精品久久久久久久性| 91精品一卡2卡3卡4卡| av网站免费在线观看视频| 麻豆国产97在线/欧美| 国产美女午夜福利| 18+在线观看网站| 一区二区三区精品91| 国产精品女同一区二区软件| 久热久热在线精品观看| 精品酒店卫生间| 亚洲欧洲国产日韩| 99久久综合免费| tube8黄色片| av福利片在线观看| 美女国产视频在线观看| 性色avwww在线观看| 男人添女人高潮全过程视频| 日韩欧美 国产精品| av一本久久久久| 性色av一级| 伦精品一区二区三区| 亚洲成人中文字幕在线播放| 天天躁日日操中文字幕| 国产日韩欧美亚洲二区| 1000部很黄的大片| 欧美少妇被猛烈插入视频| 青春草国产在线视频| 国产成人freesex在线| 搡女人真爽免费视频火全软件| 欧美xxxx黑人xx丫x性爽| 精品亚洲成a人片在线观看 | 18禁在线无遮挡免费观看视频| 欧美高清性xxxxhd video| 精品国产一区二区三区久久久樱花 | 一本久久精品| av在线app专区| 国产成人精品久久久久久| 又粗又硬又长又爽又黄的视频| a 毛片基地| 日韩在线高清观看一区二区三区| 国产真实伦视频高清在线观看| 日本av手机在线免费观看| 欧美极品一区二区三区四区| 国产欧美亚洲国产| 国产成人91sexporn| 春色校园在线视频观看| 精品一品国产午夜福利视频| 一区二区三区精品91| 91精品国产国语对白视频| 一个人免费看片子| 人妻夜夜爽99麻豆av| 免费大片18禁| 蜜桃亚洲精品一区二区三区| 性高湖久久久久久久久免费观看| 91aial.com中文字幕在线观看| 免费观看无遮挡的男女| 97在线人人人人妻| 欧美日韩一区二区视频在线观看视频在线| 大码成人一级视频| 少妇 在线观看| 久久久久久久久久成人| 九九久久精品国产亚洲av麻豆| 日本一二三区视频观看| 国产大屁股一区二区在线视频| 日本黄大片高清| xxx大片免费视频| 日韩 亚洲 欧美在线| 尾随美女入室| 欧美日韩视频精品一区| 毛片一级片免费看久久久久| av在线app专区| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦在线观看免费高清www| 韩国av在线不卡| 日韩国内少妇激情av| 精华霜和精华液先用哪个| 亚洲综合精品二区| 国产欧美日韩精品一区二区| 在线观看免费日韩欧美大片 | 寂寞人妻少妇视频99o| 欧美少妇被猛烈插入视频| 亚洲精品中文字幕在线视频 | 特大巨黑吊av在线直播| 99精国产麻豆久久婷婷| 美女国产视频在线观看| 大香蕉97超碰在线| 久久久欧美国产精品| 欧美日韩精品成人综合77777| 99久久精品国产国产毛片| 熟女av电影| 26uuu在线亚洲综合色| 99久国产av精品国产电影| 亚洲无线观看免费| 视频区图区小说| 精品一区二区三区视频在线| 内射极品少妇av片p| 亚洲怡红院男人天堂| 下体分泌物呈黄色| 日韩成人伦理影院| 99热国产这里只有精品6| 春色校园在线视频观看| 国产精品人妻久久久久久| 日韩精品有码人妻一区| 国内精品宾馆在线| 国产精品不卡视频一区二区| 亚洲美女视频黄频| 亚洲欧美一区二区三区国产| 亚洲性久久影院| 国产精品国产三级国产av玫瑰| 97精品久久久久久久久久精品| 国产黄片美女视频| 麻豆国产97在线/欧美| 婷婷色av中文字幕| 你懂的网址亚洲精品在线观看| 青青草视频在线视频观看| 99热这里只有是精品50| 国产精品成人在线| 春色校园在线视频观看| kizo精华| 七月丁香在线播放| 99热6这里只有精品| 日本免费在线观看一区| 视频中文字幕在线观看| 男人添女人高潮全过程视频| 亚洲精品,欧美精品| 亚洲精品日本国产第一区| 看免费成人av毛片| 日韩av免费高清视频| 纯流量卡能插随身wifi吗| 日本-黄色视频高清免费观看| 亚洲av电影在线观看一区二区三区| 国产成人a区在线观看| 自拍偷自拍亚洲精品老妇| 18禁裸乳无遮挡免费网站照片| 亚洲无线观看免费| 免费播放大片免费观看视频在线观看| 日韩亚洲欧美综合| 在线播放无遮挡| 最近最新中文字幕免费大全7| 人妻系列 视频| 99久久精品一区二区三区| 午夜福利在线在线| 亚洲欧美日韩卡通动漫| 极品教师在线视频| 欧美精品一区二区大全| 国产精品久久久久久av不卡| av视频免费观看在线观看| 高清日韩中文字幕在线| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人 | 国产 一区精品| 亚洲欧美中文字幕日韩二区| 国产欧美亚洲国产| 久久久精品94久久精品| 亚洲国产精品国产精品| 国产极品天堂在线| 日本一二三区视频观看| 人妻制服诱惑在线中文字幕| 日本猛色少妇xxxxx猛交久久| 欧美极品一区二区三区四区| 国内少妇人妻偷人精品xxx网站| 欧美xxxx黑人xx丫x性爽| 久久av网站| 少妇的逼好多水| 久久久久久人妻| 免费高清在线观看视频在线观看| 午夜老司机福利剧场| 亚洲在久久综合| 精品久久国产蜜桃| 尤物成人国产欧美一区二区三区| 中文欧美无线码| 欧美xxxx性猛交bbbb| 国产精品久久久久久久电影| 深爱激情五月婷婷| 欧美97在线视频| 99久久精品热视频| 少妇熟女欧美另类| 寂寞人妻少妇视频99o| 久久综合国产亚洲精品| 老女人水多毛片| 26uuu在线亚洲综合色| 麻豆乱淫一区二区| 午夜福利在线观看免费完整高清在| 丰满少妇做爰视频| 国产日韩欧美亚洲二区| 国产精品无大码| 51国产日韩欧美| 亚洲国产高清在线一区二区三| 嫩草影院新地址| 80岁老熟妇乱子伦牲交| 97热精品久久久久久| av黄色大香蕉| 亚洲成人中文字幕在线播放| 免费黄色在线免费观看| 久久人妻熟女aⅴ| 国产免费一区二区三区四区乱码| 久久久久久久久久成人| 欧美另类一区| 一级爰片在线观看| 国产精品秋霞免费鲁丝片| 美女高潮的动态| 22中文网久久字幕| 毛片女人毛片| 黑丝袜美女国产一区| 成人漫画全彩无遮挡| 日韩欧美一区视频在线观看 | 久久久久视频综合| 精品99又大又爽又粗少妇毛片| 汤姆久久久久久久影院中文字幕| 日本欧美国产在线视频| 色网站视频免费| av国产精品久久久久影院| 免费看不卡的av| 精品久久国产蜜桃| 国产高清三级在线| 国产精品秋霞免费鲁丝片| 亚洲精品456在线播放app| 亚洲激情五月婷婷啪啪| 久久久久网色| 国产av码专区亚洲av| 国产精品久久久久久av不卡| 十八禁网站网址无遮挡 | 国产精品爽爽va在线观看网站| 一个人免费看片子| 国产一区二区在线观看日韩| 99热这里只有是精品在线观看| 永久免费av网站大全| 久久国内精品自在自线图片| 国产av精品麻豆| 91久久精品国产一区二区成人| 不卡视频在线观看欧美| 国产精品女同一区二区软件| 免费看不卡的av| 免费av中文字幕在线| 免费少妇av软件| 爱豆传媒免费全集在线观看| 熟妇人妻不卡中文字幕| 亚洲精品日韩av片在线观看| 性色av一级| 婷婷色麻豆天堂久久| 国产精品99久久99久久久不卡 | 国产精品免费大片| 免费少妇av软件| 久久久久视频综合| 丝袜喷水一区| 久久久久久伊人网av| 亚洲人成网站在线播| 黄片wwwwww| 晚上一个人看的免费电影| 中文欧美无线码| 建设人人有责人人尽责人人享有的 | 久久毛片免费看一区二区三区| 国产男女内射视频| 国产淫语在线视频| 在线观看三级黄色| 亚洲人成网站高清观看| 国产精品秋霞免费鲁丝片| 亚洲不卡免费看| 搡女人真爽免费视频火全软件| 国产欧美日韩一区二区三区在线 | 久久国产精品男人的天堂亚洲 | 超碰av人人做人人爽久久| 亚洲人成网站高清观看| 日本午夜av视频| 亚洲精品国产av成人精品| 美女中出高潮动态图| 精品人妻偷拍中文字幕| 深爱激情五月婷婷| 国产在线男女| 男女边吃奶边做爰视频| av黄色大香蕉| 久久久午夜欧美精品| 一区二区三区免费毛片| 国产色爽女视频免费观看| 日本黄大片高清| 激情 狠狠 欧美| 亚洲国产精品国产精品| 日韩伦理黄色片| 欧美 日韩 精品 国产| 中文字幕av成人在线电影| 精品一区二区三区视频在线| 亚洲国产高清在线一区二区三| 一二三四中文在线观看免费高清| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 看免费成人av毛片| 亚洲精品456在线播放app| 男女边摸边吃奶| 免费在线观看成人毛片| 婷婷色麻豆天堂久久| 99热这里只有是精品在线观看| av播播在线观看一区| 国产精品久久久久久久久免| 欧美bdsm另类| 亚洲不卡免费看| 高清日韩中文字幕在线| av在线老鸭窝| 亚洲自偷自拍三级| 美女中出高潮动态图| 夫妻午夜视频| 午夜视频国产福利| 多毛熟女@视频| 亚洲av中文字字幕乱码综合| 91久久精品国产一区二区三区| 蜜桃在线观看..| 日韩成人av中文字幕在线观看| 国产在线视频一区二区| 日日摸夜夜添夜夜爱| 国产精品一区二区在线观看99| 最后的刺客免费高清国语| 国产成人精品久久久久久| a 毛片基地| 日日啪夜夜撸| 国产69精品久久久久777片| 一区在线观看完整版| 国产爽快片一区二区三区| 99热网站在线观看| 少妇精品久久久久久久| 日本猛色少妇xxxxx猛交久久| 久久毛片免费看一区二区三区| 大片免费播放器 马上看| 熟女电影av网| 简卡轻食公司| 亚洲av中文av极速乱| 国产无遮挡羞羞视频在线观看| 少妇人妻一区二区三区视频| 如何舔出高潮| 精品国产乱码久久久久久小说| 亚洲av在线观看美女高潮| 亚洲国产欧美在线一区| 久久毛片免费看一区二区三区| 国产视频首页在线观看| 不卡视频在线观看欧美| 久久国产亚洲av麻豆专区| 波野结衣二区三区在线| 久久国内精品自在自线图片| 久久久久久九九精品二区国产| 99热全是精品| 美女主播在线视频| 高清在线视频一区二区三区| 97超视频在线观看视频| 联通29元200g的流量卡| a级毛片免费高清观看在线播放| 亚洲国产精品999| 在线观看免费高清a一片| 插逼视频在线观看| 免费观看的影片在线观看| 成人毛片a级毛片在线播放| 免费黄色在线免费观看| av国产免费在线观看| 国产久久久一区二区三区| 我的女老师完整版在线观看| 80岁老熟妇乱子伦牲交| 日韩成人av中文字幕在线观看| 性高湖久久久久久久久免费观看| 一区二区三区乱码不卡18| 久久久久久九九精品二区国产| 热re99久久精品国产66热6| 国产伦精品一区二区三区视频9| 国产一区有黄有色的免费视频| 日韩强制内射视频| 岛国毛片在线播放|