高如琴,劉 迪,谷一鳴,朱德寶,李國亭
?
硅藻土/玉米秸稈木質(zhì)陶瓷制備及其對廢水中四環(huán)素吸附動力學(xué)
高如琴1,2,劉 迪1,谷一鳴1,朱德寶1,李國亭1,2
(1. 華北水利水電大學(xué) 環(huán)境與市政工程學(xué)院,鄭州 450046;2. 河南省水環(huán)境模擬與治理重點實驗室,鄭州 450046)
為資源化利用農(nóng)業(yè)廢棄物,探求玉米秸稈的高效綜合利用。以玉米秸稈和酚醛樹脂為主要原料,通過硅藻土改性,制備了硅藻土/玉米秸稈木質(zhì)陶瓷。結(jié)合SEM、XRD、FI-TR、壓汞法現(xiàn)代測試手段對樣品的結(jié)構(gòu)及性能進行了表征。以四環(huán)素為目標污染物,研究了樣品對四環(huán)素的吸附等溫線和吸附動力學(xué)。結(jié)果表明:經(jīng)硅藻土改性的木質(zhì)陶瓷內(nèi)部含有大量孔洞,以非晶質(zhì)為主,含有少量石英晶相和結(jié)晶石墨。木質(zhì)陶瓷的孔徑范圍主要在1 000~3 800 nm,孔隙率約為48.6%,比表面積達到7.83 m2/g。由相關(guān)系數(shù)2可知,Langmiur等溫吸附模型比Frendlich模型更好地描述了木質(zhì)陶瓷對四環(huán)素(0.999>0.975)的吸附過程;pH值為3、5、7、9條件下,以木質(zhì)陶瓷對初始濃度為5 mg/L的四環(huán)素溶液進行吸附。動力學(xué)模型擬合結(jié)果表明,準二級動力學(xué)模型參數(shù)2>0.98,能夠更好地擬合材料對四環(huán)素的吸附過程。該研究實現(xiàn)了廢棄材料的深度利用和對四環(huán)素廢水的有效處理,為玉米秸稈的利用提供了新的途徑。
秸稈; 抗生素; 動力學(xué)參數(shù); 木質(zhì)陶瓷; 硅藻土; 四環(huán)素; 動力學(xué)模型
木質(zhì)陶瓷(woodceramics,WCMs)是由樹脂經(jīng)高溫煅燒(真空)形成的玻璃碳增強木質(zhì)來源的無定形碳組成的碳-碳復(fù)合材料[1-4]。近年來,木質(zhì)陶瓷以其原料來源廣、成本低、用途廣而受到了人們的關(guān)注[5-9]。但木質(zhì)陶瓷力學(xué)性能欠佳、抗壓強度偏低等因素制約了其在諸多方面的應(yīng)用。改性木質(zhì)陶瓷,拓寬其應(yīng)用領(lǐng)域已成為研究熱點。Xie等[10]通過在木質(zhì)陶瓷內(nèi)添加鎂合金,制備了高機械性能、高阻尼的三維網(wǎng)狀結(jié)構(gòu)的WCMs/ZK60A 復(fù)合材料。吳文濤等[11]以甘蔗渣、麥秸以及凹凸棒石為原料,以酚醛樹脂為黏結(jié)劑,采用混合后熱壓再燒結(jié)的工藝制備凹凸棒石改性甘蔗渣/麥秸木質(zhì)陶瓷,制備出了各溫度點下的木質(zhì)陶瓷材料。胡麗華等[12]以漢麻稈芯碳化后的碳粉為原料,分別采用注漿和干壓成型工藝制備素坯,通過反應(yīng)燒結(jié)制備出碳化硅木質(zhì)陶瓷。
玉米秸稈作為農(nóng)業(yè)廢棄物,可用做肥料、飼料、能源、秸稈生物炭還田或填埋等方式進行處理,但綜合利用效率較低,高附加值產(chǎn)品較少。硅藻土是由海洋或湖泊中的硅藻殘骸經(jīng)地質(zhì)作用而形成的一種非金屬礦,其來源廣泛,價格低廉,具有獨特的硅藻殼體結(jié)構(gòu)[13-16]。四環(huán)素類抗生素是以丙四苯為基本骨架的一類廣譜抗生素,主要應(yīng)用于細菌、立克次氏體、衣原體及支原體等所致的感染。蓄牧養(yǎng)殖和水產(chǎn)養(yǎng)殖用抗生素已達到150多種,現(xiàn)有的污水處理技術(shù)并不能將廢水中抗生素完全去除,這導(dǎo)致水體中大量抗生素類污染物出現(xiàn)[17-19]。本研究利用硅藻土的原始孔結(jié)構(gòu)和固體廢棄物玉米秸稈制備的硅藻土/玉米秸稈木質(zhì)陶瓷,用于廢水中四環(huán)素的吸附去除,探討硅藻土/玉米秸稈木質(zhì)陶瓷對四環(huán)素的吸附動力學(xué)。該研究也可提高玉米秸稈的應(yīng)用范圍,更具有良好的生態(tài)效益和經(jīng)濟效益,達到以廢治廢的目的。
試劑:四環(huán)素,美國Amresco公司(工業(yè)純);無水乙醇、鹽酸、氫氧化鈉,天津市恒興化學(xué)試劑制造有限公司(分析純)。
原料:熱固性酚醛樹脂2127,濟寧銘達新材料有限公司(工業(yè)純);硅藻土的中位粒徑為8.61m,孔徑為50~800nm,主要化學(xué)組成為:SiO282.33%,Al2O34.58%,F(xiàn)e2O31.57%,吉林省臨江北峰硅藻土有限公司(工業(yè)純);玉米秸稈采于鄭州市周邊。
將酚醛樹脂用無水乙醇進行溶解,加入玉米秸稈(已打散為0.425 mm粉末)和硅藻土(質(zhì)量比為酚醛樹脂∶玉米秸稈粉末∶硅藻土=1∶1.5∶1.2)充分混合制成糊料,烘干、打散,取50 g放入模具,熱壓成型(150 ℃,12 MPa),壓制木質(zhì)陶瓷坯體。于真空氣氛爐中煅燒(1 000 ℃,2 h),制備硅藻土/玉米秸稈木質(zhì)陶瓷樣品[20]。
用XRD-6100型X射線衍射儀(X-ray diffraction,XRD)對樣品進行物相分析;用日產(chǎn)HITACHI S-9220掃描電子顯微鏡(scanning electron microscope,SEM)對樣品斷面的微觀形貌進行觀察;用美國Auto Pore IV 9500壓汞儀分析樣品孔徑與比表面積;用日本島津UV mini-1240紫外可見分光光度計,在360 nm處檢測四環(huán)素廢水吸光度;用日本島津公司JY-pH2.0型pH計,檢測四環(huán)素廢水pH值。
取一定量(20、40、60、80、100、120、140、160 mg)的硅藻土/玉米秸稈木質(zhì)陶瓷于錐形瓶中,加入50 mg/L的四環(huán)素,在25 ℃、pH值為7及震蕩速度150 r/min的條件下,分別振蕩24 h(達到吸附平衡),再用移液管移取10mL溶液(0.45m膜濾過濾),檢測過濾后四環(huán)素溶液于最大波長處(360 nm)檢測樣品吸光度(紫外-可見分光光度計,檢測后溶液倒回原取樣瓶)。根據(jù)Lambert-Beer 定律,溶液最大波長處的吸光度與溶液濃度有很好的線性關(guān)系,用吸光度計算四環(huán)素吸附量[21]。
Langmuir等溫式
式中C為平衡濃度,mg/L;Q和0分別為平衡吸附量,mg/g和最大吸附量,mg/g;K為Langmiur系數(shù),其大小與吸附量和吸附能量相關(guān)。
Freundlich吸附等溫線
式中1/為吸附指數(shù);K為吸附系數(shù)。
將1 g硅藻土/玉米秸稈木質(zhì)陶瓷置于250 mL燒杯中,加入到200mL濃度為5 mg/L的四環(huán)素溶液(錐形瓶),用NaOH或HCl的稀溶液調(diào)節(jié)溶液pH值分別為3、5、7、9,溫度為25 ℃、頻率為120 r/min的搖床內(nèi)振蕩,在不同時間用移液管移除溶液,與1.4部分相同方法測四環(huán)素溶液最大波長處吸光度。根據(jù) Lambert-Beer 定律,用吸光度計算四環(huán)素理論平衡吸附量q。
式中0和C’為吸附前后四環(huán)素的濃度,mg/L;為吸附劑的質(zhì)量,g;為溶液體積,L。
將試驗數(shù)據(jù)分別進行準一級動力學(xué)模型、準二級動力學(xué)模型、Elovich模型和Double constants模型擬合,公式如下
準一級動力學(xué)方程
準二級動力學(xué)方程
Elovich 方程
Double constants方程
上述公式中q為時刻硅藻土/玉米秸稈木質(zhì)陶瓷對四環(huán)素的吸附量,mg/g;1和2分別為準一級和準二級動力學(xué)模型中吸附劑的吸附容量和強度的常數(shù),min-1;Elovich和Double constants模型中為吸附速率常數(shù),為常數(shù)。
利用上述公式,在pH值為3、5、7、9的條件下,對試驗數(shù)據(jù)進行準一級動力學(xué)模型、準二級動力學(xué)模型、Elovich 模型和Double constants 模型非線性模擬。
圖1為硅藻土/玉米秸稈木質(zhì)陶瓷的XRD圖譜。由圖1可以看出,圖中以饅頭峰為主,在2=22.8°、26.6°等處峰形尖銳、強度大,為石英的特征峰,說明材料以無定形態(tài)為主,內(nèi)含有少量的石英晶相,該峰為木質(zhì)陶瓷改性劑硅藻土所致[22]。對照標準卡片(PDF#47-1743),2=34.8°處對應(yīng)石墨結(jié)構(gòu)的(002)晶面,這是由于原料中玉米秸稈在高溫煅燒過程中發(fā)生炭化,部分軟質(zhì)無定形碳石墨化[11,23]。木質(zhì)陶瓷對應(yīng)(002)晶面峰強度遠低于結(jié)晶石墨表現(xiàn)的峰值[24],表明硅藻土/玉米秸稈木質(zhì)陶瓷的非石墨化特性。綜上所述,硅藻土/玉米秸稈木質(zhì)陶瓷是一種微量石墨、石英、無定形石墨和玻璃碳組成的碳-碳復(fù)合材料。
圖1 樣品的XRD圖譜
圖2為硅藻土/玉米秸稈木質(zhì)陶瓷的SEM照片。從圖2a可以看出:樣品中含有大量的管狀孔洞,這是由于玉米秸稈內(nèi)含有大量的維管束結(jié)構(gòu),經(jīng)高溫?zé)峤舛粝碌目椎溃瑫r樣品中硅藻土顆粒的原始的孔結(jié)構(gòu)稍有變形。玉米秸稈中木質(zhì)纖維高溫煅燒后形成的孔洞,被煅燒后酚醛樹脂形成的玻璃碳包裹、橋連,與硅藻土原始孔結(jié)構(gòu)一起形成相互貫通的孔道,其大小從nm級別到十幾m,同時在孔道表面凹凸不平(見圖2b)。材料的這種結(jié)構(gòu)特性使其比表面積及孔隙率較高,吸附性能優(yōu)良。
通過FT-IR對硅藻土/玉米秸稈木質(zhì)陶瓷官能團和化學(xué)鍵的存在、變化進行分析,紅外光譜圖如圖3所示。由圖中可以看出,在2 920 cm-1處的肩峰,是由于脂肪族和芳香族的C-H鍵,不對稱和對稱的伸縮振動引起的[25]。1 050 cm-1處的峰是C-O-C鍵的特征[26]。同時在758 cm-1處可以觀察到一個強烈譜帶,這歸因于C-H和C-C鍵的平面震動,這表明有大量稠環(huán)的多核烴結(jié)構(gòu)形成[27]。這些特征表明,木質(zhì)陶瓷是含有C-O-C鍵、C=C鍵和C-H鍵結(jié)構(gòu)的復(fù)合材料。該結(jié)構(gòu)使材料對有機污染物的吸附能力明顯提高。
圖2 不同放大倍數(shù)樣品的SEM圖
圖3 樣品的紅外光譜圖
圖4為硅藻土/玉米秸稈木質(zhì)陶瓷孔徑分布曲線,通過觀察材料的孔徑分布曲線,可看出改性后的木質(zhì)陶瓷的孔徑主要分布在1 000~3 800 nm。一方面由于硅藻土/玉米秸稈木質(zhì)陶瓷經(jīng)高溫煅燒后,其中的硅藻土成分依然保存大量微孔;另一方面酚醛樹脂在煅燒后形成的玻璃碳對木質(zhì)纖維的微孔結(jié)構(gòu)起到支撐作用,從而保留大量的孔洞,這與圖2觀察到的結(jié)果相一致。表1為樣品的孔結(jié)構(gòu)特征。
注:V,D分別為吸附量,孔直徑。
表1 樣品孔結(jié)構(gòu)特征
由表1可知,材料孔徑細小,比表面積較大,具有較高的孔隙率,為物質(zhì)在表面及孔道的吸附奠定基礎(chǔ)。
按1.4試驗方法,得出硅藻土/玉米秸稈木質(zhì)陶瓷吸附四環(huán)素的吸附等溫線如圖5所示。表2樣品吸附四環(huán)素的Langmuir和Freundlich模型擬合參數(shù)。
圖5 Langmuir模型與Frenudlich模型吸附等溫線
由表2中的相關(guān)系數(shù)可知,Langmiur等溫吸附模型比Frendlich模型更好地描述了木質(zhì)陶瓷對四環(huán)素(0.999>0.975)的吸附過程,這一結(jié)果與圖5中得出的結(jié)果相一致。Langmuir最初描述的是氣體分子在材料表面的吸附過程,它的基本假設(shè)理論是:吸附位點位置一定,且具有相同的能量,只有一個分子可被一個吸附位點吸附,且它們之間沒有相互的作用力,最大吸附量是在溶液分子的單分子層出現(xiàn)在吸附物表面且已達到飽和時出現(xiàn)的,已吸附上的分子也不會轉(zhuǎn)移,吸附能力不會改變,并且顯示化學(xué)吸附是該吸附劑對四環(huán)素的主要吸附方式,屬于單層吸附模式[28]。硅藻土/玉米秸稈木質(zhì)陶瓷對四環(huán)素吸附過程,與材料的孔結(jié)構(gòu)密切相關(guān):材料內(nèi)部玉米秸稈煅燒后留下的柱狀空隙、硅藻土原始孔洞以及顆粒堆積形成了1 000~3 800 nm的微納米孔結(jié)構(gòu),孔徑分布寬,比表面積相對較小。由以上分析可知,Langmuir吸附等溫模型更符合試驗數(shù)據(jù),材料孔道和表面吸附位點與四環(huán)素分子之間以單分子層吸附為主,兼有一定的物理吸附。由Langmiur模型可知,材料對四環(huán)素吸附相關(guān)系數(shù)為0.999,對四環(huán)素的理論飽和吸附量為4.614 mg/g。
吳文濤等[29]利用凹凸棒石改性麥秸稈木質(zhì)陶瓷吸附苯酚的研究表明,材料對苯酚的吸附更符合Freundlich吸附等溫方程,其相關(guān)系數(shù)達到0.999 5,材料對苯酚的吸附過程以不均勻吸附為主,其表而上各種類型吸附位點對苯酚而言在能量上是不相等的。
表2 樣品吸附四環(huán)素的Langmuir和Freundlich模型擬合參數(shù)
Freundlich 模型用于固體表面吸附,該方程的建立基礎(chǔ)是吸附劑表面為不均勻表面,吸附劑的吸附位點與四環(huán)素結(jié)合能力的強弱取決于其鄰近的吸附位點是否存在。通常1/的數(shù)值一般在0與1之間,其值的大小則表示濃度對吸附量影響的強弱。1/越小,吸附性能越好。1/在0.1~0.5,則易于吸附;1/>2時難以吸附。表中1/數(shù)值為0.220,在0.1~0.5之間,說明材料對四環(huán)素的吸附還是比較容易進行的[30]。
吸附過程動力學(xué),用以描述吸附劑對吸附質(zhì)的吸附速率,結(jié)合動力學(xué)模型對數(shù)據(jù)擬合,可研究吸附過程,探討吸附機理。為了探究木質(zhì)陶瓷對四環(huán)素的吸附過程和吸附機理,對不同pH值,采用不同模型對試驗數(shù)據(jù)分別進行動力學(xué)分析。表3和圖6分別為硅藻土/玉米秸稈木質(zhì)陶瓷對四環(huán)素吸附動力學(xué)模型擬合參數(shù)。
表3 樣品吸附四環(huán)素動力學(xué)模型擬合參數(shù)
注:、1、2、分別為實際平衡吸附量、準一級、二級反應(yīng)速率常數(shù)、吸附速率常數(shù)和常數(shù)。
Note:,1,2,are actual equilibrium adsorption, pseudo first and second order model, adsorption rate constant and constant.
由表3可以看出,在不同pH值條件下的擬合參數(shù)中,準二級動力學(xué)方程對該吸附的相關(guān)系數(shù)2>0.98,大于準一級動力學(xué)方程的2,能夠更好的擬合其材料對四環(huán)素的吸附過程。而且從準二級動力學(xué)模型擬合參數(shù)結(jié)果得到理論平衡吸附量q與試驗中測得的實際吸附平衡容量基本一致,而準一級動力學(xué)模型擬合參數(shù)計算結(jié)果中理論平衡吸附量q與試驗中測得的實際吸附量相差較多。當溶液pH值從3提高到9,木質(zhì)陶瓷對四環(huán)素吸附的準二級動力學(xué)速率常數(shù)2從8′10-3上升到1.3′10-2mg/(g?min)。這是因為在不同pH值條件下,四環(huán)素的存在形態(tài)(TCH3+、TCH20、TCH-)不同及木質(zhì)陶瓷中的SiO2表面所帶電荷也發(fā)生了變化,在pH值較低的條件下,吸附位點更易達到飽和。準二級動力學(xué)模型建立在吸附速率限制基礎(chǔ)上,是一種化學(xué)吸附,在吸附劑與吸附質(zhì)之間存在電子共用或電子轉(zhuǎn)移[31]。準一級動力學(xué)模型是理想模型,其主要對整個吸附過程擬合,但實際吸附有多種控制步驟[32-33]。而準二級動力學(xué)模型包含了液膜擴散、顆粒內(nèi)擴散和化學(xué)反應(yīng)等吸附的所有步驟,所以準二級動力學(xué)模型比準一級動力學(xué)模型擬合度要高,更適合描述硅藻土/玉米秸稈木質(zhì)陶瓷吸附四環(huán)素的過程[34]。
注:各圖中100 min處從上至下依次為準一級動力學(xué)模型,準二級動力學(xué)模型,葉洛維奇模型,雙常數(shù)模型。 Note: Data at100 min in different pictures are Pseudo first order model, Pseudo second order model, Elovich model, double constants model.
Elovich動力學(xué)模型對該吸附過程的擬合度也較高,其相關(guān)系數(shù)2>0.91。Elovich動力學(xué)模型可用于描述污染物在非均勻固體吸附表面的吸附行為,適用于反應(yīng)過程中活化能較大的過程,說明該吸附過程是由反應(yīng)速率和擴散因子綜合調(diào)控的非均相擴散過程。
而Double constants動力學(xué)模型對該吸附過程的擬合度相對較低,其相關(guān)系數(shù)2為0.904~0.886,當溶液pH值從3提高到9,木質(zhì)陶瓷對四環(huán)素吸附的Double constants動力學(xué)速率常數(shù)<0.13 mg/(g?min)。Double constants動力學(xué)模型適用于反應(yīng)過程較為復(fù)雜的動力學(xué)經(jīng)驗式。在吸附過程中,隨著擴散的進行,吸附劑表面被吸附質(zhì)大量的占據(jù),部分電荷被中和,表面剩余力減小,吉布斯自由能升高,擴散的驅(qū)動力減弱,擴散速率減小,吸附達到平衡,雙常數(shù)吸附模型中自由能的減小和熵值的增大是推動吸附進行的主要原因。
在吸附動力學(xué)的研究中,需要對吸附過程的速率控制步驟進行分析確定。動邊界模型廣泛用于研究固-液相吸附反應(yīng)過程中,來確定其吸附速率控制步驟,吸附速率由污染溶液由液膜擴散到固體表面,在材料內(nèi)部擴散,與內(nèi)部微孔活性位點發(fā)生反應(yīng)的速率控制。木質(zhì)陶瓷吸附劑吸附液相污染物的吸附過程可分為3步:1)液膜擴散;2)顆粒內(nèi)部擴散;3)化學(xué)反應(yīng)[35]。本試驗在pH值為3、5、7、9的條件下,不同反應(yīng)時間的吸附分數(shù)與動邊界模型進行擬合,每個步驟的方程如式(8)~(9)。
液膜擴散:ln(1-)=-(8)
顆粒擴散:l-3(l-)2/3+2(l-)=(9)
化學(xué)反應(yīng):1-(l-)1/3=(10)
式中為時刻的吸附分數(shù),=q/q;為速率常數(shù),min-1。用動力學(xué)數(shù)據(jù)與動邊界模型進行擬合,結(jié)果見圖7,動力學(xué)邊界模型擬合參數(shù)表4。
注:圖7a 中480 min從上至下依次為pH 值3、9、5、7;圖7b中120 min 從上至下依次為pH 值3、5、7、9;圖7c 中120 min從上至下依次為pH 值9、7、5、3。
Note: In Fig.7a the line at 480 min from top to bottom are pH value 3, 9, 5, 7;in Fig.7b the line at 120 min from top to bottom are pH value 3, 5, 7, 9; in Fig.7c the line at 120 min from top to bottom are pH value 9, 7, 5, 3.
圖7 樣品吸附四環(huán)素動邊界模型線性擬合
Fig.7 Linear fitting of dynamic boundary model of tetracycline adsorbed by samples
通過觀察圖7及表4中的擬合參數(shù)可以看出,在木質(zhì)陶瓷對四環(huán)素的吸附過程中l(wèi)-3(l-)2/3+2(l-)和1-(l-)1/3與的線性關(guān)系較差,而ln(1-)與的線性關(guān)系較好。在pH值為3、5、7、9的條件下,其回歸相關(guān)系數(shù)2分別為0.889 9、0.853 6、0.860 4和0.844 4,擴散速率常數(shù)分別為0.006 8、0.006 3、0.005 8和0.005 1 min-1。而從該吸附過程與顆粒內(nèi)擴散模型的擬合結(jié)果可以看出,其擴散速率常數(shù)較液膜擴散的值高,可以看出在吸附初期,邊界層上的液膜擴散為速率控制過程,隨著吸附進行,邊界層阻力效應(yīng)越來越大,材料表面吸附位點逐漸飽和,顆粒內(nèi)擴散速率上升,所以在吸附后期過程中速率主要控制步驟是顆粒內(nèi)擴散[36]。隨著pH值的增加,值減小,說明其吸附交換速率也隨之減小,這可能是由于在不同pH值條件下,木質(zhì)陶瓷材料表面電性的變化及四環(huán)素存在的形式不同所導(dǎo)致的。因此可以推測出,液膜擴散可能是木質(zhì)陶瓷吸附四環(huán)素的主要吸附速率控制步驟,其吸附機制也主要發(fā)生在木質(zhì)陶瓷材料表面的微孔。
表4 動邊界模型擬合參數(shù)
硅藻土/玉米秸稈木質(zhì)陶瓷以無定型碳為主,含有少量石英晶相的碳-碳復(fù)合材料,材料內(nèi)部還有大量微納米孔結(jié)構(gòu)。材料孔徑主要分布在1 000~3 800nm,具有較大的比表面積和孔隙率。四環(huán)素在不同pH值下以不同的存在形式(TCH3+、TCH20、TCH-)。Langmiur等溫吸附模型比Frendlich模型更好地描述了木質(zhì)陶瓷對四環(huán)素(相關(guān)系數(shù)R2>R2)的吸附過程。材料對四環(huán)素的吸附能夠與準一級動力學(xué)模型、準二級動力學(xué)模型、Elovich 模型和Double constants 模型較好地擬合。硅藻土/玉米秸稈木質(zhì)陶瓷對四環(huán)素的吸附過程屬于復(fù)合吸附機制,是依靠材料的多孔結(jié)構(gòu)和表面電性結(jié)合的吸附過程。在吸附初期,邊界層上的液膜擴散為速率控制過程,隨著吸附進行,邊界層阻力效應(yīng)越來越大,材料表面吸附位點逐漸飽和,顆粒內(nèi)擴散速率上升。根據(jù)Langmiur模型,材料對四環(huán)素的理論飽和吸附量分別為4.614 mg/g
[1] Ozao R, Nishimoto Y, Pan W P, et al. Thermoanalytical characterization of carbon/carbon hybrid material, apple woodceramics[J]. Thermochimica Acta, 2006, 440(1): 75-80.
[2] 康浩. SiOC木質(zhì)陶瓷的制備及其表征研究[J]. 陶瓷,2018,44(5):44-49. Kang Hao. Preparation and characterization of SiOC wood ceramics[J]. Ceramics, 2018, 44(5): 44-49. (in Chinese with English abstract)
[3] Qian J M, Jin Z H, Wang J P. Structure and basic properties of woodceramics made from phenolic resin-basswood powder composite[J]. Materials Science and Engineering: A, 2003, 368(11): 71-79.
[4] 王向科. 木陶瓷復(fù)合材料的制備與性能研究[D]. 江門:五邑大學(xué),2015. Wang Xiangke. Preparation and properties of wood -ceramic composites[D]. Jiangmen: Wuyi University, 2015. (in Chinese with English abstract)
[5] Pan J M, Cheng X N, Yan X H, et al. Preparation and hierarchical porous structure of biomorphic woodceramics from sugarcane bagasse [J]. Journal of the European Ceramic Society, 2013, 33(3): 575-581.
[6] Qian J M, Suo A L, Yao Y, et al. Polyelectrolyte-stabilized glucose biosensor based on woodceramics as electrode[J]. Clinical Biochemistry, 2004, 37: 155-161.
[7] Ding J, Zhu H X, Li G Q, et al. Growth of SiC nanowires on wooden template surface using moltensalt media [J]. Applied Surface Science, 2014, 320: 620-626.
[8] 何雨佳,龔中良. 木陶瓷摩擦潤滑性能研究進展[J]. 材料導(dǎo)報,2015,29(增刊2):368-371. He Yujia, Gong Zhongliang. Development and research progress on friction and lubricating properties of woodceramics[J]. Material Review, 2015, 29(Supp.2): 368-371. (in Chinese with English abstract)
[9] Bantsis G, Betsiou M, Bourliva A, et al. Synthesis of porous iron oxide ceramics using greek wooden templates and mill scale waste for EMI applications[J]. Ceramics International, 2012, 38: 721-729.
[10] Xie X Q, Fan T X, Zhang D, et al. Increasing the mechanical properties of high damping woodceramics by infiltration with a magnesium alloy[J]. Composites Science and Technology, 2002, 62(10): 1341-1346.
[11] 吳文濤,陳天虎,徐曉春. 凹凸棒石改性甘蔗渣/麥秸木質(zhì)陶瓷制備與性能[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(1):305-308. Wu Wentao, Chen Tianhu, Xu Xiaochun. Preparation and properties of palygorskite clay modified woodceramics from bagasse/wheat straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(1): 305-308. (in Chinese with English abstract)
[12] 胡麗華,高建民,馬天,等. 碳化硅木質(zhì)陶瓷的顯微結(jié)構(gòu)及力學(xué)性能[J]. 硅酸鹽學(xué)報,2013,41(6):725-731. Hu Lihua, Gao Jianmin, Ma Tian, et al. Microstructure and mechanical mroperties of milicon marbide woodceramics[J]. Journal of the Chinese Ceramic Society. 2013, 41(6): 725-731. (in Chinese with English abstract)
[13] Iuchaurroudo N, Font J, liamos C P, et al. Natural diatomites: efficient green catalyst for fenton-like oxidation of orange Ⅱ[J]. Applied Catalysis B: Environmental, 2016, 181: 481-494.
[14] Gao R Q, Sun Q, Fang Z, et al. Preparation of nano-TiO2/ diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation[J]. International Journal of Minerals, Metallurgy and Materials, 2018, 25(1): 73-79.
[15] Zahra A Jamshid E L, Jamil K et al. Properties of sustainable cement mortars containing high volume of raw diatomite[J]. Sustainable Materials and Technologies. 2018, 16(7): 47-53.
[16] Font A, Soriano L, Reig L, et al. Use of residual diatomaceous earth as a silica source in geopolymer production [J]. Materials Letters, 2018, 223(15): 10-13.
[17] Kümmerer K. Antibiotics in the aquatic environment: A review-part Ⅰ[J]. Chemosphere, 2009, 75(4): 417-434.
[18] 曾冠軍,柳嫻,馬滿英. 水體中抗生素污染研究進展[J]. 安徽農(nóng)業(yè)科學(xué),2017,45(3):72-74. Zeng Guanjun, Liu Xian, Ma Manying. Research progress of antibiotic pollution in water[J]. Journal of Anhui Ayi. Sci. 2017, 45 (3): 72-74. (in Chinese with English abstract)
[19] Jiang H, Zhang D, Xiao S, et al. Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River Basin, south China[J]. Environ Sci and Pollut Res Int, 2013, 20(12): 9075-9083.
[20] 朱靈峰,孫倩,高如琴,等. 硅藻土改性木質(zhì)陶瓷的制備及其對酸性橙Ⅱ的超聲吸附行為[J]. 江蘇農(nóng)業(yè)科學(xué),2018,46(5):261-264. Zhu Lingfeng, Sun Qian, Gao Ruqin, et al. Preparation of diatomite modified wood ceramics and the adsorption property of tetracycline[J]. Jiangsu Agricultural Science, 2018, 46(5): 261-264. (in Chinese with English abstract)
[21] Pulkit S, Sumit P S, Kamlesh P. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line[J]. Journal of Semiconductors, 2017, 38(9): 29-34.
[22] 吳紅,楊宇,羅忠競,等. 不同產(chǎn)地硅藻土理化特性的研究[J]. 山東化工,2017,46(6):23-25,28. Wu Hong, Yang Yu, Luo Zhongjing, et al. Study on physicochemical properties of diatomite in different areas[J]. Shandong Chemical Industry, 2017, 46(6): 23-25, 28. (in Chinese with English abstract).
[23] 韓玉芳,張濤,溫廣武. 碳納米管-石墨烯-碳納米纖維復(fù)合電極的制備及應(yīng)用[J]. 水處理技術(shù),2018,44(3):21-25,29. Han Yufang, Zhang Tao, Wen Guangwu. Preparation and application of carbon nanotube-graphene-carbon nanofiber composite electrode [J]. Technology of Water Treatment, 2018, 44(3): 21-25, 29. (in Chinese with English abstract).
[24] Pulkit S, Sumit P S, Kamlesh P. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line[J]. Journal of Semiconductors, 2017, 38(9): 29-34.
[25] Qian J M, Jin Z H, Wang J P, et al. Structure and basic properties of woodceramics made from phenolic resin– basswood powder composite[J]. Materials Science and Engineering A, 2004, 368(1/2): 71-79.
[26] Pan J M, Cheng X N, Yan X H, et al. Preparation and hierarchical porous structure of biomorphic woodceramics from sugarcane bagasse [J]. Journal of the European Ceramic Society, 2013, 33(3): 575-581.
[27] 唐偉,郭悅,吳景貴,等. 老化的生物質(zhì)炭性質(zhì)變化及對菲吸持的影響[J]. 環(huán)境科學(xué),2014,35(7):2604-2611. Tang Wei, Guo Yue, Wu Jinggui, et al. Structural changes of aged biochar and the influence on phenanthrene adsorption[J]. Environmental science, 2014, 35(7): 2604-2611. (in Chinese with English abstract)
[28] 謝巧,傅敏,吳曉璐. g-C3N4的制備及對羅丹明B模擬廢水的吸附性能研究[J]. 云南化工,2018,45(8):30-33. Xie Qiao,F(xiàn)u Min,Wu Xiaolu. Preparation of g-C3N4and its adsorption properties for rhodamine B simulated wastewater[J]. Yunnan Chemical Technology, 2018, 45(8): 30-33.
[29] 吳文濤, 聶志芳, 譚方良, 等. 凹凸棒石改性麥秸木質(zhì)陶瓷的制備及其對苯酚的吸附效果[J].合肥工業(yè)大學(xué)學(xué)報,2012,35(9):1269-1274. Wu Wentao, Nie Zhifang, Tan Fangliang, et al. Preparation of palygorskite clay modified woodceramics from wheat straw and their absorption effect of phenol[J]. Journal of Hefei University of Technology, 2012, 35(9): 1269-1274. (in Chinese with English abstract)
[30] Benkaddour S, Slimani R, Hiyane H, et al. Removal of reactive yellow 145 by adsorption onto treated watermelon seeds: Kinetic and isothermstudies[J]. Sustainable Chemistry and Pharmacy, 2018, 10 (12): 16-21.
[31] 朱健,王平,雷明婧,等. 硅藻土的復(fù)合改性及其對水溶液中Cd2+的吸附特性[J]. 環(huán)境科學(xué)學(xué)報,2016,36(6):2059-2066. Zhu Jian, Wang Ping, Lei Mingjing, et al. Composite modification of diatomite and its adsorption characteristic of Cd2+in aqueous solutions[J]. Acta scientiae circumstantiae, 2016, 36(6): 2059-2066. (in Chinese with English abstract)
[32] Yang J Q, Guo S Y, Duan L H. Study on the effect of a magnetic field on Pb(II) removal using modified chitosan[J]. Advances in Chemical Engineering and Science, 2012, 2(1): 101-107.
[33] 張連科,劉心宇,王維大,等. 油料作物秸稈生物炭對水體中鉛離子的吸附特性與機制[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(7):218-226. Zhang Lianke, Liu Xinyu, Wang Weida, et al. Characteristics and mechanism of lead adsorption from aqueous solutions by oil crops straw-derived biochar[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(7): 218-226. (in Chinese with English abstract)
[34] 方殿龍. 多官能化非織造布對水中內(nèi)分泌干擾物的強化吸附性能及機理研究[D]. 天津:天津工業(yè)大學(xué),2018. Fang Dianlong. Study on enhanced adsorption property and mechanism of polyfunctional nonwovens on endocrine disruptors in water[D]. Tianjin: Tianjin University of Technology, 2018. (in Chinese with English abstract)
[35] Li G T, Wang M J, Chen X, et al. Adsorption performance for the removal of Cu(II) on the ammonium acetate modified sugarcane bagasse[J]. Nature Environment and Pollution Technology, 2017, 16(3): 843-848.
[36] 唐海,沙俊鵬,宋珍霞,等. 改性ZSM-5介孔沸石分子篩對焦化尾水吸附行為及動力學(xué)[J].環(huán)境工程學(xué)報,2015,9(10):4857-4863. Tang Hai, Sha Junpeng, Song Zhenxia, et al. Adsorption behavior and kinetics for coking biological treated effluent by modified ZSM-5 mesopores zeolite molecular sieve[J]. Chinese Journal of Environmental Engineering, 2015, 9(10): 4857-4863.
Preparation of diatomite/corn straw woodceramics and its adsorption kinetics for tetracycline in wastewater
Gao Ruqin1,2, Liu Di1, Gu Yiming1, Zhu Debao1, Li Guoting1,2
(1.450046,2.450046,)
In order to use agricultural wastes as resources, the efficient utilization of corn straw was explored. Taking corn straw as the main raw materials, diatomite modified corn straw woodceramics were prepared by carbonizing phenolic resin–corn straw powder composite under vacuum. The structure and properties of as-prepared materials were characterized by modern test methods such as scanning electron microscope, X-ray diffraction, fourier transform infrared spectroscopy and mercury injection. Some properties of as-prepared materials such as pore size distribution, porosity, adsorption capacity and so on were tested in the same time. Using tetracycline as the target pollutant, the adsorption process of tetracycline on samples was studied. Results indicate that woodceramics are mainly amorphous and a small amount of quartz crystal phase and crystalline graphite. Woodceramics contained a large number of holes, and the holes formed by the high temperature calcining of wood fiberin corn straw were wrapped and bridged by the glass carbon. With the original pore structure of diatomite, the interlocking pores were uneven on the surface. The porous size range, the porosity and the specific surface area of the woodceramics were 1 000- 3 800 nm, 48.6 %, and 7.83 m2/g respetively. Woodceramics was a typical non-graphitizable carbon containing C-O-C bonds, C=C bonds and C-H bonds’ structure. The adsorption capacity of materials to organic pollutants was improved obviously. According to the correlation coefficient2, Langmiur isothermal adsorption model could describe the adsorption process of tetracycline on woodceramics better than Frendlich model (0.999>0.975). Adsorption kinetics of tetracycline (initial concentration 5 mg/L) on woodceramics were studied at pH values of 3, 5, 7 and 9. Experimental results show that pH value of the solution increased from 3 to 9, the adsorption rate constantincreased from 8′10-3to 1.3′10-2mg /(g·min). Because of different pH values, the existing forms of tetracycline (TCH3+, TCH20, TCH-) were different, and the surface charge of SiO2in woodceramics also changes. In the lower pH value, the adsorption point was easier to reach saturation. With the increase of pH value,value reduction indicated that the exchange-adsorption rate was also decreases, which was caused by the change of surface electrical properties of woodceramics and the different forms of tetracycline in different pH values. As the diffusion progresses, the surface of the adsorbent was occupied by a large number of adsorbents, and part of the charge was neutralized. With the Gibbs free energy of materials increasing, the driving force of diffusion decreased, and the adsorption reached to equilibrium. The double constant adsorption model in the decrease of the free energy and entropy increase was the main reason for the adsorption. The decrease of free energy and the increase of entropy in the double constant adsorption model were the main reasons to promote the adsorption. The Pseudo secondary kinetic model was a kind of chemical adsorption based on the limitation of adsorption rate. Results of the kinetic model fitting showed that the quasi-secondary kinetic model parameter (2> 0.98) could better fit the adsorption process of tetracycline. This study realized the deep utilization of waste materials, treated effectively tetracycline wastewater, and provided a new way for the utilization of corn straw.
straw; antibiotics; kinetic parameters; woodceramics; diatomite; tetracycline; kinetic model
高如琴,劉 迪,谷一鳴,朱德寶,李國亭. 硅藻土/玉米秸稈木質(zhì)陶瓷制備及其對廢水中四環(huán)素吸附動力學(xué)[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(3):204-210. doi:10.11975/j.issn.1002-6819.2019.03.026 http://www.tcsae.org
Gao Ruqin, Liu Di, Gu Yiming, Zhu Debao, Li Guoting. Preparation of diatomite/corn straw woodceramics and its adsorption kinetics for tetracycline in wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 204-210. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.026 http://www.tcsae.org
2018-09-18
2018-12-21
國家自然科學(xué)基金資助項目(51378205)和河南省科技攻關(guān)項目(182102311080)聯(lián)合資助
高如琴,副教授,博士,主要從事固體廢棄物資源化利用研究。 Email:gaoruqin@ncwu.edu.cn
10.11975/j.issn.1002-6819.2019.03.026
TB332; X712
A
1002-6819(2019)-03-0204-07