• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Using Imbalanced Triangle Synthetic Data for Machine Learning Anomaly Detection

    2019-02-22 07:32:36MenghuaLuoKeWangZhipingCaiAnfengLiuYangyangLiandChakFongCheang
    Computers Materials&Continua 2019年1期

    Menghua Luo , Ke Wang Zhiping Cai , Anfeng Liu, Yangyang Li and Chak Fong Cheang

    Abstract: The extreme imbalanced data problem is the core issue in anomaly detection.The amount of abnormal data is so small that we cannot get adequate information to analyze it. The mainstream methods focus on taking fully advantages of the normal data,of which the discrimination method is that the data not belonging to normal data distribution is the anomaly. From the view of data science, we concentrate on the abnormal data and generate artificial abnormal samples by machine learning method. In this kind of technologies, Synthetic Minority Over-sampling Technique and its improved algorithms are representative milestones, which generate synthetic examples randomly in selected line segments. In our work, we break the limitation of line segment and propose an Imbalanced Triangle Synthetic Data method. In theory, our method covers a wider range. In experiment with real world data, our method performs better than the SMOTE and its meliorations.

    Keywords: Anomaly detection, imbalanced data, synthetic data, machine learning.

    1 Introduction

    Anomaly detection is to discover the abnormal data patterns not following the normal data behavior, in which the abnormal data is also called outlier, stain, inconsistent point or novelty depending on the application field. In our paper, we do not make a distinction between them. Anomaly detection is widely used in many fields, such as fraud detection[Zhang and He (2017); Anderka, Priesterjahn and Priesterjahn (2014)], disease detection[Pham, Nguyen, Dutkiewicz et al. (2017); Jansson, Medvedev, Axelson et al. (2015)],intrusion detection [Jabez and Axelson (2015); Kim, Lee and Kim (2014)], identification system [Huang, Zhu ,Wu et al. (2016); Ibidunmoye and Elmroth (2015)] and fault diagnosis [Dong, Liu and Zhang (2017); Purarjomandlangrudi, Ghapanchi and Esmalifalak (2014)]. In all these application fields, the abnormal data contains very important information. For instance, the fraud behavior of credit card always leads to economic loss. The abnormal data from the Internet in the intrusion detection may imply the sensitive information leakage from the attacked host. Hence, it is of great significance to improve the effect of anomaly detection.

    There are mainly three kinds of approaches to solve the anomaly detection problems. The first one is the statistical model [Kourtis, Xilouris, Gardikis et al. (2017); Harada,Yamagata, Mizuno et al. (2017); Han, Jin, Kang et al. (2015)]. This kind of model needs to select the measure set describing the subject behaviors. Then build the detecting model based on the normal data. Next, choose an evaluation algorithm to calculate the distance between the current subject behavior and the detection model. At last, decide whether the behavior is an anomaly by some kind of decision-making strategy. This method can learn subject behavior adaptively. But if the adaptivity is exploited by the intruders, the anomaly may be treated as normal behaviors by the detecting model. The measure set is always assumed to be conformed to the Normal Distribution or Poisson Distribution,which is not in conformity with the real situation. The second method is the prediction model [Pang, Liu, Liao et al. (2015); Andrysiak, Ukasz, Chora et al. (2014); Pallotta,Vespe and Bryan (2013)]. In this method, the detected object is usually the time series of the events. If there is a big difference between the actual events and the prediction results,it shows that there is an anomaly. The low quality time series patterns are gradually excluded and the high quality ones are left through layers of screening. It is adaptable to the changes in the detected behavior and detects the anomaly that cannot be detected by the statistical model. The third approach is the detecting model based on machine learning [Kulkarni, Pino, French et al. (2016); Bosman, Liotta, Iacca et al. (2014)]. In recent years, these methods become more and more popular. The most significant character is to detect the anomaly by the normal data. Without too much hypothesis, the methods are widely applied in various areas. In all these approaches, the deep learning[Erfani, Rajasegarar, Karunasekera et al. (2016); Li, Wu and Du (2017)] method attracts much attention due to its powerful fitting ability. However, the number selection of the layers and units is mainly dependent on engineering experience and lack of theoretical guidance, which leads to its poor interpretability. The parameters calculation and adjustment need amounts of computing resources to support, which limits its universal extension.

    For all the methods mentioned above, the relative large number of normal data plays a leading role. To get higher anomaly detection rate, complex similarity measure, lots of priori knowledge or artificially set thresholds are introduced, by which the false positive rate has been raised as well. In our work, we jump out of this way of thinking and turn to utilize the limited number of abnormal data. In the angle of data science, anomaly detection belongs to the imbalanced data problems. In the imbalanced data problems, the technique focusing on minority samples is called over-sampling, in which the Synthetic Minority Over-sampling Technique (SMOTE) and its improved algorithms have become the present standard. The artificial examples are generated randomly in the selected line segment in SMOTE and its meliorations. In this paper, we propose a new generating technology, the Imbalanced Triangle Synthetic Data (ITSD) method, breaks through the limitation range of the line segment. In our work, the SMOTE and its mainly improvements are treated as the baselines. With real world data of different domains, our ITSD method performs better than the baselines in both precision and recall. And there is a relatively balanced effect on normal data and abnormal data.

    This paper is organized as follows. Section 2 briefly reviews the related works.Imbalanced Triangle Synthetic Data method is specified in Section 3. In Section 4, we describe experimental results and analysis in detail. Finally, we make a conclusion in Section 5.

    2 Related work

    From the view of imbalanced data problems, the normal data of anomaly detection is called the majority samples while the anomaly is the minority sample. In order to balance the imbalanced data, there are two basic ideas: one is reducing the number of the majority samples; the other is increasing the minority samples. We summarize the relevant works from these two aspects.

    From the perspective of majority samples, the extraction of representative samples is the main work, called under-sampling [Lu, Li and Chu (2017)]. Two common specific methods are Ensemble method [Ren, Cao, Li et al. (2017)] and Cascade method[Kotsiantis (2011)]. The former trains N classifiers parallelly to vote the final result. The latter one is a serial method, which keeps the incorrectly classified majority samples and puts them into the next classifier training. These methods work on the balance of the data,but the extraction makes information missing more or less.

    To the minority samples, the expansion of minority samples is the core target, named over-sampling. The duplicated samples method is simple, also called the randomly oversampling, with which a preliminary attempt still has a certain effect on some data sets.The Synthetic Minority Over-sampling Technique (SMOTE) [Chawla, Bowyer, Hall et al.(2002); Gutié rrez, Lastra, Bení tez et al. (2017)] is a standard of the existing methods,which randomly generates artificial examples on a selected line segment. Due to its influence, kinds of improvement algorithms emerged in the past years. SMOTE Boost[Chawla, Lazarevic, Hall et al. (2003)] integrates SMOTE and boosting together.Borderline-SMOTE [Han, Wang and Mao (2005)] divides the minority samples into three groups, DANGER, SAFE and NOISE, where different groups have their own generating ways. ADASYN [He, Bai, Garcia et al. (2008)] is an important improvement of SMOTE,which generates the synthetic examples by the proportion of the majority ratio. SVMSMOTE [Nguyen, Cooper and Kamei (2011); Wang, Luo, Huang et al. (2017)] generates artificial support vectors by SMOTE and gets good experimental results. Although these algorithms have different generating tricks, the core generating method is still the selected line segment way. To break through this generating method is our key task.

    Besides, there are some methods focusing on adjusting themselves to adapt the specific application requirement. Cost sensitive method [Krawczyk and Skryjomski (2017); Roy and Rossi (2017); Li, Zhang, Zhang et al. (2018)] introduces a cost matrix with domain knowledge to adjust the imbalanced data weights. In some applications, feature selection[Moayedikia, Ong, Boo et al. (2017); Bektas, Ibrikci and ?zcan (2017)] helps to improve the recognition rate of the minority. One-class classification method [Krawczyk, Woniak and Herrera (2015)] tries its best to shrink the boundary of the majority examples without considering the minority samples distribution. To a certain type of applications, it may be an effective way. But the promotion effects particularly depend on the characteristics of the dataset or domain knowledge.

    In our research, we aim to maximize the use of the existing data, both the majority and the minority. We propose an Imbalanced Triangle Synthetic Data method to go beyond the existing artificial examples generating method, which has a good universality.

    3 Imbalanced triangle synthetic data method

    In this section, we first introduce the Imbalanced Triangle. Then, on this basis, we describe our generating method in detail. The whole process makes the Imbalanced Triangle Synthetic Data Method (ITSD).

    3.1 Imbalanced triangle

    In the data space, the majority samples and the minority samples are separated by the hyperplane which is called the classification hyperplane in machine learning, as shown in Fig. 1(a). From both sides of the hyperplane, we take three data points to form a triangle which we name it the Imbalanced Triangle, as shown in Fig. 1(b).

    Figure 1: The imbalanced triangle passing through the hyperplane

    We assume that there are n points on one side of the hyperplane and m points on the other side. There areImbalanced Triangles in all. The abundance of quantity brings theoretical advantages to our generating method. The process of proof is as follows.

    Proof.Imbalanced Trianglevs.SMOTE line segment in amount

    m+n≥3 To make sure the existence of the triangle.

    n≥1 are the number of minority samples.

    m>n are the number of majority samples.

    Ntriis the number of Imbalanced Triangles:

    Nlineis the number of line segments in SMOTE:

    Ntri-Nline=

    There is an important character of the Imbalanced Triangle: The Imbalanced Triangle must be intersected with the hyperplane and the intersection line is a classification line. In another simple word, there must be a classification line in the Imbalanced Triangle. This character inspires our generating method: If the synthetic examples are generated in the Imbalanced Triangle, we can make all these artificial samples as the minority by controlling the classification line.

    In anomaly detection, the data distribution is usually extremely imbalanced (m>>n).This problem, in our Imbalanced Triangle, is just an advantage. In Imbalanced Triangle,the vertexes are the given original data points, the edges are from the SMOTE line segments and the whole area corresponds to the space between the majority and the minority. The generating method of SMOTE based algorithms selecting only edges means to neglect the most space. To maximum the minority data information, we select the whole area as the generating space of the synthetic minority examples. From Eq. (1),we can infer that if we reduce m in a reasonable range, our Imbalanced Triangle still has more numbers than the SMOTE line segments in theory.

    3.2 The ITSD generating method

    The generating method is the core of the over-sampling synthetic technology. We compare the present methods and adjust them as the basis of our method.

    In SMOTE and its improved algorithm, the generation process almost uses Eq. (2). It randomly picks up xj, one of the k nearest neighbors of the selected minority sample xi,and then generate artificial sample xgwith Eq. (2), where λ∈(0,1). In simple words, xgis selected randomly on the line segment (xi,xj). In SMOTE-borderline2, the parameter λ is adjusted (λ∈ (0,0.5)) to make the generated examples close to the minority sample xi.

    In data explanation, we interpret Eq. (2) as adding disturbances or noises, as Eq. (3).Obviously, thehere is the key point of the algorithm design. In other words, Eq.(2) is a specific form of Eq. (3).

    In our generating method, to break through the limitation of Eq. (2) and Eq. (3), we propose our Imbalanced Triangle formula in Eq. [eq:tri]. First we find the top k nearest neighbors of each example in minority class. Then synthetic samples are generated by the formula in Eq. (4), where random numbers α, β, τ and ? ∈ (0,1), instead of the SMOTE generating method in Eq. (2). Hereis the generated example, andare three points in the k nearest neighbors. Especially,is the selected minority example itself, andhas to be the first majority example in the k neighbors, whereis another point in the top k. This method generating the synthetic samples in a triangle range determined byis a fixed vertex and the other two vertexes are random points in line segmentsIn simple words, there are two steps in our generating method: The first one is to select a sub triangle of the Imbalanced Triangle; the second step is to generate a random point in the triangle of the first step. To simplify the problem, we may set α =1 and β =1, which means the range is the whole Imbalanced Triangle

    Proof.Derivation Process of Eq. (4)

    Comparing the classic generative method in SMOTE and its improved algorithms, our generative approach is more efficient. All the Imbalanced Triangles cover more areas where the minority samples may appear than the line segments in old methods, which reflects the characteristics of the minority data distribution better. What is more, the fixed minority example vertex and its nearest majority point make a bigger probability of the artificial example generating between the hyperplane and the minority samples than the pure random way. After obtaining the synthetic samples closing to the data distribution,we mix the synthetic examples and the minority samples together as the extended abnormal data. According to the specific anomaly detection application requirement, we can transform the extremely imbalanced data problems to common imbalanced problems or relative balance supervised learning. After this transformation, the anomaly detection problem is easy to deal with by a machine learning classification method. In this section,we clarify the Imbalanced Triangle Synthetic Data method and analyze its theoretical advantages comparing to the existing approaches. Its good performances dealing with real world data are shown in the next section.

    4 Experiment and result

    In this section, the empirical analysis of our method is stated. We make comparisons with seven baseline approaches, using five real world data sets of different anomaly detection fields.

    4.1 Data sets

    We use five datasets from the UCI open data2http://archive.ics.uci.edu/ml/index.phpto examine our ideas. German Credit (GM)dataset3http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29is from the fraud detection, which has 1,000 instances and 20 attributes. The original data has 700 majority samples and 300 minority samples. We adjust the imbalanced rate to 450:50 in the training set.

    Haberman’s Survival (HM) dataset4http://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survivalis from the disease detection, which contains 306 instances and 3 attributes. The original data has 225 majority samples and 81 minority samples. We adjust the imbalanced rate to 170:25 in the training set.

    Breast Cancer Wisconsin Original (BCW) dataset5http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29is also from the disease detection,which records 699 instances and 10 attributes. With the missing values removed, the original data has 444 majority samples and 239 minority samples. We adjust the imbalanced rate to 220:15 in the training set.

    The Pima Indians Diabetes (PID)6http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetesis another dataset from the disease detection, which has 768 instances and 8 attributes. The original data has 500 majority samples and 268 minority samples. We adjust the imbalanced rate to 250:20 in the training set.

    Spambase (SB) dataset7http://archive.ics.uci.edu/ml/datasets/Spambaseis from the identification system, which collects 4,601 instances and 57 attributes. The original data has 2,788 majority samples and 1,813 minority samples. We adjust the imbalanced rate to 1000:25 in the training set.

    4.2 Experimental settings

    We choose seven approaches in our experiment as the baselines: the original imbalanced data without preprocessing, random over-sampling (ROS), SMOTE, SMOTE-SVM,SMOTE-borderline 1, SMOTE-borderline 2 and ADASYN.

    In anomaly detection evaluation, the anomalies and the normal data should be separated.We calculate the f1-scores of the majority and the minority respectively, in order to compare the balanced effects of the algorithms for imbalanced data.

    To verify the universality of the algorithms, we select four commonly used classifiers with different principles: Decision Tree (DT), Logistic Regression (LR), Support Vector Machine (SVM) and Naive Bayes (NB).

    Figure 2: The experiment results

    4.3 Experimental results and discussions

    In order to adapt to the requirements of abnormal detection, we set the training set as extremely imbalanced as possible. Using ITSD and the seven baseline methods, we respectively evaluate the F1-Scores of the minority examples (anomalies) and the majority samples (normal data) with the four classifiers mentioned above. The experiment results are shown in Fig. 2. In all the five datasets, our ITSD method and the other seven approaches have steady performances in DT and LR. In NB, there is a little reasonable fluctuation. But in SVM, the results are unstable and volatile. The performances of the majority are a little better than the minority. Due to the contribution of the synthetic data, the gaps are not so large as in the original extremely imbalanced data.

    Figure 3: Ranking of all the methods

    We sort all the rankings of the methods and the final ranking is shown as Fig. 3. From the figure, it can be seen that our ITSD method performs the best in all these approaches. In all the five anomaly detection datasets of different domains, the ITSD method achieves the best F1-score than the seven baselines. To the four classifiers of different theoretical basis, our approach gives the most stable performance.

    5 Conclusion and future work

    In this paper, we propose an Imbalanced Triangle Synthetic Data (ITSD) method to deal with the anomaly detection problems and to break through the limitation of the existing line segments generating method. We analyze its theoretical advantages in a mathematical way and use the experimental results of real world data to verify its empirical effect.Experimental results demonstrate that the ITSD method can be applied in multiple anomaly detection fields and performs relatively steadily under different classifiers. In following work, we aim to study the correlations between the abnormal data and the normal samples in the extremely imbalanced anomaly detection problems.

    Acknowledgement:This research was financially supported by the National Natural Science Foundation of China (Grant No. 61379145) and the Joint Funds of CETC (GrantNo. 20166141B020101).

    五月天丁香电影| kizo精华| 少妇猛男粗大的猛烈进出视频| a级毛片免费高清观看在线播放| 日韩大片免费观看网站| 搡女人真爽免费视频火全软件| 黄片无遮挡物在线观看| 亚洲av欧美aⅴ国产| 亚洲精品视频女| 精品熟女少妇av免费看| 两个人的视频大全免费| 久久久久久九九精品二区国产| 在线观看免费日韩欧美大片 | 伦精品一区二区三区| 久久精品久久久久久久性| 久久韩国三级中文字幕| 成人影院久久| 少妇人妻 视频| 老司机影院毛片| 水蜜桃什么品种好| 国产永久视频网站| 最近中文字幕高清免费大全6| 亚洲内射少妇av| 亚洲国产日韩一区二区| 日本黄色日本黄色录像| 九草在线视频观看| 亚洲欧美精品自产自拍| 亚洲av日韩在线播放| 久久热精品热| 涩涩av久久男人的天堂| 这个男人来自地球电影免费观看 | 国产亚洲最大av| 亚洲无线观看免费| 老司机影院成人| 一本色道久久久久久精品综合| 在线精品无人区一区二区三 | 中文资源天堂在线| 超碰97精品在线观看| 校园人妻丝袜中文字幕| 久久久久久伊人网av| 欧美精品人与动牲交sv欧美| 亚洲国产精品国产精品| 91在线精品国自产拍蜜月| 大话2 男鬼变身卡| 国产大屁股一区二区在线视频| 亚洲美女搞黄在线观看| 特大巨黑吊av在线直播| 免费黄频网站在线观看国产| 国产精品人妻久久久久久| 成人一区二区视频在线观看| 国产在线视频一区二区| 国产精品偷伦视频观看了| 亚洲欧洲日产国产| 在线 av 中文字幕| av在线app专区| 色综合色国产| 只有这里有精品99| 男女国产视频网站| 天堂俺去俺来也www色官网| 日本欧美视频一区| 国产高清不卡午夜福利| 亚洲经典国产精华液单| 伊人久久国产一区二区| a级毛片免费高清观看在线播放| 亚洲精品久久午夜乱码| 丰满迷人的少妇在线观看| 麻豆国产97在线/欧美| 国国产精品蜜臀av免费| 国产高清国产精品国产三级 | 在线观看人妻少妇| 亚洲人成网站在线观看播放| 又爽又黄a免费视频| 激情五月婷婷亚洲| 寂寞人妻少妇视频99o| 精品国产三级普通话版| 高清av免费在线| av在线播放精品| 午夜激情福利司机影院| 涩涩av久久男人的天堂| www.av在线官网国产| 亚洲精品乱码久久久久久按摩| 国产精品一及| 久久ye,这里只有精品| 午夜老司机福利剧场| 国产精品久久久久久精品古装| 男女无遮挡免费网站观看| 亚洲成人av在线免费| 亚洲精品日韩av片在线观看| 有码 亚洲区| av国产久精品久网站免费入址| 熟女人妻精品中文字幕| 欧美日韩亚洲高清精品| 亚洲精品第二区| 男女啪啪激烈高潮av片| 女人久久www免费人成看片| .国产精品久久| 夜夜看夜夜爽夜夜摸| 欧美精品一区二区免费开放| 菩萨蛮人人尽说江南好唐韦庄| 亚洲内射少妇av| 熟女人妻精品中文字幕| 久久精品国产亚洲av涩爱| 街头女战士在线观看网站| 国产高清国产精品国产三级 | 全区人妻精品视频| 亚洲美女黄色视频免费看| freevideosex欧美| av卡一久久| 久久国产乱子免费精品| 少妇精品久久久久久久| av免费在线看不卡| 赤兔流量卡办理| 国产一级毛片在线| 精品久久久久久久久av| 日韩一区二区三区影片| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲欧美精品永久| 精品久久久久久久久亚洲| 国产真实伦视频高清在线观看| 777米奇影视久久| av一本久久久久| av国产精品久久久久影院| 热99国产精品久久久久久7| 国产91av在线免费观看| 国产精品99久久久久久久久| 久久久久久九九精品二区国产| 一边亲一边摸免费视频| 国产精品久久久久久av不卡| 欧美极品一区二区三区四区| 欧美激情国产日韩精品一区| 久久久午夜欧美精品| 国产成人精品婷婷| 天美传媒精品一区二区| 一区二区三区乱码不卡18| 99热这里只有是精品在线观看| 韩国高清视频一区二区三区| 免费黄频网站在线观看国产| 国产成人freesex在线| 亚洲电影在线观看av| 高清黄色对白视频在线免费看 | 国产在线男女| 简卡轻食公司| 直男gayav资源| 九草在线视频观看| 日韩av不卡免费在线播放| 亚洲一区二区三区欧美精品| 亚洲国产av新网站| 午夜福利视频精品| 中文字幕免费在线视频6| 岛国毛片在线播放| 精品人妻偷拍中文字幕| 丰满人妻一区二区三区视频av| 国产欧美另类精品又又久久亚洲欧美| 性高湖久久久久久久久免费观看| 亚洲精品自拍成人| 婷婷色麻豆天堂久久| 中国三级夫妇交换| 好男人视频免费观看在线| 啦啦啦视频在线资源免费观看| 黄色怎么调成土黄色| 毛片女人毛片| 天堂8中文在线网| 亚洲高清免费不卡视频| 狠狠精品人妻久久久久久综合| 亚洲中文av在线| 亚洲一区二区三区欧美精品| 黄片wwwwww| 男女国产视频网站| 国产人妻一区二区三区在| 如何舔出高潮| 国产高清三级在线| 五月开心婷婷网| 岛国毛片在线播放| 久久热精品热| 亚洲av综合色区一区| 少妇人妻 视频| 各种免费的搞黄视频| a级毛片免费高清观看在线播放| 久久99热这里只有精品18| 亚洲欧洲国产日韩| 久久久久久久久大av| 一级毛片电影观看| 好男人视频免费观看在线| 久久久久精品性色| 亚洲精品国产av蜜桃| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 男人和女人高潮做爰伦理| 亚洲性久久影院| 国产精品国产三级专区第一集| 中文精品一卡2卡3卡4更新| 一区二区三区免费毛片| 久久这里有精品视频免费| 一区在线观看完整版| 欧美精品国产亚洲| 亚洲国产最新在线播放| 久久av网站| 七月丁香在线播放| 啦啦啦啦在线视频资源| 久久久久久久久久人人人人人人| 多毛熟女@视频| 国产欧美日韩一区二区三区在线 | 尤物成人国产欧美一区二区三区| 这个男人来自地球电影免费观看 | 国产一区亚洲一区在线观看| 色婷婷久久久亚洲欧美| 高清视频免费观看一区二区| 成人国产麻豆网| 国产淫片久久久久久久久| 亚洲国产成人一精品久久久| av国产久精品久网站免费入址| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲一级一片aⅴ在线观看| 亚洲av电影在线观看一区二区三区| 最近2019中文字幕mv第一页| av专区在线播放| 一级毛片黄色毛片免费观看视频| av在线观看视频网站免费| 亚洲欧洲日产国产| 老司机影院成人| 免费少妇av软件| 亚洲第一区二区三区不卡| 色婷婷av一区二区三区视频| 国产高清有码在线观看视频| 国产精品一二三区在线看| www.av在线官网国产| 精品久久久久久久久av| 丝袜喷水一区| 少妇被粗大猛烈的视频| 在线 av 中文字幕| 日韩,欧美,国产一区二区三区| 国产成人精品婷婷| 亚洲av在线观看美女高潮| 高清黄色对白视频在线免费看 | 狠狠精品人妻久久久久久综合| 午夜福利在线观看免费完整高清在| 免费高清在线观看视频在线观看| 大片电影免费在线观看免费| 国产亚洲一区二区精品| 国产永久视频网站| 我要看黄色一级片免费的| 小蜜桃在线观看免费完整版高清| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品中文字幕在线视频 | 久久久久国产网址| 免费播放大片免费观看视频在线观看| 97热精品久久久久久| 国产伦精品一区二区三区四那| 少妇被粗大猛烈的视频| 亚洲精品成人av观看孕妇| 全区人妻精品视频| 好男人视频免费观看在线| 成人综合一区亚洲| 少妇人妻久久综合中文| 亚洲av综合色区一区| av在线蜜桃| 亚洲欧美日韩卡通动漫| 亚洲欧美成人精品一区二区| 亚洲自偷自拍三级| 久久精品国产a三级三级三级| 亚洲真实伦在线观看| av不卡在线播放| 国产精品人妻久久久久久| 一本色道久久久久久精品综合| 国产精品久久久久久久久免| 欧美亚洲 丝袜 人妻 在线| 欧美xxxx黑人xx丫x性爽| 久久久精品免费免费高清| 3wmmmm亚洲av在线观看| 欧美3d第一页| 国产亚洲5aaaaa淫片| 亚洲va在线va天堂va国产| 国产成人freesex在线| 欧美另类一区| 国产淫语在线视频| 久久久久久伊人网av| 嘟嘟电影网在线观看| 人妻夜夜爽99麻豆av| 一二三四中文在线观看免费高清| 少妇精品久久久久久久| 久久久久久久久大av| 99久久精品热视频| 国产亚洲精品久久久com| 国产精品.久久久| 国产亚洲最大av| 国产成人精品一,二区| 亚洲美女视频黄频| 如何舔出高潮| 亚洲熟女精品中文字幕| 啦啦啦啦在线视频资源| 免费高清在线观看视频在线观看| 久久久久国产精品人妻一区二区| 欧美精品人与动牲交sv欧美| av女优亚洲男人天堂| h日本视频在线播放| 国产综合精华液| 国产日韩欧美在线精品| 久久久成人免费电影| 极品教师在线视频| 人人妻人人澡人人爽人人夜夜| 哪个播放器可以免费观看大片| 80岁老熟妇乱子伦牲交| 男的添女的下面高潮视频| 午夜激情久久久久久久| 婷婷色av中文字幕| www.av在线官网国产| av免费在线看不卡| 亚洲欧美一区二区三区国产| 精品少妇黑人巨大在线播放| 精品久久久久久电影网| 热99国产精品久久久久久7| 国产伦理片在线播放av一区| 婷婷色综合大香蕉| 99热这里只有是精品在线观看| 欧美精品一区二区大全| 插阴视频在线观看视频| 人妻制服诱惑在线中文字幕| 深夜a级毛片| 在线 av 中文字幕| www.av在线官网国产| 男女边吃奶边做爰视频| 久久久久久人妻| 一个人看的www免费观看视频| 欧美少妇被猛烈插入视频| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人精品一区二区| 亚洲欧洲国产日韩| 男人爽女人下面视频在线观看| 欧美激情国产日韩精品一区| www.色视频.com| 人妻少妇偷人精品九色| 国产午夜精品一二区理论片| 看非洲黑人一级黄片| 色婷婷久久久亚洲欧美| 国产成人freesex在线| 我要看日韩黄色一级片| 亚洲无线观看免费| 天堂8中文在线网| 欧美日本视频| 免费av中文字幕在线| 成人综合一区亚洲| 日韩av免费高清视频| 久久久a久久爽久久v久久| 在线观看一区二区三区| 亚洲不卡免费看| 在线观看一区二区三区| 亚洲精品乱码久久久v下载方式| 精品久久久久久久久亚洲| 国产精品久久久久久精品古装| 国产亚洲5aaaaa淫片| 丝袜脚勾引网站| 久久久久国产网址| 午夜福利视频精品| 国产男女超爽视频在线观看| 午夜福利视频精品| 成人亚洲欧美一区二区av| 欧美成人a在线观看| 久久久久久久久久成人| 久久综合国产亚洲精品| 国产伦在线观看视频一区| 狂野欧美激情性xxxx在线观看| 国产高清三级在线| 国产亚洲91精品色在线| 又黄又爽又刺激的免费视频.| 日韩制服骚丝袜av| 国产乱人偷精品视频| 精品一区二区免费观看| 伊人久久国产一区二区| 日韩大片免费观看网站| 久久国产精品男人的天堂亚洲 | 最近的中文字幕免费完整| 精品人妻偷拍中文字幕| 久久人人爽人人片av| 男人舔奶头视频| 在线 av 中文字幕| 久久热精品热| a级毛色黄片| av在线观看视频网站免费| 青春草国产在线视频| 亚洲av日韩在线播放| 五月天丁香电影| 国产女主播在线喷水免费视频网站| 久久久久网色| 亚洲精品视频女| 韩国av在线不卡| 免费人妻精品一区二区三区视频| 亚洲欧美中文字幕日韩二区| 亚洲精品自拍成人| 超碰97精品在线观看| 国产 一区精品| 亚洲精品中文字幕在线视频 | 丰满人妻一区二区三区视频av| 观看免费一级毛片| 一边亲一边摸免费视频| 欧美高清成人免费视频www| 成人特级av手机在线观看| 免费看不卡的av| 成人漫画全彩无遮挡| 日韩在线高清观看一区二区三区| 日韩成人av中文字幕在线观看| 人人妻人人爽人人添夜夜欢视频 | 女人十人毛片免费观看3o分钟| 国产成人精品福利久久| 精品久久久精品久久久| 成年美女黄网站色视频大全免费 | 卡戴珊不雅视频在线播放| 欧美+日韩+精品| 成人影院久久| 黄色欧美视频在线观看| 99久久中文字幕三级久久日本| 亚洲人成网站在线播| 国产熟女欧美一区二区| 观看美女的网站| 欧美97在线视频| 久久久久久伊人网av| 天堂俺去俺来也www色官网| 91久久精品电影网| 亚洲,一卡二卡三卡| 男女无遮挡免费网站观看| 久久热精品热| 一区二区三区乱码不卡18| 成人高潮视频无遮挡免费网站| 国产亚洲午夜精品一区二区久久| 又爽又黄a免费视频| 亚洲欧美日韩无卡精品| 久久久色成人| 国产黄片美女视频| 观看美女的网站| 欧美变态另类bdsm刘玥| 18禁裸乳无遮挡动漫免费视频| 在线亚洲精品国产二区图片欧美 | 中文字幕人妻熟人妻熟丝袜美| 黄片wwwwww| 欧美3d第一页| 久久精品人妻少妇| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 最近最新中文字幕免费大全7| 午夜精品国产一区二区电影| 午夜日本视频在线| 国产视频内射| 亚洲av成人精品一二三区| 亚洲国产精品国产精品| 在线观看三级黄色| 久久国产精品男人的天堂亚洲 | 最近2019中文字幕mv第一页| 免费看不卡的av| 七月丁香在线播放| 亚洲国产成人一精品久久久| 免费人妻精品一区二区三区视频| 国产免费视频播放在线视频| 欧美xxxx黑人xx丫x性爽| 人妻一区二区av| 久久久久久久久大av| 免费黄网站久久成人精品| 日本色播在线视频| 久久精品国产亚洲网站| 日韩欧美 国产精品| 97热精品久久久久久| 国产在线视频一区二区| 噜噜噜噜噜久久久久久91| 建设人人有责人人尽责人人享有的 | 极品少妇高潮喷水抽搐| 亚洲综合色惰| 亚洲不卡免费看| 国产精品人妻久久久影院| 在线观看免费视频网站a站| 一级二级三级毛片免费看| 欧美人与善性xxx| 一二三四中文在线观看免费高清| 久久人妻熟女aⅴ| 一本一本综合久久| 国产黄频视频在线观看| 久久久久久久久久久丰满| 爱豆传媒免费全集在线观看| 亚洲精华国产精华液的使用体验| 国产免费视频播放在线视频| 人妻夜夜爽99麻豆av| 天堂俺去俺来也www色官网| 日韩精品有码人妻一区| 99热这里只有是精品50| 午夜激情久久久久久久| 内射极品少妇av片p| 国产视频首页在线观看| 成人高潮视频无遮挡免费网站| 性色avwww在线观看| 国内少妇人妻偷人精品xxx网站| 国产精品伦人一区二区| 久久久久久伊人网av| 午夜免费观看性视频| 黄色怎么调成土黄色| 九九在线视频观看精品| 狂野欧美白嫩少妇大欣赏| av国产免费在线观看| 国产色爽女视频免费观看| 亚洲精品国产色婷婷电影| 大香蕉久久网| 麻豆成人午夜福利视频| 国产精品成人在线| 2021少妇久久久久久久久久久| 国产有黄有色有爽视频| 一二三四中文在线观看免费高清| av.在线天堂| 三级国产精品片| 少妇被粗大猛烈的视频| 国产免费又黄又爽又色| 一级毛片电影观看| 亚洲精华国产精华液的使用体验| 成人影院久久| 国产在线视频一区二区| 国产亚洲精品久久久com| 免费高清在线观看视频在线观看| 亚洲美女搞黄在线观看| 亚洲国产欧美人成| 人妻制服诱惑在线中文字幕| 午夜老司机福利剧场| 22中文网久久字幕| 久久久久久人妻| 精品午夜福利在线看| 欧美老熟妇乱子伦牲交| 91精品伊人久久大香线蕉| 人人妻人人澡人人爽人人夜夜| 久久精品久久精品一区二区三区| 成人亚洲精品一区在线观看 | 国产日韩欧美亚洲二区| 99久久精品热视频| 亚洲丝袜综合中文字幕| 国产成人免费无遮挡视频| 精品熟女少妇av免费看| 超碰97精品在线观看| 国产伦精品一区二区三区视频9| 亚洲精品一区蜜桃| 99热网站在线观看| 国产精品麻豆人妻色哟哟久久| 欧美精品国产亚洲| 亚洲三级黄色毛片| 有码 亚洲区| 久久亚洲国产成人精品v| 天堂8中文在线网| 久久久久国产网址| 王馨瑶露胸无遮挡在线观看| 岛国毛片在线播放| 啦啦啦视频在线资源免费观看| 岛国毛片在线播放| 两个人的视频大全免费| 美女福利国产在线 | 国产免费一级a男人的天堂| 亚洲欧美清纯卡通| 国产有黄有色有爽视频| 久久久久网色| 久久精品人妻少妇| 麻豆乱淫一区二区| 精品人妻视频免费看| 欧美极品一区二区三区四区| 3wmmmm亚洲av在线观看| 亚洲精品中文字幕在线视频 | .国产精品久久| 日本一二三区视频观看| av.在线天堂| 亚洲四区av| 在线观看av片永久免费下载| 国产中年淑女户外野战色| 国产有黄有色有爽视频| 成年人午夜在线观看视频| 中文天堂在线官网| 久久精品夜色国产| 国产精品无大码| 精品99又大又爽又粗少妇毛片| 日韩不卡一区二区三区视频在线| 国产爽快片一区二区三区| 亚洲熟女精品中文字幕| 久久久久久久国产电影| 99久久精品热视频| 最近最新中文字幕大全电影3| 日韩av免费高清视频| 97超碰精品成人国产| 日韩成人av中文字幕在线观看| 久久鲁丝午夜福利片| 日日摸夜夜添夜夜爱| 美女脱内裤让男人舔精品视频| 成年人午夜在线观看视频| 亚洲精品乱码久久久久久按摩| 欧美3d第一页| 国内揄拍国产精品人妻在线| 精品亚洲成a人片在线观看 | 一个人免费看片子| 黑人猛操日本美女一级片| 免费看光身美女| 在线观看免费高清a一片| 亚洲精品日韩在线中文字幕| 国产无遮挡羞羞视频在线观看| 亚洲精品,欧美精品| 亚洲图色成人| 日本猛色少妇xxxxx猛交久久| 亚洲av二区三区四区| 久久99热6这里只有精品| 十分钟在线观看高清视频www | 国产熟女欧美一区二区| 简卡轻食公司| 婷婷色麻豆天堂久久| 欧美日韩亚洲高清精品| 九九久久精品国产亚洲av麻豆| 国产成人一区二区在线| 国语对白做爰xxxⅹ性视频网站| av在线蜜桃| 狂野欧美激情性bbbbbb| 久久精品熟女亚洲av麻豆精品| 日本与韩国留学比较| 欧美3d第一页| 国产精品一及| 国产伦精品一区二区三区四那| 18禁在线播放成人免费| 成人免费观看视频高清| 亚洲欧美清纯卡通| 男女边摸边吃奶|