劉世偉,費(fèi)文平,鄒海鷗
(四川大學(xué)水利水電學(xué)院,四川 成都 610065)
粘土心墻壩作為壩工建設(shè)領(lǐng)域中非常常見的壩型之一,具有對地質(zhì)條件要求低、就地取材、造價(jià)低、施工速度快及抗震性能好等許多優(yōu)點(diǎn),在當(dāng)前壩工建設(shè)中得到了非常廣泛的應(yīng)用。與此同時(shí),隨著建壩的數(shù)量日益增多,由此產(chǎn)生的工程問題引起了國內(nèi)外許多學(xué)者的關(guān)注并進(jìn)行了大量研究。劉松濤[1]采用有限元方法分析了三峽茅坪溪防護(hù)工程粘土心墻方案的應(yīng)力應(yīng)變;姜海波[2]通過室內(nèi)試驗(yàn)和三軸試驗(yàn)測得壩體材料的物理性質(zhì)指標(biāo)和鄧肯張E-B 模型參數(shù),采用有限元方法計(jì)算并研究分析了竣工期和滲流穩(wěn)定期高土石壩壩體應(yīng)力、應(yīng)變和變形;熊鵬、劉超群等[3]人基于鄧肯-張非線性彈性材料模型,對云南省某在建粘土心墻堆石壩逐層填筑施工和正常蓄水+9 度地震作用兩種工況情況下的壩體應(yīng)力和變形進(jìn)行了有限元數(shù)值模擬與分析;沈珠江、王劍平[4]運(yùn)用5 種不同的土石料應(yīng)力應(yīng)變模型進(jìn)行了數(shù)學(xué)模擬,論述了幾種模型的優(yōu)缺點(diǎn)及土石壩應(yīng)力應(yīng)變分析中存在的問題。由此可見,粘土心墻壩的設(shè)計(jì)建設(shè)中,采用有限元數(shù)值模擬方法對壩體在施工和蓄水中的應(yīng)力-變形進(jìn)行計(jì)算與分析非常必要,已被我國壩工界所認(rèn)可。本文基于鄧肯-張非線性彈性材料模型,運(yùn)用有限元數(shù)值模擬方法對大壩完建工況下的壩體及粘土心墻的應(yīng)力和變形進(jìn)行了有限元靜力分析,以為該壩體的安全性、穩(wěn)定性評價(jià)提供依據(jù)。
基于ANSYS 軟件的有限元計(jì)算,采用鄧肯- 張E-μ 模型,模型中的彈性模量E 的計(jì)算如下式:
式中:c 為材料凝聚力;φ 為材料內(nèi)摩角。切線泊松比μt的表達(dá)式如下:
式中:A=D(σ1-σ3)/Et、D、G、F 為材料參數(shù)。對于卸載情況,該模型采用回彈模量Eur進(jìn)行計(jì)算?;貜椖A勘磉_(dá)式為:
式中:kur為卸載模量基數(shù),nur為卸載模量指數(shù),且一般情況下nur≈n;當(dāng)σ1-σ3小于歷史上的最大值(σ1-σ3)0,且s 小于歷史最大值s 時(shí)用Eur,否則用Et。
APDL,即ANSYS 參數(shù)化設(shè)計(jì)語言,用其編寫鄧肯- 張E-μ模型的宏命令,然后賦予材料初始值,反復(fù)調(diào)用宏命令,反復(fù)計(jì)算,最終得到合理的彈性模量、泊松比,最后再計(jì)算壩體的應(yīng)力應(yīng)變。
本文研究的是某水庫大壩的加高工程,原大壩為粘土心墻風(fēng)化料壩,壩頂高程1285.40 m,最大壩高58.4 m。大壩加高選擇從下游壩坡加高培厚的方式,加高后新加高壩為粘土斜墻風(fēng)化料壩,壩頂高程為1293.80 m,最大壩高66.80 m。粘土斜墻底部與原壩體心墻頂接合,斜墻底高程1281.88 m。上游斜墻壩坡1∶2.5,下游壩坡1∶2.25、1∶2.0、1∶2.0。標(biāo)準(zhǔn)剖面圖見圖1。
圖1 大壩標(biāo)準(zhǔn)橫剖面圖
不考慮蓄水及其它外部條件的荷載,只考慮大壩完建期自重荷載的工況。
計(jì)算采用的單元為六面體SOLID185 實(shí)體單元,在材料參數(shù)設(shè)置上,針對不同的材料特性,靜力計(jì)算過程中主要考慮了兩種材料本構(gòu)模型,對基巖采用線彈性模型,對壩體材料采用鄧肯- 張非線性模型,材料參數(shù)見表1。
表1 壩體材料參數(shù)表(E-μ 模型參數(shù))
對于土石壩,由于土體材料本構(gòu)為非線性彈性模型,壩體最終的應(yīng)力變形與加載歷史有關(guān)。因此,數(shù)值分析建模按設(shè)計(jì)加載順序分39 級加載,其中第1 級至17 級大壩填筑至1281.88 m 高程(一期填筑),第18 級至39 級大壩填筑至壩頂高層1293.80 m。根據(jù)本工程情況,建立的有限元數(shù)值模擬計(jì)算模型見圖2。
圖2 計(jì)算模型網(wǎng)格圖
圖3 原大壩第一主應(yīng)力云圖
圖4 壩體加高后第一主應(yīng)力云圖
圖3 表明原壩體最大拉應(yīng)力為0.03 MPa,位于原壩體上游側(cè)2/3 壩高處。拉應(yīng)力分布范圍極小,僅分布于最大拉應(yīng)力附近。圖4 表明:加高后壩體最大拉應(yīng)力為0.34 MPa,其最大拉應(yīng)力位于原壩體下游側(cè)2/3 壩高處,原壩體與新建壩體的過渡區(qū)域。通過圖3 圖4 的對比可以發(fā)現(xiàn),最大拉應(yīng)力的分布位置和拉應(yīng)力分布區(qū)域的大小發(fā)生了變化。相比加高之前只在最大拉應(yīng)力位置分布有拉應(yīng)力,其他位置未分布拉應(yīng)力的情況,壩體加高后拉應(yīng)力的分布范圍發(fā)生了變化,擴(kuò)建后除最大拉應(yīng)力附近有拉應(yīng)力分布外,在新老壩過渡區(qū)域還分布有其他的拉應(yīng)力,其分布區(qū)域從最大拉應(yīng)力位置開始,沿著過渡區(qū)域向上擴(kuò)展,一直到新建壩體的斜墻表面。值得注意的是,新建壩體斜墻也出現(xiàn)了拉應(yīng)力分布,但是其數(shù)值極小為2529.72 kPa(圖4),不會(huì)危及到斜墻的安全。
圖5 原大壩第三主應(yīng)力云圖
圖6 壩體加高后第三主應(yīng)力云圖
圖5 表明:加高之前壩體最大壓應(yīng)力為1.58 MPa,位于原壩體心墻下游側(cè)底部;壩體應(yīng)力以壓應(yīng)力為主,分布于各個(gè)部位,上游壩殼、下游壩殼、心墻、壩體均有分布。
圖6 表明:到大壩封頂時(shí),壩體最大壓應(yīng)力為2.20 MPa,位于壩體心墻下游側(cè)底部。壩體應(yīng)力也是以壓應(yīng)力為主,分布于壩體的各個(gè)部位。
對比圖5、圖6 可以看出,大壩最大壓應(yīng)力出現(xiàn)的位置基本相同,加高后最大壓應(yīng)力數(shù)值比原來增大約39%,增大幅度較大,其絕對值增加也很大,但是并未超過壩體材料的抗壓強(qiáng)度,不會(huì)發(fā)生危險(xiǎn)。
圖7 原心墻第一主應(yīng)力云圖
圖8 原心墻第三主應(yīng)力云圖
圖8 表明:加高之前心墻最大壓應(yīng)力為0.56 MPa,位于心墻底部,應(yīng)力以壓應(yīng)力為主,圖7 表明:未分布有拉應(yīng)力。
圖9 壩體加高后心墻第一主應(yīng)力云圖
圖10 壩體加高后心墻第三主應(yīng)力云圖
新壩體建成后心墻最大壓應(yīng)力為0.62 MPa,位于心墻底部,應(yīng)力以壓應(yīng)力為主,未分布有拉應(yīng)力。
心墻最大壓應(yīng)力由0.58 MPa 增大為0.62 MPa,增大約7%,分布位置基本未發(fā)生變化。由此可見,壩體加高對原壩體心墻應(yīng)力沒有較大影響
圖11 原大壩豎向位移云圖
加高前壩體最大豎向位移為18.9 mm,位于壩體中部1/3壩高到1/2 壩高處。
圖12 原大壩水平位移云圖
加高前壩體最大水平位移為3.3 mm,位于心墻與上游壩體過渡區(qū)域。
圖13 壩體加高后豎直向位移云圖
加高后壩體最大豎向位移為19.7 mm,位于壩體中部1/3壩高到1/2 壩高處。相比原來增大約4.2%。
圖14 壩體加高后水平方向位移云圖
加高后壩體最大水平位移為5.5 mm,位于心墻與下游壩體的過渡區(qū)域。相比原來增大約66.7%。其增大幅度較大,但是原來水平位移的絕對值很小。
大壩的豎向位移在加高前后變化幅度較小,絕對值也比較??;水平位移雖然增大幅度較大,但是原來壩體的水平位移本身極小,所以壩體加高對于原壩體位移的影響不大。
基于鄧肯- 張E-μ 模型,利用ANSYS 三維有限元軟件,對某水庫擴(kuò)建工程大壩計(jì)算,進(jìn)行應(yīng)力- 應(yīng)變分析,研究擴(kuò)建對大壩的影響,結(jié)論如下:
(1)原粘土心墻壩壩體最大水平位移為3.3 mm,最大沉降量為18.9 mm,最大壓應(yīng)力為1.58 MPa,最大拉應(yīng)力為0.03 MPa,水平位移及沉降量分布合理,壩體應(yīng)力分布符合一般規(guī)律。
(2)加高后的壩體最大水平位移為5.5 mm,增大約66.7%,最大沉降量為19.7 mm,增大約4.2%,壩體加高對于原壩體位移的影響不大;最大壓應(yīng)力為2.20 MPa,增大約39%,最大拉應(yīng)力為0.34 MPa,水平位移及沉降量分布合理,壩體應(yīng)力分布符合一般規(guī)律。壩體不會(huì)因?yàn)閼?yīng)力的變化出現(xiàn)危險(xiǎn)。
(3)加高前、后心墻最大壓應(yīng)力為0.58 MPa、0.62 MPa,增大幅度為7%。加高前后心墻均未出現(xiàn)拉應(yīng)力,壩體加高對心墻應(yīng)力的影響不大。
(4)通過對壩體加高前后的應(yīng)力應(yīng)變的研究,可以發(fā)現(xiàn),壩體加高不會(huì)對大壩整體的穩(wěn)定性和安全性有較大的影響,且加高后大壩整體變形較小,新建壩體的粘土斜墻上雖出現(xiàn)拉應(yīng)力,但是其數(shù)值極小,斜墻開裂的可能性較小,完建工況下壩體是安全與穩(wěn)定的。