王建楠,劉敏基,胡志超,魏 海,謝煥雄
綠豆干法脫皮設(shè)備關(guān)鍵參數(shù)優(yōu)化與試驗(yàn)
王建楠1,2,劉敏基1,胡志超1,魏 海1,謝煥雄1※
(1. 農(nóng)業(yè)農(nóng)村部南京農(nóng)業(yè)機(jī)械化研究所,南京 210014; 2. 南京農(nóng)業(yè)大學(xué)工學(xué)院,南京 210031)
綠豆干法脫皮設(shè)備脫皮合格率低、出米率低,關(guān)鍵參數(shù)研究缺乏的現(xiàn)狀已成為制約產(chǎn)業(yè)健康發(fā)展的問題之一。針對這些問題,該文結(jié)合綠豆物理特性研究,采用二次正交旋轉(zhuǎn)組合設(shè)計(jì)試驗(yàn)及響應(yīng)曲面分析方法,開展綠豆干法脫皮設(shè)備關(guān)鍵參數(shù)中脫皮滾筒轉(zhuǎn)速、砂輥轉(zhuǎn)速、脫皮時(shí)間優(yōu)化與試驗(yàn),利用Design-Expert對數(shù)據(jù)進(jìn)行了分析并探討了各參數(shù)及其交互作用對脫皮合格率、整米率的影響,并利用該軟件進(jìn)行了多目標(biāo)優(yōu)化。試驗(yàn)結(jié)果表明:影響脫皮合格率的因素依次為:脫皮滾筒轉(zhuǎn)速>作業(yè)時(shí)間>砂輥轉(zhuǎn)速;影響出米率的因素依次為:作業(yè)時(shí)間>脫皮滾筒轉(zhuǎn)速>砂輥轉(zhuǎn)速;脫皮滾筒轉(zhuǎn)速與作業(yè)時(shí)間交互作用對脫皮合格率影響極顯著(<0.01),其余參數(shù)交互作用影響不顯著;脫皮滾筒轉(zhuǎn)速與作業(yè)時(shí)間交互作用對出米率影響極顯著(<0.01),脫皮滾筒轉(zhuǎn)速與砂輥轉(zhuǎn)速交互作用對出米率影響不顯著。多目標(biāo)優(yōu)化結(jié)果表明:綠豆干法脫皮設(shè)備作業(yè)關(guān)鍵參數(shù)的最優(yōu)參數(shù)組合為脫皮滾筒轉(zhuǎn)速25.20 r/min、砂輥轉(zhuǎn)速1 642.61 r/min、脫皮時(shí)間108.8 min。此時(shí),脫皮合格率、出米率均達(dá)最大值,分別為99.72%、86.57%。將最優(yōu)組合參數(shù)應(yīng)用在設(shè)備上并開展累計(jì)20批次綠豆脫皮加工作業(yè),得到脫皮合格率、出米率的均值分別為99.32%、85.63%,脫皮質(zhì)量大幅提升,有效降低了脫皮損失。該研究可為綠豆脫皮機(jī)作業(yè)質(zhì)量改善提供參考。
農(nóng)作物;優(yōu)化;脫皮機(jī);綠豆;作業(yè)參數(shù);物料特性;關(guān)鍵部件
綠豆(L.)屬于豆科豇豆屬植物,是溫帶、亞熱帶地區(qū)廣泛種植的豆類之一,在中國有兩千多年栽培歷史,是中國主要的食用豆類品種[1-2]。綠豆富含蛋白質(zhì)、維生素、膳食纖維、多種礦物質(zhì)元素及20多種活性物質(zhì),具有解毒、改善腸道菌群、降血脂、抗氧化等多種功效,是重要的藥、食兼用農(nóng)作物[3-5],在中國種植面積、總產(chǎn)量和出口量居世界首位,是中國重要的出口創(chuàng)匯農(nóng)產(chǎn)品[6]。
豆類脫皮可有效提高食用豆中豆粕蛋白含量、提高經(jīng)濟(jì)效益[7],是綠豆、大豆等豆類加工的常見工序,也是綠豆制粉加工的關(guān)鍵環(huán)節(jié)[8-10]。與大豆脫皮加工類似,綠豆常用的脫皮加工方法有濕(水)法脫皮、干法脫皮2種[11]:濕法脫皮需要用大量的水浸泡綠豆,經(jīng)濕法脫皮設(shè)備進(jìn)行脫皮,其加工浸泡時(shí)間長、耗水量大、水溫控制要求高,脫皮后須進(jìn)行豆仁干燥、且浸泡后的污水對環(huán)境污染大[12-14];干法脫皮可在綠豆正常貯藏含水率條件下,通過綠豆干法脫皮設(shè)備對其直接脫皮,脫皮工序簡單、效率高且脫皮后無需對豆仁干燥,因此在生產(chǎn)中應(yīng)用較為普遍。但干法脫皮設(shè)備尚存在因設(shè)備運(yùn)動(dòng)參數(shù)、作業(yè)工藝參數(shù)不合理導(dǎo)致的脫皮合格率低(約85%)、出米率低(約70%)的問題,致使實(shí)際生產(chǎn)中加工成品損耗大、品質(zhì)差。長期以來,受農(nóng)業(yè)發(fā)展重點(diǎn)方向及科研經(jīng)費(fèi)投入的制約,綠豆等小宗作物初加工技術(shù)裝備未引起足夠關(guān)注和重視,國外相關(guān)研究主要集中在綠豆?fàn)I養(yǎng)成分分析、功能成分提取、抗病蟲害等方面[15-17],國內(nèi)在該領(lǐng)域研究報(bào)道亦較少見,左青等對大豆脫皮工藝進(jìn)行了研究[18-21],未見研究人員對綠豆脫皮工藝及裝備進(jìn)行研究與探討,致使綠豆干法脫皮工藝參數(shù)及設(shè)備作業(yè)質(zhì)量長期未能得到有效提升,作業(yè)質(zhì)量一直處在低水平狀態(tài),成為制約產(chǎn)業(yè)健康發(fā)展的主要問題之一。
為破解制約綠豆干法脫皮技術(shù)難題,本文從綠豆物理特性研究入手,開展綠豆干法脫皮設(shè)備關(guān)鍵參數(shù)試驗(yàn)與優(yōu)化研究,以獲取最佳關(guān)鍵作業(yè)參數(shù),為提升設(shè)備作業(yè)質(zhì)量提供參考。
綠豆脫皮機(jī)主要由機(jī)架、脫皮滾筒、脫皮砂輥、振動(dòng)篩等部件組成,其結(jié)構(gòu)如圖1所示。脫皮作業(yè)過程如下:綠豆由提升裝置進(jìn)入旋轉(zhuǎn)的脫皮滾筒,脫皮滾筒的圓柱表面為圓孔篩,其斷面通過法蘭安裝滾筒鏈輪。脫皮滾筒經(jīng)主動(dòng)鏈輪在電機(jī)的帶動(dòng)下低速轉(zhuǎn)動(dòng),脫皮滾筒內(nèi)的綠豆與高速旋轉(zhuǎn)的圓柱體砂輥接觸摩擦實(shí)現(xiàn)脫皮。脫皮作業(yè)過程中綠豆隨脫皮滾筒離心運(yùn)動(dòng)并被脫皮滾筒頻繁帶動(dòng)至滾筒高處后下落,從而實(shí)現(xiàn)脫皮過程中綠豆的翻動(dòng),以滿足綠豆不同表面與圓柱體砂輥的均勻接觸條件,從而實(shí)現(xiàn)綠豆表面各個(gè)方向的均勻脫皮作業(yè)。脫皮作業(yè)過程中,綠豆皮被圓柱體砂輥磨成細(xì)小的粉末,在除塵風(fēng)機(jī)的負(fù)壓作用下經(jīng)脫皮滾筒的篩孔排出并通過風(fēng)管經(jīng)風(fēng)機(jī)出口進(jìn)入除塵裝置。作業(yè)一段時(shí)間后,開機(jī)取樣以查看綠豆脫皮作業(yè)效果,待脫皮達(dá)到加工要求時(shí)出料,脫皮后的綠豆經(jīng)振動(dòng)篩進(jìn)行篩分,整粒綠豆通過出料口進(jìn)入集料斗,半粒綠豆通過出料口進(jìn)入集料斗,從而實(shí)現(xiàn)整粒脫皮綠豆與半粒脫皮綠豆分離,整個(gè)綠豆脫皮作業(yè)過程完成。
1.除塵風(fēng)機(jī) 2.風(fēng)管 3.護(hù)罩 4.機(jī)架 5.砂輥 6.脫皮滾筒 7.滾筒鏈輪 8.皮帶 9.從動(dòng)鏈輪 10.砂輥電機(jī) 11.整粒集料斗 12.整粒綠豆出料口 13.半粒綠豆出料口 14.半粒集料斗 15.振動(dòng)篩支承 16.振動(dòng)篩 17.振動(dòng)篩電機(jī) 18.脫皮滾筒電機(jī) 19.聯(lián)軸器 20.主動(dòng)鏈輪 21.風(fēng)機(jī)出口 22.風(fēng)機(jī)電機(jī)
出米率、脫皮合格率是綠豆脫皮設(shè)備作業(yè)質(zhì)量的主要考核指標(biāo)。由上述工作原理可知,綠豆脫皮作業(yè)質(zhì)量主要影響參數(shù)有:脫皮滾筒轉(zhuǎn)速、砂輥轉(zhuǎn)速、作業(yè)時(shí)間。其中脫皮滾筒轉(zhuǎn)速、砂輥轉(zhuǎn)速為設(shè)備運(yùn)行參數(shù),作業(yè)時(shí)間為關(guān)鍵工藝參數(shù),最優(yōu)參數(shù)組合是綠豆脫皮出米率、脫皮合格率達(dá)到最佳的關(guān)鍵。因此,本文運(yùn)用二次正交旋轉(zhuǎn)組合設(shè)計(jì)試驗(yàn)并結(jié)合響應(yīng)曲面分析方法開展關(guān)鍵參數(shù)試驗(yàn)與優(yōu)化研究,以提高綠豆脫皮設(shè)備作業(yè)質(zhì)量。
為實(shí)現(xiàn)綠豆脫皮設(shè)備作業(yè)參數(shù)連續(xù)可調(diào),本試驗(yàn)采用變頻器對砂輥電機(jī)、脫皮滾筒電機(jī)進(jìn)行轉(zhuǎn)速調(diào)整,并通過定時(shí)控制電路控制作業(yè)時(shí)間以備取樣。
本研究采用主要儀器設(shè)備如下:ATV12H075M2型施耐德變頻器2臺、930型福祿克轉(zhuǎn)速表1臺、UTM6503型電子萬能試驗(yàn)機(jī)(精度等級0.5,含夾具若干)1臺、202-2型恒溫干燥箱、SLYA型微電腦自動(dòng)數(shù)粒儀、TGT-100臺秤(量程200 kg)、游標(biāo)卡尺(精度0.1 mm)、電子天平(測量精度1 g)、秒表、自制休止角測定儀等。
以江蘇泰州種植的中綠5號為研究對象,如圖2所示。該品種表皮呈暗綠色,綠豆基本物理特性中,由于物理尺寸、含水率、擠壓破碎力與其脫皮作業(yè)質(zhì)量密切相關(guān),隨機(jī)選取綠豆試驗(yàn)樣本進(jìn)行相關(guān)測試并統(tǒng)計(jì)分析,樣本個(gè)數(shù)為200粒[22-24]。參照GB5009.3-2016規(guī)定[25],測定綠豆含水率為9.20%;其粒長均值為5.70 mm,粒寬均值為4.18 mm,粒厚均值為4.33 mm;綠豆擠壓破碎力在30~40 N之間,以(36±1)N左右分布最為集中(約占60%);據(jù)谷物與豆類千粒質(zhì)量的測定標(biāo)準(zhǔn)(GB/T 5519-2008)測定綠豆千粒質(zhì)量為63.5 g;測定皮、仁質(zhì)量所占的比例為1.0:9.2。
圖2 供試綠豆
休止角是反映物料內(nèi)部摩擦特性及散落特性的重要指標(biāo),休止角越大種子內(nèi)摩擦力越大,散落性能越弱,本試驗(yàn)采用注入法測定休止角,所用休止角測試儀如圖3所示。
1.底座 2.支撐架 3.漏斗支承 4.漏斗 5.綠豆料堆 6.刻度尺
1. Base 2. Support frame 3. Support of hopper 4. Hopper 5.Stockpile of mung beans 6. Ruler
注:為綠豆的堆料高度,mm;為綠豆堆底面直徑,mm。
Note:is height of stockpile of mung beans, mm;is diameter of stockpile of mung beans, mm.
圖3 休止角測定儀示意圖
Fig.3 Sketch of repose angle test instrument
綠豆自漏斗自然下落成堆,試驗(yàn)重復(fù)10次,綠豆休止角計(jì)算見式(1)。經(jīng)試驗(yàn)計(jì)算的綠豆休止角的均值為23.71°
以綠豆脫皮出米率、脫皮合格率為綠豆脫皮作業(yè)質(zhì)量考核指標(biāo)。試驗(yàn)時(shí),待設(shè)備運(yùn)行平穩(wěn)(作業(yè)時(shí)間不小于15min)進(jìn)行取樣,每次取樣500 g,從中隨機(jī)取100粒整粒綠豆進(jìn)行脫皮合格率判定。目前,綠豆專用脫皮合格率判定方法及標(biāo)準(zhǔn)空白,由于其脫皮后顏色差異懸殊,脫皮前后的綠豆外觀與種子包衣前后相似,故參照種子包衣機(jī)試驗(yàn)方法(JB/T 7730-2011)中包衣合格率的測定方法[26]進(jìn)行判定。試樣以粒為單位在5倍放大鏡下進(jìn)行觀察,將其分為脫皮面積大于或等于80%的綠豆和小于80%的綠豆2類,利用數(shù)粒儀每次隨機(jī)取樣1 000粒并根據(jù)以下公式計(jì)算脫皮合格率
式中為脫皮合格率,%;Z為脫皮面積大于或等于80%的種子粒數(shù);Z為脫皮面積小于80%的粒數(shù)。
由于目前綠豆脫皮設(shè)備作業(yè)質(zhì)量相關(guān)標(biāo)準(zhǔn)空白,其作業(yè)質(zhì)量評定參照中華人民共和國行業(yè)標(biāo)準(zhǔn)膠輥礱谷機(jī)(JB/T 10267-2013)開展綠豆干法脫皮機(jī)脫皮試驗(yàn)及工藝參數(shù)優(yōu)化[27]。試驗(yàn)時(shí),作業(yè)一定時(shí)間進(jìn)行查樣,每次試驗(yàn)重復(fù)3次,取平均值。
式中為出米率,%;W為脫皮后整粒綠豆籽仁質(zhì)量,g;W為脫皮后半粒綠豆籽仁質(zhì)量,g;W為進(jìn)入脫皮滾筒的綠豆原料總質(zhì)量,g。
為得到綠豆脫皮設(shè)備最佳作業(yè)參數(shù),根據(jù)單因素試驗(yàn)結(jié)果,采用二次正交旋轉(zhuǎn)組合試驗(yàn)設(shè)計(jì)方法[28-29]開展試驗(yàn),因素及編碼水平如表1所示。
表1 因素和水平編碼表
應(yīng)用Design-Expert軟件,以中心組合響應(yīng)曲面(central composite design,CCD)方法設(shè)計(jì)并開展試驗(yàn)研究,試驗(yàn)次數(shù)及結(jié)果見表2。對試驗(yàn)結(jié)果進(jìn)行分析得到脫皮合格率、出米率與脫皮滾筒轉(zhuǎn)速、砂輥轉(zhuǎn)速、作業(yè)時(shí)間的數(shù)學(xué)模型,并分析研究其交互作用規(guī)律。
1)脫皮合格率的回歸結(jié)果分析
根據(jù)表2脫皮合格率的試驗(yàn)結(jié)果,應(yīng)用Design-Expert軟件計(jì)算可得其編碼值簡化回歸數(shù)學(xué)模型如下
為進(jìn)一步判定模型的擬合精度及各因素對脫皮合格率的影響主次順序,對表2合格率進(jìn)行方差分析及三元二次回歸分析可知,該模型決定系數(shù)2為0.971 9、且該模型值極顯著、失擬項(xiàng)不顯著,因此可判斷出該模型與實(shí)際結(jié)果擬合精度高,可用于脫皮合格率的預(yù)測和分析,且可據(jù)該模型系數(shù)絕對值大小判定各因素對脫皮合格率的影響主次順序?yàn)椋骸?/p>
表2 試驗(yàn)設(shè)計(jì)方案及結(jié)果
表3 脫皮合格率方差分析
注:*表示顯著(<0.05),**表示極顯著(<0.01),下同。
Note: * means significant(<0.05); ** means highly significant (<0.01), the same below.
2)脫皮合格率與各參數(shù)響應(yīng)曲面分析
各影響因素對脫皮合格率響應(yīng)曲面、等高線如圖4所示,綜合響應(yīng)曲面和等高線圖可判定二者交互效應(yīng)的強(qiáng)弱及對脫皮合格率的影響規(guī)律[30-32],可知脫皮滾筒轉(zhuǎn)速與作業(yè)時(shí)間交互作用對脫皮合格率影響顯著,脫皮滾筒轉(zhuǎn)速與砂輥轉(zhuǎn)速交互作用、砂輥轉(zhuǎn)速與作業(yè)時(shí)間交互作用對脫皮合格率影響不顯著,這與表3方差分析結(jié)果一致。由圖4可知,脫皮滾筒轉(zhuǎn)速和作業(yè)時(shí)間存在交互作用。當(dāng)砂輥轉(zhuǎn)速處于0水平時(shí),脫皮合格率在作業(yè)時(shí)間處于較高水平時(shí)脫皮滾筒轉(zhuǎn)速增加而逐漸降低,這是因?yàn)榫G豆脫皮需與砂輥保持一定時(shí)間的相互接觸產(chǎn)生磨擦從而將綠豆皮摩擦脫落,較高的滾筒轉(zhuǎn)速使綠豆頻繁的在脫皮滾筒內(nèi)被翻轉(zhuǎn)抄動(dòng),從而減少了與砂輥接觸摩擦的時(shí)間,致使綠豆脫皮合格率隨著脫皮滾筒轉(zhuǎn)速的增加而下降;當(dāng)作業(yè)時(shí)間處于高水平,脫皮滾筒轉(zhuǎn)速處于低水平時(shí),脫皮合格率出現(xiàn)極大值,這說明較長的作業(yè)時(shí)間和較低的脫皮滾筒轉(zhuǎn)速可以有利于綠豆外皮與脫皮砂輥充分接觸摩擦,有利于綠豆脫皮。
Q=f(A,0,C)
1)出米率的回歸結(jié)果分析
根據(jù)表2試驗(yàn)結(jié)果得到出米率的編碼值簡化回歸數(shù)學(xué)模型為
對表2結(jié)果進(jìn)行出米率的方差分析及三元二次回歸分析,結(jié)果見表4,可知模型的決定系數(shù)2為0.998 2、且該模型值極顯著、失擬項(xiàng)不顯著,因此可判斷出該模型與實(shí)際結(jié)果擬合精度高,可用于出米率的預(yù)測和分析。且可據(jù)該模型系數(shù)絕對值大小判定各因素對出米率的影響主次順序?yàn)椋骸?/p>
2)出米率與各參數(shù)響應(yīng)曲面分析
根據(jù)表4試驗(yàn)數(shù)據(jù),各因素對出米率響應(yīng)曲面、等高線如圖5所示,可判斷脫皮滾筒轉(zhuǎn)速與作業(yè)時(shí)間交互作用對出米率影響顯著,砂輥轉(zhuǎn)速與作業(yè)時(shí)間交互作用次之,脫皮滾筒轉(zhuǎn)速與砂輥轉(zhuǎn)速交互作用對出米率影響不顯著,這與表4方差分析結(jié)果一致。
由圖5a可知脫皮滾筒轉(zhuǎn)速和作業(yè)時(shí)間存在交互作用。當(dāng)砂輥轉(zhuǎn)速處于0水平時(shí),出米率隨脫皮滾筒轉(zhuǎn)速增加變化不大,隨作業(yè)時(shí)間變化波動(dòng)幅度較為明顯,在脫皮滾筒轉(zhuǎn)速處于低水平時(shí)幅度相對較小,在脫皮滾筒轉(zhuǎn)速處于高水平時(shí)變化尤為明顯,這是因?yàn)楫?dāng)脫皮滾筒轉(zhuǎn)速較高、作業(yè)時(shí)間較長時(shí),綠豆外皮可以有較充足的時(shí)間和較高的頻率與砂輥接觸摩擦,由于綠豆外表光滑,脫皮后相對粗糙更易于被砂輥磨削而變成綠豆粉,從而導(dǎo)致出米率下降明顯。
表4 出米率方差分析
圖5 各因素交互作用對出米率的響應(yīng)曲面
由圖5b可知砂輥轉(zhuǎn)速和作業(yè)時(shí)間存在交互作用。當(dāng)脫皮滾筒轉(zhuǎn)速處于0水平時(shí),出米率隨作業(yè)時(shí)間減少呈減小趨勢,但在砂輥轉(zhuǎn)速處于高水平時(shí)出米率略微增加,這是因?yàn)樵谏拜佫D(zhuǎn)速較高、作業(yè)時(shí)間相對較長時(shí),單粒綠豆外皮與砂輥接觸摩擦的幾率相對較為均勻,從而可有效提升未脫皮綠豆的脫皮質(zhì)量,降低脫皮好的綠豆被過度摩擦脫皮的幾率,從而使得脫皮出米率相對較高。作業(yè)時(shí)間越短,單粒綠豆與砂輥接觸摩擦越不均勻,致使部分與砂輥接觸的綠豆被快速脫皮,脫皮好的綠豆仍與砂輥產(chǎn)生過度摩擦脫皮,而脫皮的綠豆其外表較為粗糙,更易與砂輥摩擦脫落,瞬間的摩擦產(chǎn)生大量的綠豆粉在較高砂輥轉(zhuǎn)速下易產(chǎn)生高溫,致使綠豆粉與綠豆顆?;旌铣蓤F(tuán),更難以使未脫綠豆與砂輥均勻接觸,已脫皮的綠豆被過度摩擦成粉造成出米率大幅下降。
根據(jù)實(shí)際生產(chǎn)需求,為了提高脫皮綠豆加工收益,應(yīng)在保證脫皮合格率最優(yōu)的同時(shí),出米率達(dá)到最大值。為此建立合格率、出米率雙目標(biāo)函數(shù)的數(shù)學(xué)模型,并將優(yōu)化求解方程中合格率的權(quán)重設(shè)置大于出米率的權(quán)重,在以上情況下進(jìn)行求解。目標(biāo)函數(shù)及邊界條件如下
求解可得合格率、最大時(shí)的最優(yōu)解為:=25.20 r/min,=1642.61 r/min,=108.80min。此時(shí),合格率為99.72%,出米率為86.57%。根據(jù)生產(chǎn)中設(shè)備可調(diào)精度實(shí)際情況,將設(shè)備作業(yè)參數(shù)調(diào)整至接近最優(yōu)解,即=25 r/min,=1 643 r/min,=108.80 min,并在該條件下進(jìn)行試驗(yàn)驗(yàn)證,驗(yàn)證試驗(yàn)重復(fù)3次,得到合格率、出米率均值分別為99.10%、85.87%,與最優(yōu)解誤差較小,說明優(yōu)化結(jié)果具有較高可信度,本研究模型可靠。
2017年11月13日至18日,為進(jìn)一步驗(yàn)證最優(yōu)參數(shù)實(shí)際生產(chǎn)效果,將優(yōu)化后參數(shù)應(yīng)用于綠豆脫皮設(shè)備并在山西六味齋食品有限公司開展批量脫皮加工試驗(yàn),累計(jì)加工20批次,批次裝機(jī)量300 kg,各批次脫皮合格率、出米率如表5所示,其均值分別為99.32%、85.63%,作業(yè)質(zhì)量較改進(jìn)前(脆皮合格率82%,出米率71%)大幅提高,可較好應(yīng)用于實(shí)際生產(chǎn)。
表5 各批次加工作業(yè)質(zhì)量
1)綠豆干法脫皮試驗(yàn)方差分析結(jié)果表明,影響脫皮合格率的因素依次為:脫皮滾筒轉(zhuǎn)速>作業(yè)時(shí)間>砂輥轉(zhuǎn)速;影響出米率的因素依次為:作業(yè)時(shí)間>脫皮滾筒轉(zhuǎn)速>砂輥轉(zhuǎn)速。結(jié)合響應(yīng)曲面分析可得出,脫皮滾筒轉(zhuǎn)速與作業(yè)時(shí)間交互作用對脫皮合格率影響極顯著(<0.01),其余參數(shù)交互作用影響不顯著;脫皮滾筒轉(zhuǎn)速與作業(yè)時(shí)間交互作用對出米率影響極顯著(<0.01),脫皮滾筒轉(zhuǎn)速與砂輥轉(zhuǎn)速交互作用對出米率影響不顯著。
2)應(yīng)用Design-Expert軟件,以中心組合響應(yīng)曲面方法設(shè)計(jì)并開展試驗(yàn)研究及各參數(shù)的多目標(biāo)優(yōu)化,得到脫皮合格率、出米率達(dá)最大值的最優(yōu)解為:脫皮滾筒轉(zhuǎn)速25.20 r/min、砂輥轉(zhuǎn)速1 642.61 r/min、脫皮時(shí)間108.8 min。在此最優(yōu)解條件下脫皮合格率為99.72%,出米率為86.57%。
3)驗(yàn)證試驗(yàn)結(jié)果與優(yōu)化結(jié)果基本一致,將優(yōu)化后參數(shù)應(yīng)用于山西太原六味齋食品有限公司開展批量脫皮加工試驗(yàn),累計(jì)加工20批次,記錄每批次綠豆脫皮合格率及出米率并求平均值,得到脫皮合格率為99.32%出米率為85.63%,作業(yè)質(zhì)量較改進(jìn)前大幅改善,進(jìn)一步表明優(yōu)化參數(shù)可滿足綠豆脫皮作業(yè)實(shí)際生產(chǎn)要求。
[1]滕聰,么楊,任貴興. 綠豆功能活性及應(yīng)用研究進(jìn)展[J].食品安全質(zhì)量檢測學(xué)報(bào),2018,9(13):3286-3291.Teng Cong, Yao Yang, Ren Guixing. Research progress on functional activity and application of mung bean[J]. Journal of Food Safety and Quality, 2018, 9(13): 3286-3291. (in Chinese with English abstract)
[2]王麗俠,程須珍,王素華. 綠豆種質(zhì)資源、育種及遺傳研究進(jìn)展[J] .中國農(nóng)業(yè)科學(xué),2009,42(5):1519-1527.
Wang Lixia, Chen Xuzhen, Wang Suhua. Advances in research on genetic resources, breeding and genetics of mungbean (L.)[J]. Scientia Agricultura Sinica, 2009, 42(5): 1519-1527. (in Chinese with English abstract)
[3]Coffmann C W, Garciaj V V. Functional properties and amino acid content of a protein isolate from mung bean flour[J]. International Journal of Food Science & Technology, 2007, 12(5): 473-484.
[4]鄧志匯,王娟. 綠豆皮與綠豆仁的營養(yǎng)成分分析及對比[J].現(xiàn)代食品科技,2010,26(6):656-659.
Deng Zhihui, Wang Juan. Comparison of nutrient components of mung bean hull and peeled mung bean[J]. Modern Food Science and Technology, 2010, 26(6): 656-659. (in Chinese with English abstract)
[5]Somashekaraiah B V, Padmaja K, Prasad A R K. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (): Involvement of lipid peroxides in chlorphyll degradation[J]. Physiologia Plantarum, 2010, 85(1): 85-89.
[6]Eladawy T A. Functional properties and nutritional quality of acetylated and succinylated mung bean protein isolate[J]. Food Chemistry, 2000, 70(1): 83-91.
[7]Song Qianqian, Jiang Lian, Yang Xinquan, et al. Physicochemical and functional properties of a water-soluble polysaccharide extracted from mung bean (L.) and its antioxidant activity[J]. International Journal of Biological Macromolecules, 2019, 138(5): 874-880.
[8]Wahid A, Ghani A, Javed F. Effect of cadmium on photosynthesis, nutrition and growth of mung bean[J]. Agronomy for Sustainable Development, 2008, 28(2): 273-280.
[9]Rafique E, Mahmoodulhassan M, Sarwar S, et al. Plant analysis diagnostic indices for boron nutrition of mung bean (L) cultivars grown in a rainfed calcareous soil[J]. Journal of Plant Nutrition, 2016, 39(1): 27-34.
[10]吳衛(wèi)華.美國大豆加工應(yīng)用新技術(shù)[J]. 糧食與油脂,2002(4):45.
[11]Singh K N, Singh B. Effect of crop and machine parameters on threshing effectiveness and seed quality of soybean[J]. Journal of Agricultural Engineering Research, 1981, 26(4): 349-355.
[12]Dahiya P K, Linnemann A R, Van Boekel M A J S, et al. Mung bean: Technological and nutritional potential[J]. Critical Reviews in Food Science and Nutrition, 2015, 55(5): 670-688.
[13]董吉林,李林,張文杰,等. 谷物脫皮加工技術(shù)的研究現(xiàn)狀[J]. 糧食與飼料工業(yè),2014,12(11):1-4.
Dong Jilin, Li Lin, ZhangWenjie, et al.Research progress on cereal dehulling[J]. Cereal and Feed industry, 2014, 12(11): 1-4. (in Chinese with English abstract)
[14]魏騫,宋大海,林鳳巖. 潤濕對提高大豆脫皮率的影響[J].中國油脂,2008(5):68-69.
[15]Thompson L U. Preparation and evaluation of mung bean protein isolates[J]. Journal of Food Science, 1977, 42(1): 202-206.
[16]Chanikan Sonklin, Natta Laohakunjit, Orapin Kerdchoechuen. Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates[J/OL]. Peerj, 2018, 6(7): e5337.
[17]Raghuvanshi R S, Singh S, Bisht K, et al. Processing of mungbean products and its nutritional and organoleptic evaluation[J]. International Journal of Food Science & Technology, 2011, 46(7): 1378-1387.
[18]左青,郭華,王宏平,等. 大豆熱脫皮工藝及設(shè)備[J]. 中國油脂,2012,37(5):6-9.
[19]左青. 關(guān)于大豆脫皮工藝中幾個(gè)問題的討論[J]. 中國油脂,2007,32(7):15-16.
[20]代運(yùn)斌,李普選. 大豆脫皮工藝在生產(chǎn)中的應(yīng)用[J]. 中國油脂,2005,30(2):31-32.
[21]羅勤良,朱龍?zhí)希_天發(fā). 大豆加熱器在熱脫皮工藝中的作用[J]. 中國油脂,2008,33(1):57-58.
[22]Zhou B, Ileleji K E, Ejeta G. Physical property relationships of bulk corn stover particles[J]. Transactions of the Asabe, 2008, 51(2): 581-590.
[23]Deshpande S D, Bal S, Ojha T P. Physical properties of soybean[J]. Journal of Agricultural Engineering Research, 1993, 56(2): 89-98.
[24]Izli N. Effect of moisture on the physical properties of three varieties of kenaf seeds[J]. Journal of Food Science & Technology, 2015, 52(6): 1-10.
[25]食品中水分測定: GB5009.3-2016[S]. 北京:中國標(biāo)準(zhǔn)化出版社,2017.
[26]種子包衣機(jī): JB/T 7730-2011[S]. 北京:機(jī)械工業(yè)出版社, 2011.
[27]膠輥礱谷機(jī): JB/T 10267-2013[S]. 2013.
[28]茆詩松,呂曉玲. 數(shù)理統(tǒng)計(jì)學(xué)(第2版)[M]. 北京:中國人民大學(xué)出版社,2016.
[29]王巖,隋思漣,王愛青. 數(shù)理統(tǒng)計(jì)與MATLAB工程數(shù)據(jù)分析[M]. 北京:清華大學(xué)出版社,2006.
[30]馬秋成,郭耿君,馬婕,等. 蓮仁力學(xué)特性參數(shù)測定及擠壓破碎特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(6):263-271.
Ma Qiucheng, Guo Gengjun, Ma Jie, et al. Determination of mechanical characteristic parameters and extrusion crushing characteristics test for lotus seed kernel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 263-271. (in Chinese with English abstract)
[31]王建楠,謝煥雄,胡志超,等. 甩盤滾筒式花生種子機(jī)械化包衣工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(7):43-50.
Wang Jiannan, Xie Huanxiong, Hu Zhichao, et al. Parameter optimization on mechanical coating processing of rotary table-roller coating machine for peanut seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 43-50. (in Chinese with English abstract)
[32]王建楠,劉敏基,曹明珠,等. 薏苡脫殼機(jī)關(guān)鍵部件作業(yè)參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(13):288-295.
Wang Jiannan, Liu Minji, Cao Mingzhu, et al. Working parameter optimization and experiment of key components ofsheller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 288-295. (in Chinese with English abstract)
Optimization and experiment on key parameters of dehuller for dried mung beans
Wang Jiannan1,2, Liu Minji1, Hu Zhichao1, Wei Hai1, Xie Huanxiong1※
(1.,210014,; 2.,210031,)
Mung bean is one of the widely cultivated crops in China, and its yield and exports account were the first in the world. However dehulling technology and operation quality of mung bean have not been significantly improved over the long term due to insufficient attention. The poor qualified dehulling rate and dehulled mung beans rate restricted the development of mung bean industry. The unreasonable working parameters (speed of dehulling roller, speed of sand drum,operation time) of the dehuller were the main reason of this problem, which had a negative impact on operation quality. In this experiment, quadratic orthogonal rotation and response surface method were used to obtain the best operation quality, and key working parameters were optimized using Design-Expert. The properties of tested mung beans were analyzed, and the results showed that the color of the mung beans was dark green. With the moisture content of the mung bean at 9.2%, the thousand seeds weight was 63.5 g, and the length, width, thickness were about 5.70, 4.18, 4.33 mm respectively, the repose angle of mung beans was 23.71°, the crushing force of 60% mung beans was about 36 N. The data analysis of the dehulling experiment showed that primary and secondary factors for qualified dehulling rate was speed of dehulling roller > operation time > speeds of sand drum. Regarding to the dehulled mung beans rate, the order was: operation time> speed of dehulling roller > speeds of sand drum. The result of interaction analysis showed that the interaction between speed of dehulling roller and operation time had a significant impact on the qualified dehulling rate, while the interactions between other parameters were not significant. The interaction between speed of dehulling roller and operation time had a significant effect on dehulled mung beans rate, and the interaction between the speed of the sand drum and operation time also had a significant effect on dehulled mung beans rate. The optimal working parameters of dehuller for dried mung beans were speed of dehulling roller of 25.20 r/min, speed of sand drum of 1642.61 r/min, and operation time of 108.8 min. With the optimal working parameters, qualified dehulling rate and dehulled mung beans rate of the dehuller were 99.72% and 86.57%, respectively. The results of verification test and optimization result were highly consistent. Production tests were carried out 20 times in the factory according to the optimization results. With the optimal parameters applied by dehuller for dried mung beans, qualified dehulling rate and dehulled mung beans rate were 99.3% and 85.6%, respectively. The results of the production verifications were very close to the results got from the previous model results, and the quality of the dehuller improved greatly. This study is helpful for the improvement of the dehuller for dried mung beans.
crops; optimization; dehuller; mung beans; working parameters; physical properties; key components
王建楠,劉敏基,胡志超,魏 海,謝煥雄. 綠豆干法脫皮設(shè)備關(guān)鍵參數(shù)優(yōu)化與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(23):312-318.doi:10.11975/j.issn.1002-6819.2019.23.038 http://www.tcsae.org
Wang Jiannan, Liu Minji, Hu Zhichao, Wei Hai, Xie Huanxiong. Optimization and experiment on key parameters of dehuller for dried mung beans[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 312-318. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.23.038 http://www.tcsae.org
2019-05-15
2019-10-29
中國農(nóng)科院創(chuàng)新工程農(nóng)產(chǎn)品分級與貯藏團(tuán)隊(duì)、公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)經(jīng)費(fèi)(201303069)聯(lián)合支持。
王建楠,副研究員,主要從事農(nóng)產(chǎn)品加工技術(shù)裝備研究。Email:wjnsunrise@126.com
謝煥雄,研究員。主要從事農(nóng)產(chǎn)品加工技術(shù)與裝備的研究。Email:nfzhongzi@163.com。中國農(nóng)業(yè)工程學(xué)會高級會員:謝煥雄(E041200496S)。
10.11975/j.issn.1002-6819.2019.23.038
S226
A
1002-6819(2019)-23-0312-07
農(nóng)業(yè)工程學(xué)報(bào)2019年23期