• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Artificial light-harvesting systems fabricated by supramolecular host–guest interactions

    2019-02-15 02:27:08TngxinXioWeiweiZhongLingZhouLixingXuXioQingSunRobertElmesXioYuHuLeyongWng
    Chinese Chemical Letters 2019年1期

    Tngxin Xio*,Weiwei ZhongLing ZhouLixing XuXio-Qing SunRobert B.P.Elmes*,Xio-Yu Hu,Leyong Wng

    a School of Petrochemical Engineering,Advanced Catalysis and Green Manufacturing Collaborative Innovation Center,Changzhou University,Changzhou 213164,China

    b Department of Chemistry,Maynooth University,National University of Ireland,Maynooth,Ireland

    c Key Laboratory of Mesoscopic Chemistry of MOE,School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210023,China

    Key words:Light-harvesting systems Macrocycle Host–guest interactions Supramolecular chemistry Self-assembly

    [ABSTRACT Artificial light-harvesting systems(LHSs)have draw n increasing research interest in recent times due to the energy crisis worldw ide.Concurrently,macrocycle-based host–guest interactions have played an important role in the development of supramolecular chemistry.In recent years,studies towards Artificial LHSs driven by macrocycle-based host–guest interactions are gradually being disclosed.In this mini-review,we brie fl y introduce the burgeoning progress of Artificial LHSs driven by host–guest interactions.We believe that an increasing number of reports of Artificial LHSs driven by host–guest interactions w ill appear in the near future and w ill provide a viable alternative for the future production of renewable energy.

    1.Introduction

    Currently,the energy crisis is a w orldw ide problem and searching for clean and economical energy sources is a global challenge.Inspired by nature,many scientists are attempting to solve this problem by taking inspiration from photosynthesis,a natural process that generally takes place in green plants to produce clean energy[1,2].As we know,photosynthesis plays an important role in our lives[3,4],w here this efficient process results in photon-harvesting through a large number of closely packed chlorophyll molecules inside pigment–protein complexes to produce energy and oxygen.The profound ef fi ciency of this process helps organisms to survive even under low-light conditions.As we can see,the photosynthesis process can capture,transfer,and store solar energy effectively.Thus,scientists are committed to fabricating Artificial light harvesting systems(LHSs)to mimic this natural process.Unfortunately,conventional chromophores have a high propensity tow ards aggregation at high concentration,which is detrimental for photoluminescence[5].Consequently,exploiting approaches to maximize the density of chromophores while minimizing selfquenching are still a big challenge in the construction of LHSs.With the rapid development of supramolecular chemistry,more and more effort has focused on developing Artificial LHSs by selfassem bly.

    Macrocycle-based host–guest interactions have played an important role in supramolecular chemistry due to their reversible properties[6–10].Introduction of reversible host–guest interactions can endow materials with fascinating p rop erties,such as stim uli resp onsiveness,self-healing and adaptability.Macrocylic hosts are important building blocks in supramolecular chemistry and usually refer to crow n ethers,calixarenes,cyclodextrins(CD),cucurbiturils(CB),and pillar[n]arenes.Employing such hosts has turned out to be a useful approach to maximise fluorescence intensity w hereby encapsulation of a chromophoric guests prevents the chromophores from stacking[5].In the development of the optimal LHS,three critical factors need to be considered:(a)strong and broad absorption ability across the full spectrum of sunlight,(b)efficient and fast energy transfer from antenna compounds to a reaction center,and(c)a high degree of photostability.In this mini-review,we w ill introduce recent works on LHSs constructed by macrocycle-based host–guest interactions.

    2.Light-harvesting system s based on host–guest interactions

    2.1.LHSs constructed by pillar[n]arenes

    Due to the ef fi ciency of the solar energy storage mechanism in photosynthesis,constructing Artificial LHSs is an emerging scienti fi c research area which has attracted much attention.However,the construction of highly efficient LHSs in aqueous solution is still a major challenge.As a new generation of macrocylic host,pillar[n]arenes exhibit excellent host–guest recognition interactions[11–16].Pillar[n]arenes have numerous phenolic units on both sides,leading them to be analogous to CDs and also soluble in H2O[17].It should be noted that the symmetrical pillar structure and easy modification of pillar[n]arenes endow s them with the ability to bind a variety of guests,such as neutral guests,cationic guests,anionic guests,rigid guests,fl exible chain guests,hydrophobic guests,and hydrophilic guests[18,19].In this part of the review,we w ill discuss recent reports on efficient LHSs constructed from w ater-soluble pillar[n]arene.

    In 2018,Wang et al.reported new LHSs in aqueous solution(Fig.1)[20].In recent years,they have been committed to exploiting functional materials by supramolecular host–guest interactions,such as supramolecular polymers[9,21–29],drug delivery systems[30–33],and functional organogels and hydrogels[34–36].In this work,this system was based on the supramolecular self-assembly of a w ater-soluble pillar[6]arene(WP6),a salicylaldehyde azine derivative(G),and tw o types of fluorescence dye,[38_TD DIFF]nile red(NiR)or eosin Y(ESY).Salicylaldehyde azine derivative G is emissive w hen aggregated through the combined mechanism of aggregation induced emission(AIE)and excited-state intramolecular proton transfer(ESIPT).In this work,WP6 fi rst formed a stable host–guest complex with G before spherical nanoparticlescould be formed from WP6-G via hydrophobic interactions.It should be noted that WP6 can not only remarkably lower the critical aggregation concentration(CAC)of G but can also significantly improve the AIE of G.According to our experiments,in the presence of WP6,the fluorescence intensity of G increased up to a maximum of 30 times and the CACvalue of G decreased at least 28-fold.The morphology and size of the nanoparticles were studied by dynamic light scattering(DLS),transmission electron microscopy(TEM),and scanning electronic microscopy(SEM).The DLSshowed the well-de fined aggregates formed with a narrow size distribution and had an average diameter of 109 nm.The TEM and SEM photos displayed spherical morphology with diameters about 100 nm,which was consistent with the DLSresults.

    The spherical nanoparticles play the role of a donor for the Artificial LHSs,and the hydrophobic fluorescent dye ESY or NiR,which are loaded within the hydrophobic interior of the nanoparticles,act as acceptors(Fig.1).The selection of NiR and ESY as fluorescent acceptors allow s both of their absorption bands to largely overlap with the fluorescence band of the WP6-G.Fluorescence spectra and fluorescence decay pro files show that energy transfer takes place from the WP6-G to both of the encapsulated NiR and ESY fluorophores(Fig.2).As show n in Fig.2a,with the gradual addition of NiR to WP6-G,the fluorescence intensity of the WP6-G decreased,while the fluorescence emission of NiR(acceptor)increased w hen excited at 365[39_TD DIFF]nm.By contrast,the emission of free NiR was negligible upon excitation at 365[40_TD DIFF]nm or even at 580 nm.Furthermore,fluorescence decay experiments showed the decay curve of G(Fig.2b,blue line)was fi tted as a double exponential decay with fluorescence lifetimes of t1[41_TD DIFF]=0.32 ns and t2=1.62 ns,both of which were related to the stacked G.For the WP6-G(Fig.2b,green line),the fluorescence lifetimes increased to t1[42_TD DIFF]=0.70 ns and t2=1.95 ns due to WP6-induced aggregation of G.For the WP6-G-NiR assembly(Fig.2b,red line),the fluorescence lifetimes decreased to t1=0.61 ns and t2=1.69 ns,con fi rming the energy transfer occurs from WP6-G donor to NiR acceptor.These results indicate that energy transfer takes place from the WP6-G assembly to the encapsulated NiR.Further studies showed that ESY can also serve as an excellent acceptor(Figs.2c and d).It should be noted that the antenna effect at the best mixing ratio was calculated to be 25.4 for NiR and 28.0 for ESY,indicating that the nanoparticles act as an excellent light harvesting antenna in an aqueous environment.These examples of aqueous Artificial LHSs provide a versatile platform for mimicking photosynthesis.

    Prior to the above work,Wang et al.fi rst disclosed an Artificial LHSconstructed by pillar[n]arenes in 2015[37].In this work,AA/BB-type and A2/B3-type FRET-capable supramolecular polymers based on a borondipyrromethene(BODIPY)bridged pillar[5]arene dimer and tw o BODIPY derivative guests were initially prepared(Fig.3).The application of these supramolecular polymers in mimicking the LHSof natural photosynthesis was studied.In this work,the obtained supramolecular polymers displayed very strong absorption across a broad spectroscopic range from 300 to 700 nm and showed slightly different FRET effects in organic solution.A series of techniques were employed to characterize the supramolecular polymers,such as1H NMR,DOSY,SEM,and UV–vis absorption.Furthermore,the energy transfer was con fi rmed by fluorescence titration experiments.The FRET ef fi ciencies were calculated to be 51%for G1-H and 63%for G2-H due to the high complexation stability of the host–guest interaction.This case developed a novel supramolecular model for mimicking the LHS and exhibited potential applications in functional optoelectronic materials.

    Fig.4.Structural model of building blocks.(a)LHCcontaining Chl-b formed by(b)WP5,(c)b-CAR and(d)Chl-b.For clarity,the b-CAR-based hydrophobic interior layer is orange,and the WP5-based hydrophilic exterior layer is green.Copied with permission[38].Copyright 2016,Nature Publishing Group.

    In 2016,Diao et al.reported stimulus-responsive light-harvesting complexes based on the pillar[5]arene-induced co-assembly of b-carotene(b-CAR)and chlorophyll[38].In this work,they fi rst studied the host–guest interaction between w ater-soluble carboxyl-modified pillar[5]arene(WP5)and b-CAR.b-CAR could bind WP5 in w ater to achieve WP5?b-CAR complexation(WCC)via the hydrophobic effect,which was supported by NMR,Raman spectroscopy,fluorescence spectra and FT-IR spectroscopy(Fig.4).WCCs were then employed as building blocks in the construction of light-harvesting antenna complexes(LHCs).After the as-prepared solutions were aged for 7 days,orange aggregates appeared in the solutions,which were determined to be hollow microspheres(HMSs).Interestingly,HMSs can provide a better chemical system in terms of stability without the loss of bioavailability.Moreover,they also prepared similar ‘tadpole-like’host–guest complexes by using chlorophyll-b(Chl-b)instead of b-CAR.Based on the interesting properties showed by natural chlorophyll/carotenoid complexes in photosynthesis,Chl-b was selected as the co-assembly factor participating in the preparation process with WCC,and a similar suprastructure of Chl-bcontaining LHCwas built.These hydrophilic complexes displayed a series of unusual properties,including spontaneous grow th,fusion,p H responsiveness and even some photocatalytic activity.The reported strategy paves a new avenue for the study of the origins of the bioenergy system in living lives.

    In 2018,Yang et al.reported Artificial light-harvesting nanoparticles constructed by pillar[5]arene and anthracene modified donors and acceptors through supramolecular host–guest interactions[39].Previously,some excellent LHSs based on other principles were also reported[40,41].In this work,they fi rst prepared ternary supramolecular polymers (GD+GA+bisP5A)formed by host–guest interaction,which could be used to prepare w ater-dispersible nanoparticles(LHSPNPs)by using the microemulsion method(Fig.5).LHSPNPs showed efficient energy transfer and high light harvesting ability because of the steric bulk of pillar[5]arene suppressing the self-quenching of the chromophores.Concomitantly,the energy transfer from donor GD to acceptor GA was maximized,affording highly emissive materials.GA is a green emissive diphenylethynylanthracene derivative while GD is a blue emissive diphenylanthracene derivative.The cyanoalkyltriazole substituent has strong binding af fi nity for pillar[5]arene with a binding constant of 1.2[46_TD DIFF]?104L/mol in CHCl3,promoting the formation of the supramolecular polymers by host–guest interactions.Intriguingly,in contrast to nanoparticles formed from the ternary supramolecular polymers,under identical experimental conditions,GD alone formed nanosheets.The authors suspected this might be due to the p–p stacking of diphenylanthracene aromatic rings and hydrophobic interactions.However,in SPNPs,bulkiness provided by the pillar[5]arenes disrupted p–p stacking interactions,suppressing self-quenching and enhancing emission.LHSPNPs which were irradiated at 378nm emitted at 494 nm. Time-resolved fluorescence measurements were employed to prove the energy transfer from GD to GA.As a result,the antenna effect reached a factor of 22 for the LHSPNPs containing a 0.5:99.5M ratio of GA to GD.The approach described in this work may inspire the development of new luminescent materials.

    Fig.5.Chemical structures of disul fi de-bridged bispillar[5]arene(bisP5A)and the guest molecules(energy donor:GD and energy acceptor:GA);cartoon representations of bisP5A,GD,GA,their supramolecular polymers and the light-harvesting supramolecular polymeric nanoparticles(LHSPNPs);and the schematic lightharvesting paths in the LHSPNPs.Copied with permission[39].Copyright 2018,the Royal Society of Chemistry.

    2.2.LHSs constructed by calix[n]arenes

    Development of broad-spectrum tunable photoluminescent nanomaterials is receiving much research interest due to their w ide applications.To this end,LHSs involving energy migration can be exploited for the generation of multiple fluorescent emissions by tuning the energy-transfer ef fi ciency between donor–acceptor components.In 2016,Guo et al.reported the design of a modular light-harvesting platform(Fig.6)from calixarene amphiphiles,a typical class of m acrocyclic amphiphiles,w here the noncovalent positioning of donors and acceptors can be discretely addressed,in this example,reliant on self-sorting encapsulation and entrapment,respectively[42].They fi rst prepared amphiphilic calix[n]arenes(Am Cn As,n[49_TD DIFF]=4 and 5)by decorating hydrophilic choline groups at the upper rim and hydrophobic alkyl chains at the lower rim,exhibiting unique superiority in self-assembly and host–guest recognition.DLS measurements reveal that both Am C4A and Am C5A form large-sized aggregates with averaged diameters of 149[50_TD DIFF]nm and 79 nm,respectively.TEM and SEM photos of Am C5A display the spherical-like morphology with similar size to DLS results.It should be noted that the size of the amphiphilic assembly of Am C4A increased to 602[51_TD DIFF]nm upon addition of 1-anilino-8-naphthalenesulfonate(1,8-ANS),while that of Am C5A remains constant upon encapsulation of 1,8-ANS.Thus they chose Am C5A to construct the light-harvesting platform.Then 1,8-ANS and 4,7-bis(thien-2-yl)-2,1,3-benzothiadiazole(DBT)were used as the donor/acceptor pair on account of the discrete addressability,spectrum overlap,and broad-spectrum tenability.Varying the molar ratio between donor and acceptor allow s for the fine-tuning of the energy transfer process and generates broad-spectrum outputs,suggesting useful application as fluorescent inks with capability of encryption coding.Importantly,this case provides a model for light-harvesting nanomaterials from macrocyclic am phiphiles featuring full modularity and facile integration.

    Fig.6.Schematic illustration of operating principle of the light-harvesting platform based on Am Cn As.Copied with permission[42].Copyright 2016,Wiley Publishers.

    2.3.LHSs constructed by cyclodextrins

    As is clear from the above examples,tw o necessary factors should be taken into consideration w hen constructing Artificial LHSs:(a)the donor need to be densely packed without an obvious self-quenching effect,and(b)the ratio of donor to acceptor need to be high.Cyclodextrins are usually employed to construct light emission materials[43].In 2017,Liu et al.reported a highly efficient aqueous LHSfabricated from the supramolecular self-assembly of an oligo(phenylenevinylene)derivative(OPV-I),sulfato-b-cyclodextrin(SCD),and nile red(NiR)(Fig.7)[44].The authors listed three advantages for this system:(a)at high concentration,OPV-I shows good AIE properties instead of the aggregation-caused quenching(ACQ)effect,which enables OPV-I to serve as a good donor;(b)the SCD macrocycle greatly lowers the CACof OPV-I via host–guest interactions,improving the AIEpropertiesof OPV-I and enabling good w ater solubility of the obtained LHS;and(c)NiR is loaded in the hydrophobic layer of the OPV-I/SCD nanoparticles and serves as a good acceptor.Consequently,the obtained OPV-I/SCD/NiR system exhibits a very high antenna effect,energytransfer ef fi ciency,and donor/acceptor ratio.Moreover,the antenna effect can take place in the presence of a trace amount of acceptor(donor/acceptor =1500:1).In this case,the macrocylic host SCD also played an important role.With the addition of SCD,the fluorescence intensity of OPV-I increased 3.7 times.According to fluorescence studies,the antenna effect was determined to be 32.5 at a donor/acceptor ratio of 125:1,indicating that it was similar to a natural light-harvesting system.

    Fig.7.Illustration of the construction of the light-harvesting system by Liu and coworkers.Reproduced with permission[44].Copyright 2017,Wiley Publishers.

    In 2016,Zhou et al.reported the hierarchical self-assembly of a dandelion-like supramolecular polymer(DSP)into nanotubes for application in LHSs(Fig.8)[45].The DSP s possess a“sphere-starparachute”topological structure consisting of a spherical hyperbranched core and many parachute-like arms.This architecture was constructed by host–guest complexation between a b-cyclodextrin-endcapped hyperbranched multi-arm copolymer(host)and functionalized adamantanes with each having three alkyl chains(guests).The obtained DSP s can further self-assemble into nanotubes in aqueous solution in a hierarchical manner from vesicles to nanotubes.Subsequently,they use the bilayer nanotubes to construct LHSs in w ater.The LHS was fabricated by the incorporation of hydrophobic 4-(2-hydroxyethylamino)-7-nitro-2,1,3-benzoxa-diazole(NBD)as a donor inside the hyperbranched core of the nanotube and the hydrophilic rhodamine B(RB)as the acceptor immobilized on the nanotube surface.The resulting nanotube LHSdisplays surprisingly high energy transfer ef fi ciency(above 90%)in w ater.

    Fig.8.Preparation and self-assembly processes of DSP s.Copied with permission[45].Copyright 2016,Wiley Publishers.

    2.4.LHSs constructed by crown ethers

    In 2017,Ye et al.reported a highly efficient FRET process from aggregation-induced emission to BODIPYemission based on host–guest interaction for mimicking the LHS[46].In this work,AIE luminogen tetraphenylethene(TPE)was chosen to combine with crow n ether moieties as a host(M1)and energy donor in FRET system(Scheme 1).Meanwhile,a BODIPY derivative containing benzylamino group as the guest(M 2)and energy acceptor(Scheme 1).M1 becomes highly emissive in the aggregated state with a gradual increase in the fraction of a poor solvent.By contrast,M 2 showed no remarkable emission intensity enhancement upon the addition of a poor solvent.Spectroscopic studies showed that the emission range of donor TPE(400–570nm)almost coincided with the absorption range of acceptor BODIPY(430–530[54_TD DIFF]nm).With gradual addition of M2,the AIEemission peak of M1 at 465nm decreased gradually,while the emission peak of M 2 at 510 nm appeared and then increased markedly,signifying the formation of a new complex between M1 and M2.From fluorescence titration experiments,the FRET ef fi ciency was calculated to be 93%for this host–guest system.

    2.5.LHSs constructed by cucurbiturils

    Cucurbit[8]uril(CB[8])have attracted much research attention due to their ability to encapsulate tw o naphthalene moieties inside their internal cavity to form a ternary complex with high association constants[47–51].In 2016,Ni et al.reported the fabrication of tunable luminescent materials in aqueous solution by employing a facile cucurbit[8]uril-based supramolecular approach[52,53].This strategy provided a toolbox for producing cyan,yellow,green,and w hite fluorescent emissions.In the same year,Xing et al.reported a simple strategy by mixing a naphthylsubstituted TPE derivative and CB[8]in aqueous solution to construct supramolecular hyperbranched polymers(Fig.9)[54].The host–guest binding between CB[8]and TPE restricted intramolecular rotation and non-radiative relaxation processes,resulting in strong emission from TPE in dilute solution.By employing the spherical aggregatesmade from the supramolecular polymers as energy donors and eosin Y disodium salt(EY)as an energy acceptor,they have constructed highly efficient LHSs in aqueous solution.Notably,signi fi cant fluorescence of the acceptor was observed even at extremely high donor/acceptor ratios(up to 200 000:1),indicating the highly efficient energy transfer between TPE-CB[8]and EY.

    Scheme 1.FRET donor(host)M1 and acceptor(guest)M2.

    Fig.9.Illustration of the formation of supramolecular hyperbranched polymers through self-assembly of TPEand CB[8].Reprinted with permission[54].Copyright 2017,Elsevier Publishers.

    Recently,Park 21F]et al.demonstrated a new system of lightharvesting supramolecular block copolymers in w ater by using CB[8][55].They prepared finely color-tuned supramolecular homopolymers comprising a CB[8]host and different cyanostilbene guests emitting blue,green,yellow,and red fluorescence,respectively,to realize CB[8]-based supramolecular block copolymers generating an Artificial light-harvesting system in w ater.In this system,the light-harvesting supramolecular block copolymers show three advantages:(a)broad absorption,(b)enhanced exciton mobility through the polymerized cyanostilbene materials with high fluorescence quantum yields,and(c)stable supramolecular nanobundle formation in water.

    3.Conclusions and outlook

    In summary,developments in the construction of Artificial light-harvesting systems(LHSs)based on macrocycle-based host–guest interactions are highlighted in this mini-review.The macrocycles used in constructing LHSs cover a diverse range of molecular scaffolds,such as calix[n]arenes,cyclodextrins,crow n ethers,cucurbiturils,and especially the pillar[n]arenes.Moreover,the type of materials employed to fabricate LHSs is also diverse,ranging from linear and hyperbranched supramolecular polymers to nanoparticles.These varied examples have greatly enriched the fi eld of Artificial LHSs,however,it is w orth noting that the described examples herein is not an exhaustive list but provides some inspiration for the future study of new LHSs.In the future,we anticipate that more and more highly efficient Artificial LHSs driven by host–guest interactions w ill be reported and the fi eld asa w hole has a ‘bright’future.

    Acknow ledgments

    We gratefully thank the fi nancial support of the National Natural Science Foundation of China(No.21702020)and Maynooth University.

    亚洲自偷自拍图片 自拍| 女警被强在线播放| 国产精品久久久久久精品电影| 亚洲午夜精品一区,二区,三区| 午夜久久久久精精品| 狂野欧美激情性xxxx| 久久香蕉激情| a级毛片在线看网站| 国产欧美日韩一区二区三| 亚洲精品在线观看二区| 欧美乱色亚洲激情| 亚洲精品国产一区二区精华液| 午夜精品久久久久久毛片777| 欧美zozozo另类| 露出奶头的视频| 五月伊人婷婷丁香| 国产精品综合久久久久久久免费| 国产伦在线观看视频一区| 久久热在线av| 可以免费在线观看a视频的电影网站| 成年人黄色毛片网站| 在线观看美女被高潮喷水网站 | 99久久精品热视频| 老汉色∧v一级毛片| 国产成+人综合+亚洲专区| 制服人妻中文乱码| 国内精品久久久久久久电影| 俺也久久电影网| 少妇裸体淫交视频免费看高清 | 免费人成视频x8x8入口观看| 欧美黑人欧美精品刺激| 在线免费观看的www视频| av国产免费在线观看| 欧美又色又爽又黄视频| 特级一级黄色大片| 身体一侧抽搐| av中文乱码字幕在线| 日本 av在线| 男人舔女人下体高潮全视频| 亚洲成人国产一区在线观看| 久久香蕉精品热| netflix在线观看网站| 亚洲avbb在线观看| 亚洲人与动物交配视频| www.www免费av| 淫秽高清视频在线观看| 两个人免费观看高清视频| 变态另类成人亚洲欧美熟女| 欧美绝顶高潮抽搐喷水| 久久午夜综合久久蜜桃| 免费看日本二区| 精品久久蜜臀av无| 亚洲人与动物交配视频| 99riav亚洲国产免费| 亚洲aⅴ乱码一区二区在线播放 | 成人18禁在线播放| 在线看三级毛片| 午夜精品在线福利| 精品久久久久久久末码| 国产亚洲精品久久久久5区| 久久香蕉国产精品| 日韩欧美一区二区三区在线观看| 日韩欧美国产一区二区入口| 精品国产超薄肉色丝袜足j| av福利片在线观看| 亚洲一区中文字幕在线| 中文字幕av在线有码专区| 精品一区二区三区av网在线观看| 亚洲精品国产一区二区精华液| 黄色片一级片一级黄色片| 午夜精品在线福利| 久久这里只有精品19| 一本一本综合久久| 国产97色在线日韩免费| www国产在线视频色| 热99re8久久精品国产| 国产欧美日韩一区二区精品| 久久午夜亚洲精品久久| 午夜免费激情av| 亚洲精品中文字幕一二三四区| 99国产综合亚洲精品| 久久久久久国产a免费观看| 琪琪午夜伦伦电影理论片6080| 天堂√8在线中文| 在线看三级毛片| 国产高清有码在线观看视频 | 成年人黄色毛片网站| 男插女下体视频免费在线播放| 九九热线精品视视频播放| 国产高清视频在线播放一区| 午夜久久久久精精品| 一本久久中文字幕| 欧美在线黄色| 欧美日韩国产亚洲二区| 亚洲欧美激情综合另类| 19禁男女啪啪无遮挡网站| 在线观看免费视频日本深夜| 特大巨黑吊av在线直播| 在线观看美女被高潮喷水网站 | 日本精品一区二区三区蜜桃| 欧美黑人精品巨大| 少妇被粗大的猛进出69影院| 97人妻精品一区二区三区麻豆| 久久国产乱子伦精品免费另类| 亚洲精品一区av在线观看| 国产三级在线视频| 精品久久久久久,| 2021天堂中文幕一二区在线观| 精品电影一区二区在线| 亚洲精品在线观看二区| 国产精品久久久人人做人人爽| 国产精品爽爽va在线观看网站| 一本一本综合久久| 欧美在线一区亚洲| 久久亚洲真实| 中国美女看黄片| 欧美丝袜亚洲另类 | 久久午夜亚洲精品久久| 亚洲av电影不卡..在线观看| 国内精品一区二区在线观看| 午夜福利在线在线| 深夜精品福利| 国产高清有码在线观看视频 | 岛国在线免费视频观看| 国产真实乱freesex| 国产激情久久老熟女| 精品第一国产精品| 日日摸夜夜添夜夜添小说| 国产精华一区二区三区| 男人的好看免费观看在线视频 | 中文字幕久久专区| 一区二区三区国产精品乱码| 国产亚洲精品av在线| 日韩国内少妇激情av| 日韩国内少妇激情av| 欧美精品啪啪一区二区三区| 搞女人的毛片| 激情在线观看视频在线高清| 一级黄色大片毛片| 在线观看www视频免费| 老汉色∧v一级毛片| www.自偷自拍.com| av中文乱码字幕在线| 中文字幕人成人乱码亚洲影| 男人舔女人下体高潮全视频| 午夜免费观看网址| 女生性感内裤真人,穿戴方法视频| 欧美日韩中文字幕国产精品一区二区三区| 长腿黑丝高跟| 露出奶头的视频| а√天堂www在线а√下载| 在线观看午夜福利视频| 99在线视频只有这里精品首页| 99riav亚洲国产免费| 欧美色视频一区免费| 精品无人区乱码1区二区| 热99re8久久精品国产| 一卡2卡三卡四卡精品乱码亚洲| 熟女少妇亚洲综合色aaa.| 一卡2卡三卡四卡精品乱码亚洲| 成人18禁高潮啪啪吃奶动态图| 国产探花在线观看一区二区| 黑人操中国人逼视频| 国产精品国产高清国产av| 精品国产亚洲在线| 亚洲精品在线观看二区| 999久久久国产精品视频| 国产三级在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 久久亚洲真实| 在线观看午夜福利视频| 亚洲欧美日韩高清专用| 国产成人av教育| 亚洲精品国产一区二区精华液| 成人18禁在线播放| 欧美乱码精品一区二区三区| 国产精品野战在线观看| 人人妻人人看人人澡| 成年版毛片免费区| 黑人巨大精品欧美一区二区mp4| 国产av又大| 欧美日韩乱码在线| 欧美黑人欧美精品刺激| 女人高潮潮喷娇喘18禁视频| 欧美日韩精品网址| 91在线观看av| 一本精品99久久精品77| 91麻豆av在线| 真人一进一出gif抽搐免费| 1024视频免费在线观看| x7x7x7水蜜桃| 99热只有精品国产| 精品人妻1区二区| 久久精品国产亚洲av香蕉五月| 亚洲中文av在线| 久久精品国产亚洲av高清一级| 男人的好看免费观看在线视频 | www国产在线视频色| 久久国产精品人妻蜜桃| 亚洲中文日韩欧美视频| 国语自产精品视频在线第100页| 在线观看免费视频日本深夜| 亚洲成人精品中文字幕电影| av欧美777| 女生性感内裤真人,穿戴方法视频| 欧美成人性av电影在线观看| 后天国语完整版免费观看| 又爽又黄无遮挡网站| 91老司机精品| 欧美性长视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 女人高潮潮喷娇喘18禁视频| 宅男免费午夜| 久久中文字幕一级| 久99久视频精品免费| 亚洲av电影不卡..在线观看| 久久久精品大字幕| 久久精品亚洲精品国产色婷小说| 亚洲成人免费电影在线观看| 999久久久国产精品视频| www日本黄色视频网| 亚洲av成人av| 日本 欧美在线| 亚洲成a人片在线一区二区| 亚洲av成人精品一区久久| 国产成+人综合+亚洲专区| 精品一区二区三区视频在线观看免费| 亚洲精品在线观看二区| 一进一出好大好爽视频| 国产精品精品国产色婷婷| 香蕉国产在线看| 亚洲一区高清亚洲精品| 啦啦啦观看免费观看视频高清| 国产精品乱码一区二三区的特点| 每晚都被弄得嗷嗷叫到高潮| 一区福利在线观看| 国产一区二区激情短视频| 一边摸一边抽搐一进一小说| 在线看三级毛片| 啦啦啦韩国在线观看视频| 在线十欧美十亚洲十日本专区| 日韩欧美 国产精品| 黄色女人牲交| 性色av乱码一区二区三区2| 久久久久久亚洲精品国产蜜桃av| 国产午夜精品论理片| 一区二区三区高清视频在线| 男女下面进入的视频免费午夜| or卡值多少钱| 一本久久中文字幕| 久久久久国产一级毛片高清牌| 黑人操中国人逼视频| 夜夜看夜夜爽夜夜摸| 国产不卡一卡二| 一夜夜www| 最近视频中文字幕2019在线8| 99热只有精品国产| 亚洲aⅴ乱码一区二区在线播放 | 免费无遮挡裸体视频| 男女午夜视频在线观看| 亚洲中文av在线| 在线观看免费日韩欧美大片| 老司机福利观看| 好看av亚洲va欧美ⅴa在| 亚洲专区中文字幕在线| 久久这里只有精品中国| 人成视频在线观看免费观看| 国产伦人伦偷精品视频| 欧美色欧美亚洲另类二区| 精品国内亚洲2022精品成人| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品sss在线观看| 精品久久久久久久毛片微露脸| 1024视频免费在线观看| 老司机福利观看| 无限看片的www在线观看| 12—13女人毛片做爰片一| 宅男免费午夜| 1024视频免费在线观看| 国产成人啪精品午夜网站| 欧美乱色亚洲激情| 国产野战对白在线观看| 欧美一区二区国产精品久久精品 | 欧美国产日韩亚洲一区| 好看av亚洲va欧美ⅴa在| 国产一区二区三区视频了| 日韩欧美三级三区| 国产精品久久久久久人妻精品电影| 桃色一区二区三区在线观看| 看片在线看免费视频| 在线a可以看的网站| av欧美777| cao死你这个sao货| 亚洲一区高清亚洲精品| 91在线观看av| 亚洲精品在线观看二区| 黄色视频,在线免费观看| 亚洲色图 男人天堂 中文字幕| 欧美日韩亚洲国产一区二区在线观看| 9191精品国产免费久久| 999久久久国产精品视频| 欧美性猛交黑人性爽| 欧美日韩一级在线毛片| 国产激情欧美一区二区| 我的老师免费观看完整版| 亚洲熟妇中文字幕五十中出| 国模一区二区三区四区视频 | xxxwww97欧美| 亚洲色图 男人天堂 中文字幕| 精品午夜福利视频在线观看一区| 麻豆成人av在线观看| 啦啦啦免费观看视频1| 亚洲七黄色美女视频| 成年女人毛片免费观看观看9| 亚洲av成人一区二区三| 久久欧美精品欧美久久欧美| av有码第一页| 国产麻豆成人av免费视频| 麻豆一二三区av精品| av天堂在线播放| 中文字幕熟女人妻在线| 老司机午夜十八禁免费视频| 久久久久久久久中文| 91字幕亚洲| 国产精品爽爽va在线观看网站| 精品一区二区三区四区五区乱码| 99久久99久久久精品蜜桃| 亚洲全国av大片| 亚洲无线在线观看| 精品一区二区三区四区五区乱码| 色综合婷婷激情| 男女午夜视频在线观看| 免费看美女性在线毛片视频| 久久久国产成人精品二区| 岛国在线观看网站| 欧美黑人精品巨大| 国产精品久久视频播放| www.熟女人妻精品国产| 亚洲精品在线美女| АⅤ资源中文在线天堂| 久久香蕉激情| 可以在线观看毛片的网站| 97碰自拍视频| 91av网站免费观看| 99久久综合精品五月天人人| 手机成人av网站| 搡老岳熟女国产| 欧美性猛交╳xxx乱大交人| 一进一出抽搐动态| 欧美日韩乱码在线| 欧美日韩一级在线毛片| 国产区一区二久久| 欧美高清成人免费视频www| av福利片在线观看| 又粗又爽又猛毛片免费看| 美女高潮喷水抽搐中文字幕| 狠狠狠狠99中文字幕| 国产av又大| 亚洲国产精品久久男人天堂| 亚洲色图av天堂| 五月伊人婷婷丁香| 黄色视频,在线免费观看| 一本一本综合久久| 国产精品永久免费网站| 啦啦啦韩国在线观看视频| 国产精品免费视频内射| 99re在线观看精品视频| 亚洲人成77777在线视频| 99在线视频只有这里精品首页| 级片在线观看| 国产精品1区2区在线观看.| 国产亚洲精品第一综合不卡| 国产亚洲精品久久久久5区| 欧美色视频一区免费| 高清在线国产一区| 国产精品国产高清国产av| 色在线成人网| 久久久精品欧美日韩精品| 九九热线精品视视频播放| 欧美色视频一区免费| 欧美中文综合在线视频| 亚洲精品av麻豆狂野| 在线观看66精品国产| 国产亚洲精品第一综合不卡| 国内揄拍国产精品人妻在线| 国产伦人伦偷精品视频| 最近在线观看免费完整版| 伦理电影免费视频| 99久久99久久久精品蜜桃| 久久精品91蜜桃| 久久亚洲精品不卡| 极品教师在线免费播放| 国产真实乱freesex| 欧美大码av| 日本 欧美在线| 最近最新中文字幕大全免费视频| 桃色一区二区三区在线观看| 成人欧美大片| 无遮挡黄片免费观看| 久久精品91无色码中文字幕| 精品国内亚洲2022精品成人| 久久人人精品亚洲av| 亚洲国产精品成人综合色| 亚洲第一电影网av| 我的老师免费观看完整版| 亚洲狠狠婷婷综合久久图片| 桃红色精品国产亚洲av| 国产成人啪精品午夜网站| 在线观看免费视频日本深夜| 亚洲乱码一区二区免费版| 最近最新中文字幕大全免费视频| 亚洲天堂国产精品一区在线| 国产爱豆传媒在线观看 | 99热这里只有精品一区 | xxx96com| 久久久久亚洲av毛片大全| 国产精品久久视频播放| 成人欧美大片| 一a级毛片在线观看| 欧美色视频一区免费| 两性午夜刺激爽爽歪歪视频在线观看 | 看免费av毛片| 身体一侧抽搐| 亚洲无线在线观看| 嫁个100分男人电影在线观看| 亚洲国产欧美网| 亚洲乱码一区二区免费版| 午夜亚洲福利在线播放| 精品日产1卡2卡| 黑人操中国人逼视频| 午夜免费成人在线视频| 欧美日韩中文字幕国产精品一区二区三区| 99热6这里只有精品| 淫妇啪啪啪对白视频| 成人特级黄色片久久久久久久| 琪琪午夜伦伦电影理论片6080| 久久精品综合一区二区三区| 国产三级黄色录像| xxxwww97欧美| 国内精品久久久久精免费| 久久香蕉精品热| 国内揄拍国产精品人妻在线| 一本久久中文字幕| 国产伦人伦偷精品视频| 国产亚洲精品久久久久久毛片| 亚洲熟妇熟女久久| 精品久久久久久久末码| 国产激情欧美一区二区| 国内揄拍国产精品人妻在线| 一进一出抽搐动态| 777久久人妻少妇嫩草av网站| 亚洲美女视频黄频| 国产熟女午夜一区二区三区| 中文字幕av在线有码专区| 亚洲自拍偷在线| videosex国产| 美女扒开内裤让男人捅视频| 亚洲中文字幕日韩| 国产精品,欧美在线| 久久香蕉激情| 亚洲成av人片在线播放无| 日本 av在线| 国产成人影院久久av| 日日爽夜夜爽网站| 日韩欧美国产一区二区入口| 久久精品综合一区二区三区| 欧美中文综合在线视频| 一级黄色大片毛片| 亚洲熟妇中文字幕五十中出| 国产成人欧美在线观看| 日韩精品中文字幕看吧| 精华霜和精华液先用哪个| 国模一区二区三区四区视频 | 岛国在线免费视频观看| 蜜桃久久精品国产亚洲av| 12—13女人毛片做爰片一| 久久中文字幕人妻熟女| 可以免费在线观看a视频的电影网站| 成年版毛片免费区| 亚洲av日韩精品久久久久久密| aaaaa片日本免费| 欧美精品啪啪一区二区三区| 亚洲国产欧美人成| 国产69精品久久久久777片 | 亚洲成人久久爱视频| 亚洲国产日韩欧美精品在线观看 | 老汉色av国产亚洲站长工具| 欧美乱妇无乱码| 欧美不卡视频在线免费观看 | 男女视频在线观看网站免费 | 国产精品国产高清国产av| 国产三级黄色录像| 性欧美人与动物交配| 亚洲国产高清在线一区二区三| 狠狠狠狠99中文字幕| 成人18禁高潮啪啪吃奶动态图| 天天躁狠狠躁夜夜躁狠狠躁| 一边摸一边抽搐一进一小说| 亚洲色图av天堂| 精品免费久久久久久久清纯| 中文字幕高清在线视频| 亚洲美女视频黄频| 亚洲第一欧美日韩一区二区三区| 91字幕亚洲| 后天国语完整版免费观看| 成人特级黄色片久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 天堂影院成人在线观看| 不卡一级毛片| 亚洲国产欧美人成| x7x7x7水蜜桃| 午夜福利高清视频| 五月玫瑰六月丁香| 成人国语在线视频| 亚洲专区中文字幕在线| 在线观看免费日韩欧美大片| 丁香六月欧美| 欧美av亚洲av综合av国产av| 桃色一区二区三区在线观看| 777久久人妻少妇嫩草av网站| 变态另类丝袜制服| 99热6这里只有精品| 国产1区2区3区精品| 一级毛片女人18水好多| 精品国产超薄肉色丝袜足j| 男女视频在线观看网站免费 | 日韩精品中文字幕看吧| 日韩精品免费视频一区二区三区| 久久精品国产99精品国产亚洲性色| 午夜激情av网站| 亚洲激情在线av| 人妻久久中文字幕网| 全区人妻精品视频| 99在线人妻在线中文字幕| 日本在线视频免费播放| ponron亚洲| 免费搜索国产男女视频| 不卡av一区二区三区| 99精品欧美一区二区三区四区| 亚洲欧美日韩高清专用| 国模一区二区三区四区视频 | 国产成+人综合+亚洲专区| 久久婷婷人人爽人人干人人爱| 国产亚洲av嫩草精品影院| 一边摸一边做爽爽视频免费| 免费在线观看完整版高清| 色综合欧美亚洲国产小说| 变态另类成人亚洲欧美熟女| 麻豆国产97在线/欧美 | 国产片内射在线| 午夜日韩欧美国产| 久久久久久大精品| 日本撒尿小便嘘嘘汇集6| 黄色成人免费大全| 亚洲精华国产精华精| 国产成人精品久久二区二区免费| 国产三级在线视频| 日韩大码丰满熟妇| 亚洲午夜精品一区,二区,三区| 国产91精品成人一区二区三区| 国产成人啪精品午夜网站| 亚洲国产精品999在线| 国产欧美日韩一区二区精品| 国产精品99久久99久久久不卡| 90打野战视频偷拍视频| 99riav亚洲国产免费| 久久 成人 亚洲| 久久精品国产亚洲av香蕉五月| 精品欧美国产一区二区三| 午夜久久久久精精品| 亚洲精品久久成人aⅴ小说| a级毛片在线看网站| 亚洲人成网站高清观看| 男人舔女人的私密视频| 国产成人av教育| 可以免费在线观看a视频的电影网站| 每晚都被弄得嗷嗷叫到高潮| 岛国在线免费视频观看| 一本大道久久a久久精品| 国产精品久久久久久精品电影| 国产精品美女特级片免费视频播放器 | 欧美日韩国产亚洲二区| 国产亚洲欧美在线一区二区| 久久久精品国产亚洲av高清涩受| 黄色成人免费大全| 亚洲黑人精品在线| 精品国内亚洲2022精品成人| 亚洲精品久久成人aⅴ小说| 成人三级做爰电影| 欧美日韩精品网址| 搡老妇女老女人老熟妇| 国产亚洲精品一区二区www| 亚洲国产欧美人成| 午夜老司机福利片| 天天躁夜夜躁狠狠躁躁| 亚洲一码二码三码区别大吗| 国产aⅴ精品一区二区三区波| 一级a爱片免费观看的视频| 久久中文字幕一级| 一区二区三区国产精品乱码| 少妇粗大呻吟视频| 在线观看免费午夜福利视频| 亚洲成人免费电影在线观看| 午夜免费激情av| 亚洲自偷自拍图片 自拍| 久久久水蜜桃国产精品网| 中文字幕久久专区| 日韩欧美国产一区二区入口| 国产精华一区二区三区| 免费在线观看影片大全网站| 亚洲一码二码三码区别大吗| 欧美极品一区二区三区四区| 国内揄拍国产精品人妻在线| 亚洲免费av在线视频| 女同久久另类99精品国产91|