張 瑜,張立元,Zhang Huihui,宋朝陽,藺廣花,韓文霆
?
玉米作物系數(shù)無人機(jī)遙感協(xié)同地面水分監(jiān)測(cè)估算方法研究
張 瑜1,2,張立元3,Zhang Huihui4,宋朝陽5,藺廣花6,韓文霆1,7※
(1. 中國科學(xué)院水利部水土保持研究所,楊凌 712100;2. 中國科學(xué)院大學(xué),北京 100049;3. 西北農(nóng)林科技大學(xué)機(jī)械與電子工程學(xué)院,楊凌 712100;4. 美國農(nóng)業(yè)部農(nóng)業(yè)研究服務(wù)屬,柯林斯堡 CO 80526;5. 西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院,楊凌 712100;6. 西安工業(yè)大學(xué)建筑工程學(xué)院,西安 710000;7. 西北農(nóng)林科技大學(xué)水土保持研究所,楊凌 712100)
該文研究不同水分脅迫條件下無人機(jī)遙感與地面?zhèn)鞲衅鲄f(xié)同估算玉米作物系數(shù)的可行性。利用自主研發(fā)的六旋翼無人機(jī)遙感平臺(tái)搭載多光譜傳感器獲取內(nèi)蒙古達(dá)拉特旗昭君鎮(zhèn)試驗(yàn)站不同水分脅迫下大田玉米冠層光譜影像,計(jì)算植被指數(shù),采用經(jīng)氣象因子和作物覆蓋度校正后的FAO-56雙作物系數(shù)法計(jì)算玉米的作物系數(shù),研究作物系數(shù)與簡(jiǎn)單比值植被指數(shù)(simple ratio index,SR)、葉面積指數(shù)(leaf area index,LAI)和表層土壤含水率(surface soil moisture,SM)的相關(guān)關(guān)系,結(jié)果表明,作物系數(shù)與SR、LAI和SM的相關(guān)程度與水分脅迫程度有關(guān),但均呈現(xiàn)出顯著或極顯著的線性關(guān)系,說明了基于這些指標(biāo)建立作物系數(shù)估算模型的可能性。利用逐步回歸分析方法建立了作物系數(shù)的估算模型,其估算模型,修正的決定系數(shù)、均方根誤差和歸一化的均方根誤差分別為0.63、0.21、25.16%。經(jīng)驗(yàn)證,模型決定系數(shù)、均方根誤差和歸一化的均方根誤差分別為0.60、0.21、23.35%。研究結(jié)果可為利用無人機(jī)多光譜遙感平臺(tái)進(jìn)行作物系數(shù)估算提供技術(shù)參考。
土壤水分;脅迫;無人機(jī);作物系數(shù);比值植被指數(shù);葉面積指數(shù)
作物蒸散發(fā)(evapotranspiration,ET)由土壤蒸發(fā)與作物蒸騰組成,是連接生態(tài)與水文過程的重要紐帶。在農(nóng)業(yè)生產(chǎn)中超過90%的農(nóng)業(yè)用水最終以蒸散的形式消耗[1-2],因此農(nóng)田ET的快速準(zhǔn)確估算對(duì)灌溉制度制定和水分利用效率提升意義重大[3-4]。目前,蒸散發(fā)的傳統(tǒng)測(cè)定方法主要包括土壤水量平衡法、蒸滲儀法、渦度相關(guān)儀法、閃爍通量?jī)x法、波文比-能量平衡法、空氣動(dòng)力學(xué)法等[5]。1998年聯(lián)合國糧農(nóng)組織(Food and Agricultural Organization,F(xiàn)AO)基于Penman-Monteith公式利用參考作物蒸散量(reference evapotranspiration,ET0)以及作物系數(shù)計(jì)算農(nóng)田ET[6],具有估算精度高、實(shí)用性強(qiáng)等優(yōu)勢(shì)特征,在世界各地范圍內(nèi)都得到廣泛應(yīng)用[7-8]。FAO-56作物系數(shù) 法[9]可分為單作物系數(shù)法和雙作物系數(shù)法。與單作物系數(shù)法相比,雙作物系數(shù)法由于可區(qū)分作物蒸騰和土壤蒸發(fā),能夠更加精確地計(jì)算農(nóng)田ET[10]。但在實(shí)際應(yīng)用時(shí),雙作物系數(shù)法需利用當(dāng)?shù)卦囼?yàn)資料(如氣候條件、作物生長(zhǎng)狀況等參數(shù))進(jìn)行修正以達(dá)到準(zhǔn)確計(jì)算農(nóng)田ET的目的[11]。如Pereira等[12]對(duì)作物階段持續(xù)時(shí)間和基礎(chǔ)作物系數(shù)進(jìn)行修正,結(jié)果表明修正后的雙作物系數(shù)法對(duì)于蒸散發(fā)的估算精度有顯著提高。馮禹等[13]通過利用葉面積指數(shù)計(jì)算覆蓋度并校正雙作物系數(shù)的方法估算黃土高原旱作玉米的ET,結(jié)果表明該方法具有較好的估算精度(決定系數(shù)2=0.87)。
由于植被指數(shù)能夠?qū)崟r(shí)快速反映作物的生長(zhǎng)狀況和空間差異性,因而遙感技術(shù)被研究人員廣泛運(yùn)用于作物系數(shù)(K)的估算中。如Glenn等[14]發(fā)現(xiàn)MODIS衛(wèi)星遙感影像獲取的葉面積指數(shù)(leaf area index,LAI)、歸一化差值植被指數(shù)(normalized difference vegetation index,NDVI)、土壤調(diào)整植被指數(shù)(soil-adjusted vegetation index,SAVI)與作物系數(shù)之間具有較強(qiáng)的相關(guān)性。Gontia等[15]基于IRS-1C衛(wèi)星遙感技術(shù)分析了印度西孟加拉邦冬小麥生育期內(nèi)不同月份的植被指數(shù)(NDVI和SAVI)與其每月作物系數(shù)K的相關(guān)關(guān)系,建立的回歸方程能夠較好地估算K。Campos等[16]采用Landsat-5 TM衛(wèi)星遙感影像研究了西班牙東南部葡萄作物系數(shù)與植被指數(shù)(NDVI和SAVI)的關(guān)系,結(jié)果表明基于NDVI、SAVI等建立的線性模型能夠較好地估算作物系數(shù)K(2=0.67)。Park等[17]采用MODIS衛(wèi)星遙感數(shù)據(jù)在農(nóng)田區(qū)域建立的基于NDVI、LAI與表層土壤含水率的K反演模型可以較好地估算農(nóng)田ET(2=0.53~0.83)。Lei[18]基于MODIS衛(wèi)星遙感數(shù)據(jù)在華北平原利用植被指數(shù)(NDVI、SAVI等)和實(shí)測(cè)的土壤水分?jǐn)?shù)據(jù)建立模型可以很好地估算水分充足情況下的農(nóng)田ET(2=0.81~0.94)。Drerup等[19]基于地面光譜遙感研究了歐洲西北部溫和潮濕氣候下冬小麥作物系數(shù)與NDVI的關(guān)系,結(jié)果表明灌溉良好的情況下可以較好地估算農(nóng)田ET。李賀麗等[20]基于地面光譜技術(shù)建立不同水分脅迫下大田冬小麥的K模型,但決定系數(shù)2僅為0.09~0.15(<0.01,=195)?;谛l(wèi)星遙感獲取植被指數(shù)時(shí)存在重訪周期長(zhǎng)、時(shí)空分辨率較低、易受天氣影響等缺點(diǎn),難以實(shí)現(xiàn)農(nóng)田作物田塊尺度上的日蒸散量快速準(zhǔn)確獲取。目前,無人機(jī)遙感系統(tǒng)憑借其運(yùn)載便利、靈活性高、作業(yè)周期短、影像數(shù)據(jù)分辨率高等優(yōu)勢(shì),使得農(nóng)田尺度上植被指數(shù)的低成本、快速獲取成為可能,在灌溉領(lǐng)域得到越來越多的應(yīng)用[21-26]。Romero等[27]基于無人機(jī)遙感技術(shù)在葡萄園建立植被指數(shù)與土壤水勢(shì)的人工神經(jīng)網(wǎng)絡(luò)模型反演精度較高(2=0.81)。Hassan- Esfahani等[28]基于無人機(jī)遙感技術(shù)在農(nóng)田區(qū)域建立貝葉斯人工神經(jīng)網(wǎng)絡(luò)模型估算根區(qū)土壤水分具有很好的精度(2=0.94)。筆者所在的研究團(tuán)隊(duì)[29]基于無人機(jī)多光譜遙感技術(shù)分析了玉米不同生育期6種植被指數(shù)與K的相關(guān)關(guān)系,表明部分植被指數(shù)與K的相關(guān)性較強(qiáng)。
綜上,基于無人機(jī)遙感技術(shù)與土壤水分地面監(jiān)測(cè)相結(jié)合的水分脅迫下作物系數(shù)遙感估算方法研究較少。在團(tuán)隊(duì)研究[29]基礎(chǔ)上,本文設(shè)計(jì)了多種水分脅迫處理,基于無人機(jī)遙感技術(shù)和地面?zhèn)鞲衅鳎芯拷⒆魑锵禂?shù)估算模型的可行性,以期為大田玉米作物系數(shù)的無人機(jī)估算研究提供技術(shù)支持。
試驗(yàn)地位于內(nèi)蒙古鄂爾多斯市達(dá)拉特旗昭君鎮(zhèn)西北農(nóng)林科技大學(xué)精準(zhǔn)灌溉試驗(yàn)站(40°26.00¢N,109°36.43¢E,平均海拔為1 010 m)。土壤為砂土,一年種植一季夏玉米。該試驗(yàn)地屬于溫帶大陸性氣候,試驗(yàn)期間總降雨量?jī)H為44 mm,降雨難以達(dá)到作物需水要求,以噴灌作為主要的灌溉方式。試驗(yàn)地的田間持水率為29%(體積含水率),土壤容重為1.56 g/cm3。
前人研究表明[30],內(nèi)蒙地區(qū)春玉米適宜土壤含水率下限為田間持水量的55%~60%??紤]到砂土土質(zhì),本文以田間持水量的50%為基準(zhǔn)在玉米快速生長(zhǎng)期(播種后0~61 d)、生長(zhǎng)中期(播種后62~92 d)和生長(zhǎng)后期(播種后93~101 d)分別設(shè)定不同的水分脅迫梯度,3個(gè)生育期土壤含水率比值分別為100/100/100(TR1)、80/100/ 100(TR2)、80/100/50(TR3)、80/65/30(TR4)。TR1~TR4處理對(duì)應(yīng)如圖1所示試驗(yàn)地中1~4號(hào)扇形區(qū)域,試驗(yàn)中利用中心支軸噴灌機(jī)進(jìn)行灌溉,通過調(diào)節(jié)噴灌機(jī)轉(zhuǎn)速以實(shí)現(xiàn)各扇形區(qū)域內(nèi)不同灌溉量處理。由于降雨以及環(huán)境因素的影響,最終各試驗(yàn)樣區(qū)實(shí)際灌溉量與降雨量如表1所示。各樣區(qū)中采用均勻放置的3個(gè)雨量筒來測(cè)量其灌溉量和降雨量,取3次重復(fù)的平均值。
注:5 cm×pixel-1;1~4為對(duì)應(yīng)于4個(gè)處理的樣區(qū)。
玉米品種為鈞凱918,2017年5月20日播種,6月1日出苗,7月20日抽穗,9月7日收獲(青儲(chǔ)),生育期共110 d。玉米種植行距58 cm、株距25 cm、行向由東到西,試驗(yàn)地(如圖1中圓形區(qū)域)總面積為1.13 hm2。同時(shí)根據(jù)當(dāng)?shù)剞r(nóng)民的種植經(jīng)驗(yàn)進(jìn)行施肥以及施加除草劑來避免其他因素的影響。
表1 各處理灌溉量與降雨量
注:為田間持水量的50%。IR, 灌水量;PR,降雨量;DSM,設(shè)定的土壤含水率;SM,實(shí)測(cè)土壤含水率。
Note:is 50% of field water-holding capacity. IR, irrigation amount; PR, precipitation; DSM, designed soil moisture; SM, measured soil moisture.
1.3.1 作物生長(zhǎng)指標(biāo)
在各區(qū)域內(nèi)分別選取1塊12 m×12 m的方形樣區(qū)(如圖1中樣區(qū)1~4),2017年6月26日—8月29日采用隨機(jī)采樣法對(duì)各樣區(qū)內(nèi)玉米葉面積指數(shù)LAI、株高進(jìn)行連續(xù)觀測(cè),每2~5 d測(cè)定1次,共采集17次數(shù)據(jù),每次進(jìn)行作物生長(zhǎng)指標(biāo)采集時(shí)同步獲取無人機(jī)遙感數(shù)據(jù)。采用LAI-2000C(LI-COR,USA)植被冠層分析儀在各樣區(qū)隨機(jī)測(cè)出10個(gè)LAI并取其平均值作為測(cè)量樣區(qū)的平均LAI。株高測(cè)定是在各樣區(qū)內(nèi)用米尺測(cè)量10個(gè)株高并取其平均值作為測(cè)量樣區(qū)的平均株高。
1.3.2 氣象站數(shù)據(jù)
農(nóng)業(yè)氣象站位于試驗(yàn)區(qū)西南100 m處(40°25¢N,109°36¢E),以青草作為下墊面參照作物。監(jiān)測(cè)指標(biāo)包括降雨量、2 m處風(fēng)速、空氣溫度、相對(duì)濕度、太陽輻射等氣象參數(shù),每30 min采集1次氣象參數(shù)的數(shù)據(jù)。
1.3.3 土壤水分監(jiān)測(cè)
利用土壤水分傳感器(TDR 315 L)觀測(cè)田間玉米生育期內(nèi)的土壤水分動(dòng)態(tài)變化。各樣區(qū)中布設(shè)1個(gè)土壤水分采集點(diǎn),每個(gè)采集點(diǎn)采集土深180 cm內(nèi)土壤含水率數(shù)據(jù),以30 cm等間距布設(shè)(共6個(gè)深度),每30 min采集1次土壤水分?jǐn)?shù)據(jù)。同時(shí),各樣區(qū)通過取30 cm土層含水率作為表層土壤水分。
1.3.4 作物系數(shù)計(jì)算方法
采用FAO56指南[6]推薦的雙作物系數(shù)法計(jì)算K,首先計(jì)算標(biāo)準(zhǔn)狀況下(無病蟲害,具有優(yōu)水土條件,施肥量適宜)生育期內(nèi)各生長(zhǎng)階段的基礎(chǔ)作物系數(shù),并根據(jù)試驗(yàn)地的氣候因素、作物生長(zhǎng)情況(如株高、葉面積指數(shù)等)、管理與環(huán)境條件對(duì)其進(jìn)行校正,最后計(jì)算土壤蒸發(fā)系數(shù)和水分脅迫系數(shù)。主要計(jì)算公式如下:
式中cb為基礎(chǔ)作物系數(shù);cb,adjust為生育期內(nèi)各生長(zhǎng)階段采用氣象因子校正得到的基礎(chǔ)作物系數(shù);cb,tab為標(biāo)準(zhǔn)狀況下的基礎(chǔ)作物系數(shù);2為各生長(zhǎng)階段2 m高度處的日平均風(fēng)速,m/s;RHmin為各生長(zhǎng)階段日平均最小相對(duì)濕度,%;為各生長(zhǎng)階段作物平均株高,m;cb,a為采用作物實(shí)際覆蓋度校正后的基礎(chǔ)作物系數(shù);Kmin為裸露土壤時(shí)的最小作物系數(shù)(取值范圍為0.15~0.20);LAI為當(dāng)?shù)卦囼?yàn)條件下實(shí)測(cè)的葉面積指數(shù);K為土壤蒸發(fā)系數(shù);K為土壤蒸發(fā)衰減系數(shù)(本文取0.1 m土層厚度);Kmax為作物系數(shù)上限;K為水分脅迫系數(shù),水分脅迫情況下K<1,無水分脅迫情況下K=1;ew為裸露潮濕土壤的比例;TAW為根系層中的總有效水量,mm;D為根層土蒸發(fā)耗水量的累積深度,mm;RAW為根系層易被作物吸取的有效水量,mm。
1.4.1 無人機(jī)遙感數(shù)據(jù)采集與預(yù)處理
無人機(jī)數(shù)據(jù)采集及預(yù)處理方法同文獻(xiàn)[29]。采用六旋翼電動(dòng)無人機(jī)(無人機(jī)總質(zhì)量為3.5 kg,最大載質(zhì)量為5 kg)搭載RedEdge(MicaSense,USA)多光譜相機(jī)(多光譜相機(jī)在使用前進(jìn)行去噪、鏡頭畸變校正處理),每周飛行2次,灌溉時(shí)不進(jìn)行數(shù)據(jù)采集。數(shù)據(jù)采集選擇晴朗無云的天氣,采集時(shí)間當(dāng)?shù)貢r(shí)間11:00—13:00(北京時(shí)間11:44—13:44),飛行高度為70 m,獲得的影像空間分辨率為5 cm/pixel。在獲取無人機(jī)多光譜影像前,在飛行區(qū)域內(nèi)布置漫反射板(反射率58%,尺寸3 m × 3 m,GroupVIII,USA),用于多光譜影像DN值的標(biāo)定。試驗(yàn)期間(2017年6月26日—8月29日)共采集17組數(shù)據(jù)。
1.4.2 植被指數(shù)選取及計(jì)算方法
植被指數(shù)可以實(shí)時(shí)快速反映作物的生長(zhǎng)狀況和空間差異性,其中,簡(jiǎn)單比值植被指數(shù)(simple ratio index,SR)作為常用的植被指數(shù)之一,已被廣泛應(yīng)用于高密度植被區(qū)域的動(dòng)態(tài)變化監(jiān)測(cè)中且在作物系數(shù)研究中被證明具有較好的估算精度[29],因此本文選取了SR進(jìn)行作物系數(shù)估算。采用Pix4DMapper軟件進(jìn)行無人機(jī)多光譜影像數(shù)據(jù)的拼接以及相關(guān)處理,首先利用相對(duì)應(yīng)的地面控制點(diǎn)數(shù)據(jù)進(jìn)行幾何校正,生成數(shù)字正射影像圖(digital orthophoto map,DOM),然后利用灰板對(duì)獲得的光譜影像圖進(jìn)行反射率校正,獲取試驗(yàn)地反射率影像,最后采用ENVI軟件平臺(tái)裁剪各樣區(qū)的反射率影像,并提取簡(jiǎn)單比值植被指數(shù)SR[31],其中SR計(jì)算公式為
SR =NIR/red(6)
式中red、NIR分別為灰板對(duì)RedEdge多光譜相機(jī)紅波段和近紅外波段的平均反射率。
在玉米生育階段,基于無人機(jī)影像在每個(gè)樣區(qū)提取了17組植被指數(shù)數(shù)據(jù),與當(dāng)天同步測(cè)量的各樣區(qū)17組LAI數(shù)據(jù)和17組表層土壤水分?jǐn)?shù)據(jù)一一對(duì)應(yīng),構(gòu)成K的樣本數(shù)據(jù)集,4個(gè)樣區(qū)總共獲得68組數(shù)據(jù)。隨機(jī)選擇各樣區(qū)70%的樣本(包括植被指數(shù)、LAI、表層土壤水分?jǐn)?shù)據(jù)及基于FAO法計(jì)算得到的作物系數(shù))數(shù)據(jù)(48組數(shù)據(jù))作為建模集,基于逐步回歸分析方法構(gòu)建K的估算模型。最后,利用其余30%的樣本數(shù)據(jù)(20組數(shù)據(jù))作為驗(yàn)證數(shù)據(jù)集,評(píng)價(jià)K估算模型。
用決定系數(shù)(2)、均方根誤差(root mean square error,RMSE)、歸一化均方根誤差(normalized RMSE,nRMSE)評(píng)判擬合精度[32]。2值趨近于1,RMSE及nRMSE值越小,表明模型估測(cè)精度越高。用赤池信息量準(zhǔn)則(akaike information criterion,AIC)衡量模型擬合優(yōu)良程度,優(yōu)先選擇值較小的模型。
采用三次樣條函數(shù)插值方法對(duì)LAI等數(shù)據(jù)進(jìn)行插值,不同灌溉水平下的各樣區(qū)大田玉米快速生長(zhǎng)期至生長(zhǎng)后期(6月26日—8月29日)LAI、SR、表層土壤含水率SM、K的動(dòng)態(tài)變化曲線如圖2所示。
圖2 不同水分脅迫處理下玉米快速生長(zhǎng)期至生長(zhǎng)后期的葉面積指數(shù)(LAI)、比值植被指數(shù)(SR)、表層土壤水分(SM)和作物系數(shù)Kc的變化曲線
由圖2可知,水分脅迫顯著影響作物L(fēng)AI。以TR1和TR4為例,TR1中LAI達(dá)到最大值3.07,而TR4中LAI的最大值僅為2.70。同時(shí),不同時(shí)期和不同程度的水分脅迫處理對(duì)LAI也會(huì)產(chǎn)生不同的影響。與TR1相比,快速生長(zhǎng)期水分脅迫處理下,LAI增幅減??;生長(zhǎng)后期水分脅迫處理下,LAI降幅增大;生長(zhǎng)中期和生長(zhǎng)后期水分脅迫加重處理下,LAI提前到達(dá)最大值,后期降幅增大且達(dá)到最低值0.82。由此可知,生育前期的水分脅迫延緩生育進(jìn)程,生育后期的水分脅迫加速作物衰老,水分脅迫程度的加重會(huì)縮短作物生育期。上述結(jié)果與白莉萍 等[33-34]在不同水分脅迫下進(jìn)行的玉米試驗(yàn)結(jié)果相一致。
用以反映作物蒸騰因素的SR在不同水分脅迫下快速生長(zhǎng)期到生長(zhǎng)中期變化規(guī)律不顯著且只在生長(zhǎng)后期水分脅迫嚴(yán)重時(shí)有下降趨勢(shì)。這是由于SR主要用于監(jiān)測(cè)高密度植被區(qū)域的動(dòng)態(tài)變化[35]。另外,用以反映土壤蒸發(fā)因素的表層土壤水分SM在生長(zhǎng)后期值較低,在快速生長(zhǎng)期和生長(zhǎng)中期值較高,這是由于玉米在快速生長(zhǎng)期內(nèi),隨著覆蓋度的增加,作物耗水能力加強(qiáng),導(dǎo)致土壤水分逐漸消耗,進(jìn)而減少土壤蒸發(fā);生長(zhǎng)中期,由于受到水分的補(bǔ)給,SM顯著增加,但隨著作物消耗以及蒸發(fā)SM再次降低;生長(zhǎng)后期由于植被覆蓋度低,土壤蒸發(fā)加強(qiáng)。
大田玉米K是作物蒸騰與土壤蒸發(fā)兩者綜合作用的結(jié)果,在灌溉和降雨后顯著提升,水分消耗后降低。其中,快速生長(zhǎng)期水分脅迫處理下,K顯著降低且維持在較高水平的時(shí)間縮短;生長(zhǎng)后期水分脅迫處理下,K降幅增大;生長(zhǎng)中期和生長(zhǎng)后期水分脅迫加重處理下,K生長(zhǎng)中期并未維持在較高水平且生長(zhǎng)后期處于較低水平。這是由于水分脅迫限制作物生長(zhǎng)和土壤蒸發(fā),減少了作物蒸散。
首先采用簡(jiǎn)單相關(guān)關(guān)系分析不同水分處理下SR、LAI、SM與K之間的關(guān)系,結(jié)果如表2所示。不同水分脅迫條件下,大田玉米K與SR、LAI和SM的相關(guān)程度不同,TR3時(shí)K與LAI的相關(guān)系數(shù)最高(0.60),其他處理時(shí)K與SM的相關(guān)系數(shù)最高。SR、LAI和SM這3個(gè)指標(biāo)與K的相關(guān)系數(shù)的最小值分別為0.46、0.45及0.53,但均與K表現(xiàn)出顯著的線性關(guān)系(<0.05)。這說明采用這3個(gè)指標(biāo)建立不同水分脅迫下K的估算模型具有一定的可行性。
表2 不同處理Kc與SR、LAI、SM間相關(guān)系數(shù)
注:***,<0.001;**,<0.01;*,<0.05。下同。
Note: ***,<0.001; **,<0.01; *,<0.05. Same as below.
在上述分析的基礎(chǔ)上,采用建模數(shù)據(jù)集(48個(gè)樣本)將3個(gè)變量與K進(jìn)行逐步回歸分析,構(gòu)建K估算模型,結(jié)果如表3所示。比較3個(gè)模型,基于3個(gè)變量的模型的adj2值為0.63、RMSE為0.21、nRMSE為25.16%,精度稍高于其他模型(圖3a)。為驗(yàn)證模型可靠性,采用未參與估算的各樣區(qū)30%實(shí)測(cè)數(shù)據(jù)集(20個(gè)樣本)進(jìn)行驗(yàn)證如圖3b,結(jié)果表明:玉米K的模擬值與實(shí)測(cè)值擬合效果較好(2=0.60,RMSE=0.21,nRMSE=23.35%,<0.05,=20)??梢?,該模型能夠較好地估算作物系數(shù)。
表3 Kc與3個(gè)變量的逐步回歸分析結(jié)果
本研究于前人研究相比取得了較好的估算結(jié)果,李賀麗等[20]采用地面光譜儀獲取冠層植被指數(shù),建立水分脅迫下的小麥K估算模型,2最大僅為0.15(<0.01,=195),韓文霆等[29]基于無人機(jī)多光譜遙感技術(shù)建立的玉米的K模型,受到水分脅迫和生長(zhǎng)時(shí)期的影響,2最大為0.083。本文利用無人機(jī)獲取作物光譜信息,并利用地面無線傳感器網(wǎng)絡(luò)實(shí)時(shí)采集土壤含水率等信息,通過綜合作物信息、土壤信息使建立的作物系數(shù)模型更加可靠。但本文并未考慮不同的植被指數(shù)對(duì)估算的影響,在后續(xù)試驗(yàn)中需考慮這些因素的影響來提高估算的精度。
圖3 基于3個(gè)變量的玉米Kc逐步回歸模型模擬及預(yù)測(cè)值與實(shí)測(cè)值的關(guān)系
本文利用無人機(jī)多光譜遙感技術(shù)結(jié)合地面監(jiān)測(cè)數(shù)據(jù)研究了利用比值植被指數(shù)、葉面積指數(shù)和表層土壤含水率估算大田玉米作物系數(shù)的可行性,得出以下結(jié)論:
1)水分脅迫顯著影響作物葉面積指數(shù),在生長(zhǎng)后期水分脅迫嚴(yán)重時(shí)比值植被指數(shù)有下降趨勢(shì),表層土壤含水率在生長(zhǎng)后期值較低、在快速生長(zhǎng)期和生長(zhǎng)中期值較高,作物系數(shù)在生長(zhǎng)后期處于較低水平。
2)不同水分脅迫條件下,大田玉米作物系數(shù)與比值植被指數(shù)、葉面積指數(shù)和表層土壤水分的相關(guān)程度不同,在脅迫程度較高、較輕時(shí),均與表層土壤水分的相關(guān)程度較高,其他條件下,與葉面積指數(shù)相關(guān)程度高。
3)基于比值植被指數(shù)、葉面積指數(shù)和表層土壤水分3個(gè)指標(biāo)建立了K逐步回歸模型,經(jīng)驗(yàn)證,其決定系數(shù)、均方根誤差和歸一化的均方根誤差分別為0.60、0.21和23.35%,表明利用無人機(jī)監(jiān)測(cè)的比值植被指數(shù)和地面監(jiān)測(cè)的葉面積指數(shù)以及表層土壤含水率建立的K估算模型具有較好的估算精度。
[1] Ding Risheng, Kang Shaozhong, Zhang Yanqun, et al. Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching[J]. Agricultural Water Management, 2013, 127(127): 85-96.
[2] Paredes P, Pereira L S, Gon?alo C R, et al. Using the FAO dual crop coefficient approach to model water use and productivity of processing pea (Pisum sativum L.) as influenced by irrigation strategies[J]. Agricultural Water Management, 2017, 189: 5-18.
[3] 石小虎,蔡煥杰,趙麗麗,等. 基于SIMDualKc模型估算非充分灌水條件下溫室番茄蒸發(fā)蒸騰量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):131-138. Shi Xiaohu, Cai Huanjie, Zhao Lili, et al. Estimation of greenhouse tomato evapotranspiration under deficit irrigation based on SIMDualKc model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 131-138. (in Chinese with English abstract)
[4] 梅旭榮,康紹忠,于強(qiáng),等. 協(xié)同提升黃淮海平原作物生產(chǎn)力與農(nóng)田水分利用效率途徑[J]. 中國農(nóng)業(yè)科學(xué),2013,46(6):1149-1157. Mei Xurong, Kang Shaozhong, Yu Qiang, et al. Pathways to synchronously improving crop productivity and field water use efficiency in the North China Plain[J]. Scientia Agricultura Sinica, 2013, 46(6): 1149-1157. (in Chinese with English abstract)
[5] Fandino M, Cancela J J, Rey B J, et al. Using the dual-Kc approach to model evapotranspiration of Albarino vineyards (L. cv. Albari?o) with consideration of active ground cover[J]. Agricultural Water Management, 2012, 112: 75-87.
[6] Allan R G, Pereira L S, Raes D, et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements[R]. FAO Irrigation and Drainage Paper No. 56. FAO, 1998: 56.
[7] Dejonge K C, Ascough J C, Andales A A, et al. Improving evapotranspiration simulations in the CERES-Maize model under limited irrigation[J]. Agricultural Water Management, 2012, 115(12): 92-103.
[8] 文冶強(qiáng),楊健,尚松浩. 基于雙作物系數(shù)法的干旱區(qū)覆膜農(nóng)田耗水及水量平衡分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(1):138-147. Wen Yeqiang, Yang Jian, Shang Songhao. Analysis on evapotranspiration and water balance of cropland with plastic mulch in arid region using dual crop coefficient approach[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 138-147. (in Chinese with English abstract)
[9] Allen R G. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study[J]. Journal of Hydrology, 2000, 229(1/2): 27-41.
[10] Zhang Baozhong, Liu Yu, Xu Di, et al. The dual crop coefficient approach to estimate and partitioning evapotranspiration of the winter wheat–summer maize crop sequence in North China Plain[J]. Irrigation Science, 2013, 31(6): 1303-1316.
[11] Allen R G, Pereira L S, Smith M, et al. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2005, 131: 2-13.
[12] Pereira L S, Allen R G, Smith M, et al. Crop evapotranspiration estimation with FAO56: Past and future[J]. Agricultural Water Management, 2015, 147: 4-20.
[13] 馮禹,崔寧博,龔道枝,等. 基于葉面積指數(shù)改進(jìn)雙作物系數(shù)法估算旱作玉米蒸散[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):90-98. Feng Yu, Cui Ningbo, Gong Daozhi, et al. Estimating rainfed spring maize evapotranspiration using modified dual crop coefficient approach based on leaf area index[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 90-98. (in Chinese with English abstract)
[14] Glenn E P, Neale C M U, Hunsaker D J, et al. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems[J]. Hydrological Processes, 2011, 25(26): 4050-4062.
[15] Gontia N K, Tiwari K N. Estimation of crop coefficient and evapotranspiration of wheat (L) in an irrigation command using remote sensing and GIS[J]. Water Resources Management, 2010, 24(7): 1399-1414.
[16] Campos I, Neale C M U, Calera A, et al. Assessing satellite-based basal crop coefficients for irrigated grapes (L.)[J]. Agricultural Water Management, 2010, 98(1): 45-54.
[17] Park J, Baik J, Choi M. Satellite-based crop coefficient and evapotranspiration using surface soil moisture and vegetation indices in Northeast Asia[J]. Catena, 2017, 156: 305-314.
[18] Lei H. Combining crop coefficient of winter wheat and summer maize with remotely-sensed vegetation index for estimating evapotranspiration in the North China Plain[J]. Journal of Hydrologic Engineering, 2014, 19(1): 243-251.
[19] Drerup P, Brueck H, Scherer H W. Evapotranspiration of winter wheat estimated with the FAO 56 approach and NDVI measurements in a temperate humid climate of NW Europe[J]. Agricultural Water Management, 2017, 192: 180-188.
[20] 李賀麗,羅毅,趙春江,等. 基于冠層光譜植被指數(shù)的冬小麥作物系數(shù)估算[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(20): 118-127. Li Heli, Luo Yi, Zhao Chunjiang, et al. Estimating crop coefficients of winter wheat based on canopy spectral vegetation indices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(20): 118-127. (in Chinese with English abstract)
[21] 韓文霆,郭聰聰,張立元,等. 基于無人機(jī)遙感的灌區(qū)土地利用與覆被分類方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(11):270-277. Han Wenting, Guo Congcong, Zhang Liyuan, et al. Classification method of land cover and irrigated farm land use based on UAV remote sensing in irrigation [J]. Transactions of Chinese Society for Agricultural Machinery, 2016, 47(11): 270-277. (in Chinese with English abstract)
[22] 韓文霆,李廣,苑夢(mèng)嬋,等. 基于無人機(jī)遙感技術(shù)的玉米種植信息提取方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(1):139-147. Han Wenting, Li Guang, Yuan Mengchan, et al. Extraction method of maize planting information based on UAV remote sending technology [J]. Transactions of Chinese Society for Agricultural Machinery, 2017, 48(1): 139-147. (in Chinese with English abstract)
[23] 汪小欽,王苗苗,王紹強(qiáng),等. 基于可見光波段無人機(jī)遙感的植被信息提取[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5): 152-158. Wang Xiaoqin, Wang Miaomiao, Wang Shaoqiang, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 152-158. (in Chinese with English abstract)
[24] 王利民,劉佳,楊玲波. 基于無人機(jī)影像的農(nóng)情遙感監(jiān)測(cè)應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(18):136-145. Wang Limin, Liu Jia, Yang Lingbo. Applications of UAV images on agricultural remote sensing monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 136-145. (in Chinese with English abstract)
[25] 韓文霆,張立元,張海鑫,等. 基于無人機(jī)遙感與面向?qū)ο蠓ǖ奶镩g渠系分布信息提取[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(3):205-214. Han Wenting, Zhang Liyuan, Zhang Haixin, et al. Extraction method of sublateral canal distribution information based on UAV remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 205-214. (in Chinese with English abstract)
[26] 汪沛,羅錫文,周志艷,等. 基于微小型無人機(jī)的遙感信息獲取關(guān)鍵技術(shù)綜述[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18): 1-12. Wang Pei, Luo Xiwen, Zhou Zhiyan, et al. Key technology for remote sensing information acquisition based on micro UAV [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 1-12. (in Chinese with English abstract)
[27] Romero M, Luo Y, Su B, et al. Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management[J]. Computers & Electronics in Agriculture, 2018, 147: 109-117.
[28] Hassan‐Esfahani L, Torres-Rua A, Jensen A, et al. Spatial root zone soil water content estimation in agricultural lands using bayesian‐based artificial neural networks and high‐resolution visual, nir, and thermal imagery[J]. Irrigation & Drainage, 2017, 66(2): 273-288.
[29] 韓文霆,邵國敏,馬代健,等. 大田玉米作物系數(shù)無人機(jī)多光譜遙感估算方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(7):134-143. Han Wenting, Shao Guomin, Ma Daijian, et al. Estimating method of crop coefficient of maize based on UAV multispectral remote sensing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 134-143. (in Chinese with English abstract)
[30] 侯瓊,李建軍,王海梅,等. 春玉米適宜土壤水分下限動(dòng)態(tài)指標(biāo)的確定[J]. 灌溉排水學(xué)報(bào),2015,34(6):1-5. Hou Qiong, Li Jianjun, Wang Haimei, et al. Dynamic indexes of water-saving irrigation based on maize growth characteristics[J]. Journal of Irrigation and Drainage, 2015, 34(6): 1-5. (in Chinese with English abstract)
[31] Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications[J]. Canadian Journal of Remote Sensing, 1996, 22(3): 229-242.
[32] 牛慶林,馮海寬,楊貴軍,等. 基于無人機(jī)數(shù)碼影像的玉米育種材料株高和 LAI 監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(5):73-82. Niu Qinglin, Feng Haikuan, Yang Guijun, et al. Monitoring plant height and leaf area index of maize breeding material based on UAV digital images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 73-82. (in Chinese with English abstract)
[33] 白莉萍,隋方功,孫朝暉,等. 土壤水分脅迫對(duì)玉米形態(tài)發(fā)育及產(chǎn)量的影響[J]. 生態(tài)學(xué)報(bào),2004,24(7):1556-1560. Bai Liping, Sui Fanggong, Sun Zhaohui, et al. Effects of soil water stress on morphological development and yield of maize[J]. Acta Ecologica Sinica, 2004, 24(7): 1556-1560. (in Chinese with English abstract)
[34] 郝樹榮,郭相平,王文娟. 不同時(shí)期水分脅迫對(duì)玉米生長(zhǎng)的后效性影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(7):71-75.Hao Shurong, Guo Xiangping, Wang Wenjuan. After effects ofwater stress on corn growth at different stages[J]. Transactionsof the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 71-75. (in Chinese with English abstract)
[35] Bannari A, Morin D, Bonn F, et al. A review of vegetation indices[J]. Remote Sensing Reviews, 1995, 13(1): 95-120.
Crop coefficient estimation method of maize by UAV remote sensing and soil moisture monitoring
Zhang Yu1,2, Zhang Liyuan3, Zhang Huihui4, Song Chaoyang5, Lin Guanghua6, Han Wenting1,7※
(1.712100,; 2.100049,; 3.712100,; 4.80526,; 5.712100,; 6.710000,; 7.712100,)
The rapid and accurate acquisition of evapotranspiration in field crops is an urgent issue to be solved in crop evapotranspiration researches. In this paper, the feasibility of estimating crop coefficient by unmanned aerial vehicle (UAV) remote sensing in maize under different water stresses was analyzed. The experiment was conducted in Zhaojun town Experimental Station in Dalate Qi, Inner Mongolia. Full irrigation (TR1) was designed as 50% of field water holding capacity based on previous research results and local situation, which was considered as the base. The water stress condition (80% of the base soil moisture) was designed in the fast growth stage for TR2-TR4. The 82% and 43% of the base soil moisture were also designed for the late growth stage of TR2 and TR3, respectively. In addition, in the middle growth stage, the water stress with 65% of the base soil moisture was designed for TR4. The maize was planted on May 20th,2017. The whole growth period lasted 110 days. The sprinkled irrigation was used for the experiment. The experimental area was partitioned into 4 regions for the different treatments. In each region, a squared area with the side length of 12 m was chosen for plant height and leaf area index measurements. The measurements were carried out every 2-5 days. Soil moisture at 30-cm depth was determined in each area as the surface soil moisture. Meanwhile, climatic parameters such as precipitation, air temperature, relative humidity and so on were collected from local meteorological station. Crop coefficient was calculated by dual crop coefficient method proposed by FAO56 based on meteorological parameters and plant height. The UAV multispectral monitoring system was to obtain the canopy spectral vegetation index of field maize under different water stress conditions. The UAS images were obtained at the same time with the plant height measurement. The simple ratio index was calculated based on reflectivity of red and near infrared band. The dynamic change of leaf area index, soil moisture, simple ratio index, and crop coefficient was analyzed. The results showed that the water stress heavily affected the leaf area index, the simple ratio index and the surface soil moisture was decreased in the late growth stage of maize, and the crop coefficient was low in the late growth stage. The correlation analysis between the crop coefficient, simple ratio index, leaf area index and surface soil moisture showed that the surface soil moisture had the highest correlation with the crop coefficient for the treatment of TR1, TR2 and TR4 but the leaf area index was highly correlated with the crop coefficient in the TR3. By stepwise regression analysis, the 3-variable model had the highest accuracy with the adjusted determination coefficient of 0.63, root mean square error of 0.21 and the normalized root mean square of error of 25.16%. The validation showed the determination coefficient of 0.60, root mean square error of 0.21 and the normalized root mean square of error of 23.35%. It indicated that the 3-variable model was well to estimate crop coefficient. The results provide a method support for crop coefficient estimation by UAV.
soil moisture; stresses; unmanned aerial vehicle; crop coefficient; simple ratio index; leaf area index
2018-05-24
2018-11-10
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403203);楊凌示范區(qū)產(chǎn)學(xué)研用協(xié)同創(chuàng)新重大項(xiàng)目(2018CXY-23);西北農(nóng)林科技大學(xué)學(xué)科重點(diǎn)建設(shè)項(xiàng)目(2017-C03)
張 瑜,主要從事無人機(jī)遙感與精準(zhǔn)灌溉技術(shù)研究。 Email:zhangyu16@mails.ucas.ac.cn
韓文霆,研究員,博導(dǎo),主要從事無人機(jī)遙感與精準(zhǔn)灌溉技術(shù)研究。Email:hanwt2000@126.com
10.11975/j.issn.1002-6819.2019.01.010
S152.7; V279+.2
A
1002-6819(2019)-01-0083-07
張 瑜,張立元,Zhang Huihui,宋朝陽,藺廣花,韓文霆. 玉米作物系數(shù)無人機(jī)遙感協(xié)同地面水分監(jiān)測(cè)估算方法研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):83-89. doi:10.11975/j.issn.1002-6819.2019.01.010 http://www.tcsae.org
Zhang Yu, Zhang Liyuan, Zhang Huihui, Song Chaoyang, Lin Guanghua, Han Wenting. Crop coefficient estimation method of maize by UAV remote sensing and soil moisture monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(1): 83-89. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.01.010 http://www.tcsae.org