• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一類廣義非擴(kuò)張映射的不動(dòng)點(diǎn)性質(zhì)

    2019-01-14 02:31張少勇朱鵬

    張少勇 朱鵬

    摘 要:將W.kirk最著名的結(jié)果:具有正規(guī)結(jié)構(gòu)自反的Banach空間關(guān)于非擴(kuò)張映射具有不動(dòng)點(diǎn)性質(zhì),推廣到更加一般的映射形式,即:‖T(x)-T(y)‖≤a1(t)(d(x,y))‖x-y‖+a2(t)(d(x,y))‖x-T(x)‖+a3(t)(d(x,y))‖x-T(y)‖,其中∑3i=1ai(t)≤1,且ai(t):(0,+∞)→(0,1)單調(diào)遞減, 研究了具有正規(guī)結(jié)構(gòu)自反的Banach空間關(guān)于上述映射具有不動(dòng)點(diǎn)性質(zhì)。

    關(guān)鍵詞:廣義非擴(kuò)張映射;正規(guī)結(jié)構(gòu);自反性;不動(dòng)點(diǎn)性質(zhì)

    DOI:10.15938/j.jhust.2019.05.024

    中圖分類號(hào): O177. 3

    文獻(xiàn)標(biāo)志碼: A

    文章編號(hào): 1007-2683(2019)05-0145-04

    Abstract:In this paper, the most famous result by W.kirk is that the non-expansive mapping has the fixed point property in a Banach space with normal structure reflexive is extended to a more general form of mapping,namely:‖T(x)-T(y)‖≤a1(t)(d(x,y))‖x-y‖+a2(t)(d(x,y))‖x-T(x)‖+a3(t)(d(x,y))‖x-T(y)‖, where ai(t):(0,+∞)→(0,1) monotone decreases, a reflexive Banach space X with normal structure has the fixed point property for the mapping mentioned above.

    Keywords:generalized non-expansive mapping; normal structure; reflexive; fixed point property

    0 引 言

    1912年,德國(guó)數(shù)學(xué)家Brouwer在運(yùn)用度理論在拓?fù)鋵W(xué)的基礎(chǔ)上,證明了關(guān)于連續(xù)單值映射的一個(gè)著名的不動(dòng)點(diǎn)定理[1-6]。后來(lái)Schauder, Kakutani等人又相繼對(duì)Brouwer的結(jié)果進(jìn)行推廣[7-9]。

    不動(dòng)點(diǎn)理論的研究一直都是數(shù)學(xué)研究的熱門問(wèn)題。許多年來(lái),許多數(shù)學(xué)工作者通過(guò)各種方法不斷豐富不動(dòng)點(diǎn)理論,把單值壓縮映射的不動(dòng)點(diǎn)定理推廣到多值映射的情況[10-15]。20世紀(jì)初,Banach提出了著名的Banach壓縮映射原理。Banach壓縮映射的一種自然推廣是非擴(kuò)張映射,R.de Marr得到了一個(gè)關(guān)于非擴(kuò)張映射不動(dòng)點(diǎn)理論的重要結(jié)果,它是著名的Kakutani-Marko不動(dòng)點(diǎn)定理的推廣[16-19]。此后不久,Brouwer,Kirk,Petryshyn分別討論了定義在距離空間有界閉凸集上的非擴(kuò)張映像不動(dòng)點(diǎn)存在性,將其部分結(jié)果推廣到平均非擴(kuò)張映射的情形[20]。

    1 預(yù)備知識(shí)

    本文以X表示Banach空間。

    定義1[21]? 映像T:X→X,若存在x*∈X,使得x*=T(x*),則稱x*為映像T的不動(dòng)點(diǎn)。

    定義2[22]? 若C是X的非空有界閉凸子集,T:C→C。如果是指對(duì)于x,y∈C,有‖Tx-Ty‖≤‖x-y‖,則稱T為C到其自身的非擴(kuò)張映射。

    定義3 稱Banach空間X具有不動(dòng)點(diǎn)性質(zhì)(FPP)是指定義在X每一個(gè)非空有界閉凸子集上的非擴(kuò)張自映射具有不動(dòng)點(diǎn)。稱Banach空間X具有弱不動(dòng)點(diǎn)性質(zhì)(WFPP)是指X上的每一個(gè)弱緊凸子集的非擴(kuò)張自映射具有不動(dòng)點(diǎn)。

    參 考 文 獻(xiàn):

    [1] 崔云安. Banach空間幾何理論及應(yīng)[M].北京:科學(xué)出版社,2011:31.

    [2] 陳汝棟. 不動(dòng)點(diǎn)理論及應(yīng)用[M]. 北京:國(guó)防工業(yè)出版社,2012,1:58.

    [3] 張石生. 不動(dòng)點(diǎn)理論及應(yīng)用[M]. 重慶: 重慶出版社,1984.

    [4] 姚永紅, 陳汝棟, 周海云. 非擴(kuò)張映象不動(dòng)點(diǎn)的迭代算法[J]. 數(shù)學(xué)學(xué)報(bào), 2007, 50(1): 139.

    [5] PATHAK H K, CHO Y J, KANG S M. An Application of Fixed Point Theorems in Best Approximation Theory[J]. International Journal of Mathematics & Mathematical Sciences, 2016, 21(3): 467.

    [6] CHANDOK S, KHAN M S, RAO KPR. Some Coupled Common Fixed Point Theorems for a Pair of Mappings Satisfying a Contractive Condition of Rational type Withoutmonotonicity[J]. International Journal of Mathematical Analysis, 2016, 7(9): 433.

    [7] L. C. ZENG, On the Existence of Fixed Points for Mappings of Asymptotically Nonexpansive Type[J]. J. Systems Sci. Complexity, 2004, 17: 188.

    [8] 俞鑫泰. Banach空間幾何理論[M]. 上海: 華東師范大學(xué)出版社, 1986: 1.

    [9] GOCKENBACH M S, KHAN AA. Identification of Lame Parameters in Linear Elasticity: a Fixed Point Approach[J]. Journal of Industrial & Management Optimization, 2017, 1(4): 487.

    [10]KOHLENBACH U, LEUSTEAN L. Asymptotically Nonexpansive Mappings in Uniformly Convex Hyperbolic Spaces[J]. European Mathematical Society, 2007,12: 71.

    [11]SHIMIZU T,TSKAHASHI W. Fixed Points of Multivalued Nonexpansive Mappings in Certain Convex Metric spaces[J]. Topological Methods in Nonlinear Analysis, 1996, 8:197.

    [12]ABBAS M, NAZIR T. Fixed Point of Generalized Weakly Contractive Mappings in Ordered Partial metric Spaces[J]. Fixed Point Theory and Applications, 2012, 2012(1): 1.

    [13]KOVACS L G, WALL G E.Involutory Automorphisms of Groups of Odd Order and Their Fixed Point Groups[J]. Nagoya Mathematical Journal, 2016, 27(1): 55.

    [14]Z GU, Y LI. Approximation Methods for Common Fixed Points of Meannonexpansive Mapping in Banach Spaces[J]. Fixed Point Theory & Applications, 2008, 2008(1): 471.

    [15]梁嘉寧, 黎永錦. 平均非擴(kuò)張映射的三種迭代收斂的等價(jià)性[J]. 內(nèi)蒙古師大學(xué)報(bào)(自然漢文版), 2011, 40(6): 575.

    [16]KIRK W A. A Fixed Point Theorem for Mappings Which Do Not Increase Distances[J]. American Mathematical Monthly, 1965, 72(9): 1004.

    [17]張石生, 黃發(fā)倫. 關(guān)于Banach空間中平均非擴(kuò)張映象的不動(dòng)點(diǎn)理論[J]. 四川大學(xué)學(xué)報(bào): 自然科學(xué)版, 1975(2): 73.

    [18]GARCIA FALSET J. Stability and Fixed Point Fornonexpansive Mappings[J]. Houston Journal of Mathematics, 1994, 20(3): 842.

    [19]BETIUK-PILARSKA A,WISNICKI A. On the Suzuki Nonexpansive-Type Mappings[J]. Annals of Functional Analysis, 2013, 4(2):72.

    [20]BENAVIDES T D. A Geometrical Coefficient Implying the Fixed Point Property and Stability Results[J]. Houston Journal of Mathematics, 1996 , 22(4): 835.

    [21]J M Wang, LL Chen, Y A CUI. The Fixed Point Property of Mean Nonexpansive Mapping[J]. Journal of Natural Science of Heilongjiang University, 2006, 23(3): 298.

    [22]Z ZUO. Fixed Point Theorems for Meannonexpansive Mappings in Banach Spaces[J]. Abstract and Applied Analysis, 2014, 2014(13): 1.

    [23]BETIUK-PILARSKA A, BENAVIDES T D. The Fixed Point Property for Some Generalized Nonexpansive Mappings and Renormings[J]. Journal of Mathematical Analysis and Applications, 2015, 429(2): 800.

    [24]KIM JK,PATHAK R P, DASHPUTRE S, et al. Fixed Point Approximation of Generalized Nonexpansive Mappings in Hyperbolic Spaces[J]. International Journal Journal of Mathemtics and Methematical Sciences, 2015, 2015:6.

    [25]KRIK W A. Non-expansive Mappings in Product Spaces, Set-valued Mappings and K Uniform Rotundity// Browder F E. Nonlinear Functional Analysis and Its Application. Amer. Math. Soc. Symp. Pure Math, 1986, 45:51.

    (編輯:王 萍)

    日喀则市| 荆州市| 锡林郭勒盟| 仁化县| 巢湖市| 华蓥市| 台南市| 五家渠市| 云和县| 温泉县| 安达市| 巫溪县| 思茅市| 两当县| 额尔古纳市| 顺昌县| 瑞昌市| 长泰县| 阿城市| 根河市| 阜城县| 奎屯市| 长宁县| 邳州市| 肥乡县| 白沙| 宁强县| 大新县| 扶余县| 新河县| 夹江县| 沭阳县| 黄陵县| 醴陵市| 任丘市| 洪湖市| 怀集县| 潞城市| 沈阳市| 南木林县| 潍坊市|