馬麗娜,梁 揚(yáng),黃小毛,宗望遠(yuǎn),詹廣超
?
基于三星齒輪換向原理的自動(dòng)升降挖坑裝置研制
馬麗娜1,2,梁 揚(yáng)1,黃小毛1,2,宗望遠(yuǎn)1,2※,詹廣超1
(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2. 農(nóng)業(yè)部長(zhǎng)江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)
手提式挖坑裝置鉆頭旋轉(zhuǎn)動(dòng)力源于汽油機(jī),而鉆頭升降則需要人工手動(dòng)完成。該文基于三星齒輪換向原理設(shè)計(jì)了齒輪換向機(jī)構(gòu),通過調(diào)整換向手柄的位置,即可將汽油機(jī)單一動(dòng)力方向轉(zhuǎn)換為正反2個(gè)方向,實(shí)現(xiàn)了絲杠螺母機(jī)構(gòu)中螺母軸的正反轉(zhuǎn)。挖坑裝置工作時(shí)汽油機(jī)一部分動(dòng)力帶動(dòng)螺旋鉆頭旋轉(zhuǎn),一部分動(dòng)力經(jīng)帶傳動(dòng)機(jī)構(gòu)、齒輪換向機(jī)構(gòu)帶動(dòng)絲杠螺母升降機(jī)構(gòu)進(jìn)行往復(fù)運(yùn)動(dòng),從而實(shí)現(xiàn)了鉆頭主動(dòng)、勻速進(jìn)行挖坑作業(yè),提高了挖坑作業(yè)質(zhì)量,挖坑作業(yè)完成后,回程能夠自動(dòng)復(fù)位。自動(dòng)升降挖坑裝置在挖坑作業(yè)過程中,僅在換向時(shí)需要人工操作,手動(dòng)換向操作時(shí)間僅為2 s,占單坑作業(yè)總時(shí)間的3.5%,在挖坑作業(yè)進(jìn)給行程和復(fù)位行程中,均無需人工操作,大大降低了勞動(dòng)強(qiáng)度?;谌驱X輪換向原理的自動(dòng)升降挖坑裝置田間單次作業(yè)平均挖坑時(shí)間為57 s,平均坑深237 mm,平均坑口直徑300 mm,挖坑質(zhì)量滿足后續(xù)施肥作業(yè)要求。此外,增設(shè)換向手柄中間限位孔,防止在挖坑作業(yè)進(jìn)給過程中,鉆頭遇到較大石塊或樹根,絲杠螺母升降機(jī)構(gòu)突然卡死,暫時(shí)切斷汽油機(jī)向絲杠螺母升降機(jī)構(gòu)的動(dòng)力傳遞路徑,起到對(duì)系統(tǒng)的保護(hù)作用。
機(jī)械化;設(shè)計(jì);挖坑裝置;自動(dòng)升降;三星齒輪換向原理;挖坑升土理論;土壤堅(jiān)實(shí)度
挖坑機(jī)是一種用途廣泛、結(jié)構(gòu)簡(jiǎn)單、操作方便的挖坑整地機(jī)械,按配套動(dòng)力和連接方式不同,主要分為懸掛式[1-3]、手提式[4-8]、牽引式[9-10]和自走式[11-12]4類。受山地、丘陵、溝壑等復(fù)雜地形行駛條件的限制,普遍采用手提式挖坑機(jī)進(jìn)行果樹栽植、橡膠定植、小樹移植和挖穴施肥等的作業(yè)[13]。手提式挖坑機(jī)鉆頭旋轉(zhuǎn)動(dòng)力源于汽油機(jī),而鉆頭升降則需要人工手動(dòng)完成,不僅勞動(dòng)強(qiáng)度高,而且導(dǎo)致鉆頭挖坑進(jìn)給速度不能精確控制,挖坑質(zhì)量較差,此外,挖坑作業(yè)過程中汽油機(jī)振動(dòng)劇烈[14-15],可操作性差。
為解決汽油機(jī)只能單一方向轉(zhuǎn)動(dòng)的問題,實(shí)現(xiàn)手提式挖坑機(jī)自動(dòng)升降,馬麗娜等[16]采用了開合螺母機(jī)構(gòu),能夠?qū)崿F(xiàn)手提式挖坑機(jī)鉆頭自動(dòng)且勻速進(jìn)給進(jìn)行挖坑作業(yè),但是挖坑作業(yè)完成后,需要通過螺母撥片打開開合螺母,手動(dòng)提起支撐架連同汽油機(jī)及鉆頭至初始位置,無法實(shí)現(xiàn)回程自動(dòng)復(fù)位。王警梁等[17-18]基于曲柄滑塊運(yùn)動(dòng)原理,曲柄在汽油機(jī)的帶動(dòng)下勻速轉(zhuǎn)動(dòng),鉆頭在滑塊的牽引作用下上下往復(fù)運(yùn)動(dòng),實(shí)現(xiàn)了鉆頭的自動(dòng)升降,但是無法保證鉆頭勻速進(jìn)給,此外結(jié)構(gòu)較龐大。
本文基于三星齒輪換向基本原理設(shè)計(jì)一款自動(dòng)升降挖坑裝置,通過調(diào)整換向手柄的位置,即可將汽油機(jī)單一動(dòng)力方向轉(zhuǎn)換為正反2個(gè)方向,實(shí)現(xiàn)絲杠螺母機(jī)構(gòu)中螺母軸的正反轉(zhuǎn),從而帶動(dòng)鉆頭主動(dòng)、勻速進(jìn)行挖坑作業(yè),挖坑作業(yè)完成后,回程能夠自動(dòng)復(fù)位。挖坑作業(yè)進(jìn)給行程和復(fù)位行程均無需人工操作,達(dá)到降低勞動(dòng)強(qiáng)度,提高挖坑作業(yè)質(zhì)量的目的。
如圖1所示,該自動(dòng)升降挖坑裝置由汽油機(jī)、螺旋鉆頭、帶傳動(dòng)機(jī)構(gòu)、三星齒輪換向機(jī)構(gòu)、絲杠螺母升降機(jī)構(gòu)和機(jī)架組成。
圖1 自動(dòng)升降挖坑裝置結(jié)構(gòu)簡(jiǎn)圖
挖坑裝置工作時(shí)汽油機(jī)一部分動(dòng)力帶動(dòng)螺旋鉆頭旋轉(zhuǎn),一部分動(dòng)力經(jīng)帶傳動(dòng)機(jī)構(gòu)、齒輪換向機(jī)構(gòu)帶動(dòng)絲杠螺母機(jī)構(gòu)中螺母正反向旋轉(zhuǎn),實(shí)現(xiàn)螺母沿絲杠上下運(yùn)動(dòng),從而帶動(dòng)鉆頭的主動(dòng)進(jìn)給進(jìn)行挖坑作業(yè),作業(yè)完成后回程自動(dòng)復(fù)位。
基于果園挖坑施肥技術(shù)要求[19],擬定坑徑為300 mm,挖坑深度要求為250 mm。一般鉆頭螺旋葉片直徑小于實(shí)際坑徑,螺旋葉片直徑1=0.94。擬定鉆頭升角=20°,鉆頭導(dǎo)程=0.8=240 mm。因此螺旋葉片長(zhǎng)度取500 mm。而鉆頭螺旋頭數(shù)與坑徑大小有關(guān),一般直徑小于300 mm的鉆頭采用單頭型,直徑在350~600 mm之間的鉆頭采用雙頭型,因此挖坑鉆頭采用單頭型螺旋。
2.2.1 鉆頭轉(zhuǎn)速的確定
挖坑裝置鉆頭旋轉(zhuǎn)速度與進(jìn)給量是影響挖坑裝置工作性能的2個(gè)重要因素。挖坑裝置的工作效率隨著轉(zhuǎn)速的增加而增加,但鉆頭轉(zhuǎn)速過高會(huì)加劇機(jī)器的振動(dòng)[20],加速鉆頭切削刀刃的磨損,同時(shí)也會(huì)增加樣機(jī)工作過程中的阻力,導(dǎo)致機(jī)器消耗功率增加。鉆頭轉(zhuǎn)速過低,則會(huì)降低挖坑作業(yè)效率,而且鉆頭無法產(chǎn)生足夠的離心力將土壤排出坑外造成堵塞。
根據(jù)挖坑升土理論[21],為保證鉆頭順利升土,鉆頭的轉(zhuǎn)速必須大于土壤堵塞臨界轉(zhuǎn)速n。土壤堵塞臨界轉(zhuǎn)速n為
式中0為鉆頭半徑,m,取0=0.15 m;2為土壤內(nèi)摩擦系數(shù),較硬土壤2=1;1為土壤與鋼的摩擦角,(°),較硬土壤1=31°;為鉆頭螺旋升角,(°),取=20°;為鉆頭半徑處的質(zhì)點(diǎn)速度與水平面的夾角,(°)。
將上述系數(shù)代入式(1),為保證順利升土,鉆頭轉(zhuǎn)速>n=87.04 r/min。而一般鉆頭轉(zhuǎn)速=1.2~2n。
為避免土壤堵塞,鉆頭工作時(shí)土壤垂直運(yùn)動(dòng)速度v必須大于臨界速度v,即v>v,臨界速度v為
式中為進(jìn)給量,mm/r,取=5 mm/r;為土壤膨脹系數(shù),一般取1.5;為角速度,rad/s。
土壤垂直運(yùn)動(dòng)速度v為
式中0為鉆頭半徑,m,取0=0.15 m;為系數(shù),=1-tan/tan;為系數(shù),=+2+0.4為系數(shù),=(1+0.4+0.4+0.16)+為系數(shù),/0ω;為系數(shù),=tan為系數(shù),=cot(1);為系數(shù)。
為避免土壤發(fā)生堵塞,令v>v,鉆頭轉(zhuǎn)速>130 r/min。綜上所述,鉆頭轉(zhuǎn)速取150 r/min。
2.2.2 鉆頭所需轉(zhuǎn)矩的確定
鉆頭是挖坑裝置主要工作部件,工作時(shí)汽油機(jī)帶動(dòng)螺旋鉆頭旋轉(zhuǎn)將土壤切碎并將其向上拋送至坑外。鉆頭轉(zhuǎn)動(dòng)需一定的驅(qū)動(dòng)轉(zhuǎn)矩以克服工作過程中的阻力。
鉆頭所需驅(qū)動(dòng)轉(zhuǎn)矩由鉆頭端部工作所需轉(zhuǎn)矩、切削土壤所需轉(zhuǎn)矩以及升運(yùn)土壤所需轉(zhuǎn)矩三部分組成[22-23]。
鉆頭端部工作所需轉(zhuǎn)矩
切削土壤所需轉(zhuǎn)矩
升運(yùn)土壤所需轉(zhuǎn)矩
由式(4)~(6)得鉆頭所需驅(qū)動(dòng)轉(zhuǎn)矩
M
總
=
M
尖
+
M
刀
+
M
升
(7)
式中1為鉆尖單位刃長(zhǎng)切削阻力,N/cm,堅(jiān)實(shí)土壤1=3 300 N/m;2為土壤阻力系數(shù),N/m,堅(jiān)實(shí)土壤2=3 600 N/m;1為鉆尖切削阻力系數(shù),N/m2,堅(jiān)實(shí)土壤1=9.3×104N/m2;2為土壤切削阻力系數(shù),N/m2,堅(jiān)實(shí)土壤2=2.55×105N/m2;1為鉆尖直徑,mm;為螺旋頭數(shù);0為刀片名義前角,(°);1為鉆尖半徑,mm;2為土流內(nèi)半徑,mm;為作用在刃口上的土壤切土阻力與水平面的夾角,堅(jiān)實(shí)土壤=52°~58°。
2.2.3 汽油機(jī)所需功率計(jì)算
汽油機(jī)工作所需功率為
式中k為儲(chǔ)備系數(shù),考慮到汽油機(jī)一部分動(dòng)力經(jīng)傳動(dòng)部件到絲杠螺母副帶動(dòng)升降機(jī)構(gòu)運(yùn)動(dòng),取k=2;為挖坑裝置傳動(dòng)效率,取=0.97。
由式(4)~(8)可得=1.848 kW。因此,選用山東華盛中天生產(chǎn)的1E48FG型汽油機(jī),其額定功率為2.2 kW,額定轉(zhuǎn)速為7500 r/min,配套使用減速比為37:1的直齒輪兩級(jí)減速器,可以滿足挖坑裝置工作需要。
自動(dòng)升降式挖坑裝置中傳動(dòng)部件包括帶傳動(dòng)和齒輪傳動(dòng)。確定汽油機(jī)機(jī)型后,首先進(jìn)行帶傳動(dòng)部件尺寸參數(shù)設(shè)計(jì)。經(jīng)設(shè)計(jì)計(jì)算,得到帶傳動(dòng)尺寸參數(shù)如表1所示。
表1 帶傳動(dòng)主要參數(shù)
2.4.1 工作原理
圖2為三星齒輪換向機(jī)構(gòu)原理圖,齒輪1主動(dòng),齒輪4從動(dòng),齒輪2和齒輪3是中間過度齒輪,齒輪2、3、4安裝在支撐板5上,支撐板5可繞齒輪4的軸線回轉(zhuǎn)。圖2a中,動(dòng)力傳遞路徑為1-3-2-4,從動(dòng)齒輪4和主動(dòng)齒輪1旋轉(zhuǎn)方向相反;圖2b中,主動(dòng)齒輪1與從動(dòng)齒輪4之間無中間傳動(dòng),從動(dòng)齒輪4靜止;圖2c中,動(dòng)力傳遞路徑為1-2-4,從動(dòng)齒輪4和主動(dòng)齒輪1旋轉(zhuǎn)方向相同。換向手柄6與支撐板5固連為一體,通過撥動(dòng)換向手柄6即可轉(zhuǎn)動(dòng)支撐板5,進(jìn)而切換動(dòng)力傳遞路徑,從而改變了從動(dòng)齒輪4的旋轉(zhuǎn)方向。
2.4.2 結(jié)構(gòu)參數(shù)設(shè)計(jì)
基于上述三星齒輪換向原理,設(shè)計(jì)了該自動(dòng)升降式挖坑裝置的齒輪換向機(jī)構(gòu),如圖3所示。主要包括主動(dòng)齒輪、從動(dòng)齒輪、第一過度齒輪、第二過度齒輪、換向手柄、齒輪組安裝架、后支撐板。第一過度齒輪、第二過度齒輪和從動(dòng)齒輪共同安裝在齒輪組安裝架上,換向手柄與齒輪組換向架鉸接,換向手柄可繞轉(zhuǎn)軸豎直方向旋轉(zhuǎn)。支撐板上有左、中、右3個(gè)限位孔,以限制換向手柄的位置。換向齒輪[24-26]尺寸參數(shù)如表2所示。
1.主動(dòng)齒輪 2.第二過度齒輪 3.第一過度齒輪 4.從動(dòng)齒輪 5.支撐板 6.換向手柄
1.主動(dòng)齒輪 2.第二過度齒輪 3.第一過度齒輪 4.從動(dòng)齒輪 5.螺母軸 6.中間限位孔 7.換向手柄 8.右限位孔 9.左限位孔 10.轉(zhuǎn)軸 11.后支撐板 12.齒輪組安裝架
表2 換向齒輪主要參數(shù)
挖坑裝置不工作時(shí),換向手柄通過中間限位孔進(jìn)行限位;此時(shí)主動(dòng)齒輪與過度齒輪之間未嚙合,從動(dòng)齒輪不工作,鉆頭空轉(zhuǎn)。當(dāng)進(jìn)行挖坑作業(yè)時(shí),抬起并順時(shí)針撥動(dòng)換向手柄,帶動(dòng)齒輪組安裝架順時(shí)針旋轉(zhuǎn)一定角度,落下?lián)Q向手柄,并通過左位限位孔進(jìn)行限位;此時(shí),從動(dòng)齒輪轉(zhuǎn)向與主動(dòng)齒輪轉(zhuǎn)向相同,從動(dòng)齒輪帶動(dòng)螺母軸順時(shí)針旋轉(zhuǎn),實(shí)現(xiàn)鉆頭向下進(jìn)給,進(jìn)行挖坑作業(yè)。當(dāng)挖坑作業(yè)完成后,抬起并逆時(shí)針撥動(dòng)換向手柄,帶動(dòng)齒輪組安裝架逆時(shí)針旋轉(zhuǎn)一定角度,落下?lián)Q向手柄,并通過右位限位孔進(jìn)行限位;此時(shí),從動(dòng)齒輪轉(zhuǎn)向與主動(dòng)齒輪轉(zhuǎn)向相反,從動(dòng)齒輪帶動(dòng)螺母軸逆時(shí)針旋轉(zhuǎn),鉆頭向上提起。當(dāng)完成挖坑作業(yè)后,將換向手柄撥至中位,以備后續(xù)挖坑作業(yè)。
2.5.1 工作原理
如圖4所示,該挖坑裝置中絲杠螺母升降機(jī)構(gòu)主要包括絲杠機(jī)構(gòu)和螺母機(jī)構(gòu)。如圖4a所示,絲杠機(jī)構(gòu)包括絲杠、導(dǎo)軌、滑塊、前支撐板等;如圖4b所示,螺母機(jī)構(gòu)包括螺母軸、鎖緊螺母、端蓋、角接球觸軸承、從動(dòng)齒輪、齒輪組安裝架、后支撐板等。由圖4b可知,螺母軸為一空心軸,從動(dòng)齒輪通過矩形鍵與螺母軸連接,齒輪組安裝架、后支撐板分別通過軸承與螺母軸連接,并通過端蓋進(jìn)行軸向定位。螺母左端車有外螺紋,通過鎖緊螺母對(duì)從動(dòng)齒輪左側(cè)進(jìn)行軸向定位。
1.絲杠 2.支撐架 3.螺母軸 4.滑塊 5.導(dǎo)軌 6.螺母軸 7.鎖緊螺母 8.鍵 9.從動(dòng)齒輪 10.端蓋 11.齒輪組支撐架 12.角接觸球軸承 13.后支撐板
絲杠固定在機(jī)架上不動(dòng),螺母軸在從動(dòng)齒輪的帶動(dòng)下沿絲杠正反向轉(zhuǎn)動(dòng),帶動(dòng)前、后支撐架沿導(dǎo)軌上下移動(dòng),從而實(shí)現(xiàn)了鉆頭的自動(dòng)升降。
2.5.2 絲杠結(jié)構(gòu)參數(shù)設(shè)計(jì)
絲杠強(qiáng)度應(yīng)滿足公式max/W≤[],其中彎曲截面系數(shù)W=π3/32,最大彎矩max=/4。根據(jù)絲杠受力分析,計(jì)算出其最小許用直徑≥16 mm。挖坑裝置在工作過程中,鉆頭可能遇到較大石頭或樹根,出現(xiàn)突然卡死,扭矩增加。此外挖坑作業(yè)過程中,鉆頭振動(dòng)也會(huì)影響絲杠強(qiáng)度。因此需考慮1.5倍的安全系數(shù),即≥24 mm。
擬定鉆頭進(jìn)給量為5 mm/r[16],由于裝置傳動(dòng)比為1:1,所以取絲杠導(dǎo)程為5 mm/r。綜上所述,選取絲杠規(guī)格為Tr24×5。
按照上述方案完成樣機(jī)試制加工,如圖5所示,進(jìn)行樣機(jī)田間挖坑性能試驗(yàn),以驗(yàn)證該挖坑裝置的作業(yè)性能和作業(yè)質(zhì)量。
圖5 樣機(jī)實(shí)物圖
2018年3月27日,在華中農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)科技試驗(yàn)基地,選擇含水率分別為20.47%和24.17%的2處地塊,同時(shí)在華中農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)科技試驗(yàn)田,選擇含水率為19.93%的1處地塊分別進(jìn)行樣機(jī)挖坑性能試驗(yàn)。所需工具包括卷尺、量杯、便簽紙等。兩試驗(yàn)區(qū)域內(nèi)土質(zhì)不同,試驗(yàn)基地里土壤呈黃棕色,較為堅(jiān)實(shí),而試驗(yàn)田內(nèi)土壤呈紅棕色,土質(zhì)較為松軟。采用五點(diǎn)法取樣,采用TJSD-750土壤堅(jiān)實(shí)度測(cè)定儀測(cè)得3處挖坑作業(yè)區(qū)域距離地表100 mm處的土壤堅(jiān)實(shí)度值[25],如表3所示。
表3 三地塊距離地表100 mm處土壤堅(jiān)實(shí)度
試驗(yàn)開始前將油箱汽油加到一定高度,待試驗(yàn)結(jié)束后,使用量杯將汽油再加至此高度,所加汽油量即試驗(yàn)過程中所消耗的汽油量。采用最大油門工作狀態(tài)運(yùn)行樣機(jī),鉆頭挖坑深度為300 mm。在不同土質(zhì)條件下分別進(jìn)行10次挖坑試驗(yàn),記錄作業(yè)完成后坑深、坑徑、最大拋土半徑、坑壁情況、有效挖坑時(shí)間等數(shù)據(jù),如表4所示。
土壤含水率使用水分測(cè)定儀進(jìn)行測(cè)量,分別取100 g不同土質(zhì)土壤樣品,測(cè)定其含水量。
表4 挖坑試驗(yàn)數(shù)據(jù)
1)樣機(jī)能夠?qū)崿F(xiàn)主動(dòng)進(jìn)給挖坑作業(yè)且回程自動(dòng)復(fù)位,操作方便,單次作業(yè)平均有效挖坑時(shí)間為57 s,挖坑效率較高;平均坑深237 mm,平均坑口直徑300 mm,挖坑質(zhì)量滿足施肥作業(yè)要求;平均最大拋土半徑為631 mm,拋土效果良好,方便土壤回填。
2)相同土質(zhì)含水率較高(含水率24.17%)時(shí),由于土壤黏性變大,坑中排出土壤堆積在坑口周圍,導(dǎo)致鉆頭拋土半徑變??;土壤含水率影響了其堅(jiān)實(shí)度,使得有效挖坑作業(yè)時(shí)間縮短,樣機(jī)工作效率提高。
3)土壤含水率基本相同時(shí),松軟土質(zhì)平均坑深為219 mm,鉆頭升土效果較差,坑中底部土壤沒有排出,導(dǎo)致坑深較淺;松軟土質(zhì)作業(yè)過程中,鉆頭擺幅較大,導(dǎo)致平均坑口直徑為312 mm,坑口直徑較大;但是松軟土質(zhì)相對(duì)堅(jiān)實(shí)土質(zhì)工作效率明顯提高,平均有效挖坑用時(shí)僅為51 s。
針對(duì)滑道式(見圖6a)、開合螺母式(見圖6b)和三星齒輪換向式3種挖坑裝置,開展田間作業(yè)性能對(duì)比試驗(yàn)。在華中農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)科技試驗(yàn)田選擇3處1 m×1 m區(qū)域,利用3種挖坑裝置在同一1 m×1 m區(qū)域內(nèi)進(jìn)行1次挖坑作業(yè),重復(fù)試驗(yàn)3次。采用秒表記錄挖坑作業(yè)時(shí)間,采用IMADA DST-500N型推拉力計(jì)測(cè)試挖坑進(jìn)給行程和復(fù)位行程中人工負(fù)荷,試驗(yàn)結(jié)果如表5所示。
圖6 其他形式挖坑裝置
表5 3種樣機(jī)作業(yè)性能試驗(yàn)數(shù)據(jù)
對(duì)比分析表5可知,由于鉆頭挖坑作業(yè)進(jìn)給行程下降速度與復(fù)位行程上升速度相同,鉆頭回程速度較慢,導(dǎo)致三星齒輪換向式挖坑裝置單坑作業(yè)時(shí)間57 s。雖然作業(yè)時(shí)間相對(duì)滑道式和開合螺母式較長(zhǎng),但是作業(yè)效率仍能夠滿足后續(xù)果樹栽植、小樹移植和施肥等作業(yè)需求?;朗脚c開合螺母式挖坑裝置挖坑作業(yè)完成后,鉆頭回程均為手動(dòng)提起,單坑作業(yè)人工平均負(fù)荷分別為216.8 N和245.8 N,勞動(dòng)強(qiáng)度大。而三星齒輪換向式挖坑裝置僅在換向時(shí)需要手動(dòng)操作,換向操作時(shí)間2 s,占單坑作業(yè)時(shí)間的比例僅為3.5%;挖坑作業(yè)進(jìn)給行程和復(fù)位行程中,三星齒輪換向式挖坑裝置均無需人工操作,從而降低了勞動(dòng)強(qiáng)度。
1)基于三星齒輪換向原理,設(shè)計(jì)了齒輪換向機(jī)構(gòu),通過調(diào)整換向手柄的位置,即可改變動(dòng)力傳遞路徑,從而實(shí)現(xiàn)將汽油機(jī)單一動(dòng)力方向切換為雙向。
2)增設(shè)換向手柄中間限位孔,不僅能夠在挖坑作業(yè)完成時(shí),切斷汽油機(jī)向絲杠螺母升降機(jī)構(gòu)的動(dòng)力傳遞路徑,以備后續(xù)作業(yè),而且在挖坑作業(yè)進(jìn)給過程中,當(dāng)鉆頭遇到較大石塊或樹根時(shí),切斷汽油機(jī)向絲杠螺母升降機(jī)構(gòu)的動(dòng)力傳遞路徑,以防絲杠螺母升降機(jī)構(gòu)突然卡死,起到對(duì)系統(tǒng)的保護(hù)作用。
3)三星齒輪換向式挖坑裝置田間試驗(yàn)單次挖坑作業(yè)平均挖坑時(shí)間為57 s,平均坑深237 mm,平均坑口直徑300 mm,挖坑質(zhì)量滿足后續(xù)施肥作業(yè)要求。
4)三星齒輪換向式挖坑裝置僅在換向時(shí)需要手動(dòng)操作,換向操作時(shí)間2 s,占單坑作業(yè)時(shí)間的3.5%,而在挖坑作業(yè)進(jìn)給行程和復(fù)位行程中,均無需人工操作,降低了勞動(dòng)強(qiáng)度。
[1] 屈錦衛(wèi). 挖坑機(jī)主軸的有限元分析及其懸掛機(jī)構(gòu)的動(dòng)力學(xué)仿真[D]. 哈爾濱:東北林業(yè)大學(xué),2007.
Qu Jinwei. Finite Element Analysis of the Main Shaft of Excavator and Dynamic Simulation of Its Suspension Mechanism[D]. Harbin: Northeast Forestry University, 2007. (in Chinese with English abstract)
[2] 趙忠松. 挖坑機(jī)鉆頭有限元分析和懸掛機(jī)構(gòu)運(yùn)動(dòng)仿真[D]. 楊凌:西北農(nóng)林科技大學(xué),2010.
Zhao Zhongsong. Finite Element Analysis of Drill Bit of Excavator and Motion Simulation of Suspension Mechanism[D]. Yangling: Northwest A&F University, 2010. (in Chinese with English abstract)
[3] 李肖婷. 3WY-40多功能液壓微型挖坑機(jī)設(shè)計(jì)分析及研究[J].農(nóng)業(yè)技術(shù)與裝備,2016(323):68-71.
Li Xiaoting. Design research and analysis on 3WY-40 multi-function hydraulic micro hole digger[J]. Agricultural Technology and Equipment, 2016(323): 68-71. (in Chinese with English abstract)
[4] 符翔. 一種農(nóng)業(yè)挖坑機(jī)械裝置:205284090U[P]. 2016-06-08.
[5] Vosniak J, Lopes E D S, Fiedler N C, et al. Demanded physical effort and posture in semi mechanical hole-digging activity at forestry plantation[J]. Scientia Forestalis/Forest Sciences, 2010, 88: 589-598.
[6] 趙彩華. 手提式植樹挖坑機(jī):105474833A[P]. 2016-04-13.
[7] Silva E P D, Minette L J, Souza A P D. Evaluation an ergonomic of the activity of semi mechanized pit for the planting of eucalyptus[J]. Scientia Forestalis/Forest Sciences, 2007(76): 77-83.
[8] 揚(yáng)洲,陳朝海,段潔利,等. 果園施肥用便攜式電動(dòng)挖穴機(jī)性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):25-31.
Yang Zhou, Chen Chaohai, Duan Jieli, et al. Performance test of hand-held electric hole-digger for fertilization in orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 25-31. (in Chinese with English abstract)
[9] 王有剛. 新型全液壓連續(xù)式挖坑機(jī)研究[D]. 北京:北京林業(yè)大學(xué),2012.
Wang Yougang. Research on New Type Full Hydraulic Continuous Excavator[D]. Beijing: Beijing Forestry University, 2012. (in Chinese with English abstract)
[10] John Gardner. Vehicle mounted post hole digger:6155359[P]. 2000-12-05.
[11] 陸建,繆明,盧少穎,等. 車載植樹挖坑機(jī)研究設(shè)計(jì)與試驗(yàn)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2014,35(6):44-47,60.
Lu Jian, Miao Ming, Lu Shaoying, et al. Design and test research of digging machine for vehicle planting[J]. Journal of Chinese Agricultural Mechanization, 2014, 35(6): 44-47, 60. (in Chinese with English abstract)
[12] 渠聚鑫. 新型自走式植樹挖坑機(jī)的研究[D]. 北京:中國(guó)林業(yè)科學(xué)研究院,2009.
Qu Juxin. Research on New Self-propelled Tree Planting and Excavating Machine[D]. Beijing: Chinese Academy of Forestry Sciences, 2009. (in Chinese with English abstract)
[13] 于建國(guó),屈錦衛(wèi). 國(guó)內(nèi)外挖坑機(jī)的研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 農(nóng)機(jī)化研究,2006,28(12):45-46.
Yu Jianguo, Qu Jinwei. Research situation and development trend of earth auger in home and abroad[J]. Journal of Agricultural Mechanization Research, 2006, 28(12): 45-46. (in Chinese with English abstract)
[14] 楊有剛,劉迎春,呂新民. 挖坑機(jī)扭轉(zhuǎn)振動(dòng)特征的動(dòng)力學(xué)分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(9):53-55.
Yang Yougang, Liu Yingxin, Lü Xinmin. Dynamic analysis of torsional vibration for a hole digger[J]. Transactions of the Chinese Society of Agricultural Machinery, 2005, 36(9): 53-55. (in Chinese with English abstract)
[15] 李耀明,徐立章,陳航. 4YS-600型樹木移栽機(jī)鏟刀臂的改進(jìn)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(3):60-63.
Li Yaoming, Xu Lizhang, Chen Hang. Improved design of spade arm in 4YS-600 tree transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 60-63. (in Chinese with English abstract)
[16] 馬麗娜,王警梁,宗望遠(yuǎn),等. 手提式挖坑機(jī)開合螺母式自動(dòng)進(jìn)給機(jī)構(gòu)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(4):25-31.
Ma Li’na, Wang Jingliang, Zong Wangyuan, et al. Design and experiment of automatic feed mechanism of the portable digging machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(4): 25-31. (in Chinese with English abstract)
[17] 王警梁. 自動(dòng)進(jìn)給挖坑機(jī)設(shè)計(jì)與參數(shù)化研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2016.
Wang Jingliang. Design and Parametric Research of Automatic Feed Excavator[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese with English abstract)
[18] Zong Wangyuan, Wang Jingliang, Huang Xiaomao, et al. Development of a mobile powered hole digger for orchard tree cultivation using a slider-crank feed mechanism[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(3): 48-56.
[19] 尹如春. 綠化樹木施肥技術(shù)[J]. 現(xiàn)代農(nóng)業(yè)科技,2012,570(4):232-233.
Yin Ruchun. Techniques for fertilizing tree trees[J]. Modern Agricultural Science and Technology, 2012, 570(4): 232-233. (in Chinese with English abstract)
[20] 張居敏,賀小偉,夏俊芳,等. 高茬秸稈還田耕整機(jī)功耗檢測(cè)系統(tǒng)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(18):38-46.
Zhang Jumin, He Xiaowei, Xia Junfang, et al. Design and field experiment of power consumption measurement system for high stubble returning and tillage machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 38-46. (in Chinese with English abstract)
[21] 卓鳳英. 挖坑機(jī)[M]. 北京:中國(guó)林業(yè)出版社,1989.
[22] 茅也冰,王乃康,鮑際平,等. 3WS-5型手提式挖坑機(jī)整機(jī)主要技術(shù)參數(shù)的確定[J].北京林業(yè)大學(xué)學(xué)報(bào),1991,13(增刊2):291-298.
Mao Yebing, Wang Naikang, Bao Jiping, et al. Essential parameters for 3WS-5 portable digger[J]. Journal of Beijing Forestry University, 1991, 13(Supp.2): 291-298. (in Chinese with English abstract)
[23] 馬巖. 植樹挖坑機(jī)坑形控制與挖坑阻力計(jì)算方法研究[J].動(dòng)力學(xué)與控制學(xué)報(bào),2007,5(3):267-270.
Ma Yan. Study on pit-shaping control of tree planting machinery and computational method of pit-digging resistance[J]. Journal of Dynamics and Control, 2007, 5(3): 267-270. (in Chinese with English abstract)
[24] 李耀明,田進(jìn),趙湛,等. 聯(lián)合收割機(jī)行走底盤變速箱齒輪的疲勞分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(4):106-110.
Li Yaoming, Tian Jin, Zhao Zhan, et al. Fatigue analysis of gears in combine harvester chassis gearbox[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(4): 106-110. (in Chinese with English abstract)
[25] 陶棟材,孫松林,盧月娥,等. 耕整機(jī)齒輪傳動(dòng)箱的優(yōu)化設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2001,32(2):118-120.
Tao Dongcai, Sun Songlin, Lu Yuee, et al. Optimization design of the gearbox of the whole gearbox[J]. Transactions of the Chinese Society of Agricultural Machinery, 2001, 32(2): 118-120. (in Chinese with English abstract)
[26] 孫良,趙勻,姚佳明,等. 非勻速空間行星輪系寬窄行分插機(jī)構(gòu)分析與優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(10):41-46.
Sun Liang, Zhao Yun, Yao Jiaxian, et al. Analysis and optimization of wide-narrow distance transplanting mechanism with spatial planetary gear train of variable speed transmission[J]. Transactions of the Chinese Society of Agricultural Machinery, 2012, 43(10): 41-46. (in Chinese with English abstract)
Development of automatic lifting digging machine based on three-star gear reversing principle
Ma Li’na1,2, Liang Yang1, Huang Xiaomao1,2, Zong Wangyuan1,2※, Zhan Guangchao1
(1.430070; 2.430070,)
Limited by the driving conditions of hilly and mountainous terrain, portable digging machine is widely used for fruit tree planting, rubber planting, small tree transplanting and fertilization. The spiral drilling bit of the digging machine can rotate under the drive of the gasoline engine, which can only rotate in one direction. While the lifting and lowering of the spiral drilling bit needs to be done manually, which not only has high labor intensity, but also leads to the inaccurate control of the feed speed and poor digging quality. In addition, the vibration of the gasoline engine is intense and the maneuverability of the digging operation is poor. In order to solve the problem that the gasoline engine can only rotate in one direction, a kind of automatic lifting digging machine was designed based on the three-star gear reversing principle. The automatic lifting digging machine consisted of a gasoline engine, a spiral drill bit, a belt drive mechanism, a three-star gear reversing mechanism, a screw nut lifting mechanism and a frame. By adjusting the position of the reversing handle, the number of meshing gears of the three-star gear reversing mechanism changed, so the single power direction of the gasoline engine could be converted into clockwise and counterclockwise directions. Then the forward and backward rotation of the nut shaft of the screw nut lifting mechanism could be realized. When the digging machine was working, one part of the power of the gasoline engine drove the spiral drill bit to rotate, and the other part of the power drove the screw nut lifting mechanism to move back and forth. Thus the spiral drill bit could feed uniformly. When the digging operation was completed, the spiral drill bit could be reset automatically. In the process of digging, manual operation was required only when changing direction. The average effective digging time of single operation was 57 s. While the manual reversing operation time was only 2 s, accounting for 3.5% of the total time of single pit operation. In the feed stroke and reset stroke of the digging operation, no manual operation would be needed, so it greatly reduced the labor intensity. The average hole depth was 237 mm, and the average hole diameter was 300mm. The digging quality met the requirements of the subsequent fertilization operation. The average maximum throwing radius was 631 mm, and the throwing effect was good which was convenient for soil backfilling. In addition, the middle limit hole of the reversing handle was added. When the spiral drill bit encountered large stones or tree roots during the feed stroke of digging operation, the power transmission path from the gasoline engine to the screw nut lifting mechanism could be temporarily cut off, in order to prevent the screw nut lifting mechanism from getting stuck. So the middle limit hole played a protective role for the whole system. This research also provides design reference for small digging machine to realize automatic lifting, which greatly reduce the labor intensity and improve the digging operation quality.
mechanization; design;digging machine; automatic lifting; three-star gear reversing principle; digging and lifting soil theory; soil hardness
馬麗娜,梁 揚(yáng),黃小毛,宗望遠(yuǎn),詹廣超. 基于三星齒輪換向原理的自動(dòng)升降挖坑裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):46-51. doi:10.11975/j.issn.1002-6819.2018.24.006 http://www.tcsae.org
Ma Li’na, Liang Yang, Huang Xiaomao, Zong Wangyuan, Zhan Guangchao. Development of automatic lifting digging machine based on three-star gear reversing principle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 46-51. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.24.006 http://www.tcsae.org
2018-07-06
2018-11-20
中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金(2662016QD044)
馬麗娜,講師,主要從事農(nóng)業(yè)裝備設(shè)計(jì)、分析及試驗(yàn)研究。 Email:sunnylina@163.com
宗望遠(yuǎn),教授,博士生導(dǎo)師,主要從事現(xiàn)代農(nóng)業(yè)裝備設(shè)計(jì)與測(cè)控技術(shù)研究。Email:zwy@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2018.24.006
S221
A
1002-6819(2018)-24-0046-06
農(nóng)業(yè)工程學(xué)報(bào)2018年24期