趙德金,楊立軍, 2,邱文聰,王?倩,劉?桐
?
激光焊等離子體光電信號(hào)時(shí)域與自相關(guān)域分析
趙德金1,楊立軍1, 2,邱文聰1,王?倩3,劉?桐1
(1. 天津大學(xué)材料科學(xué)與工程學(xué)院,天津 300350;2. 天津大學(xué)天津市現(xiàn)代連接技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300350;3. 天津職業(yè)大學(xué)電信學(xué)院,天津 300410)
為了驗(yàn)證無源電探針檢測裝置對(duì)于等離子體電信號(hào)檢測的有效性,基于等離子鞘層效應(yīng)制作無源電探針檢測裝置,并利用高速攝像裝置搭建了等離子體光電信號(hào)同步采集檢測系統(tǒng),在時(shí)域和自相關(guān)域內(nèi)分別對(duì)A304不銹鋼激光深熔焊過程中采集的等離子體電信號(hào)波形曲線和等離子體高度變化曲線對(duì)比分析,結(jié)果表明:等離子體光、電信號(hào)波動(dòng)特征與波動(dòng)周期基本一致,且波動(dòng)周期為1.620~3.667,ms,利用高速攝像信號(hào)驗(yàn)證了無源電探針檢測等離子體波動(dòng)規(guī)律的有效性.
激光深熔焊;光電信號(hào);等離子體;時(shí)域;自相關(guān)域
在激光深熔焊接過程中必然伴隨小孔的形成和等離子體的產(chǎn)生.小孔和熔池的動(dòng)態(tài)行為幾乎完全決定了焊接接頭的質(zhì)量[1].若想獲得質(zhì)量可靠的焊縫,必須對(duì)激光深熔焊過程中的小孔及熔池的動(dòng)態(tài)變化進(jìn)行深入研究.但在激光深熔焊過程中,一方面,位于金屬材料內(nèi)部的小孔尺寸較小,現(xiàn)有的實(shí)驗(yàn)觀察手段難以對(duì)小孔的運(yùn)動(dòng)情況及孔內(nèi)等離子體進(jìn)行檢測;另一方面,焊接熔池尺寸受激光光斑直徑限制,且與高速高溫的等離子體相互作用,在實(shí)際生產(chǎn)過程中難以對(duì)熔池進(jìn)行觀察,焊接過程的監(jiān)測十分困難.在激光深熔焊時(shí),由于等離子體對(duì)激光的吸收、折射、散射作用,降低了激光到達(dá)工件表面的能量密度,導(dǎo)致熔池中與溫度有關(guān)的蒸發(fā)、對(duì)流等物理現(xiàn)象發(fā)生劇烈變化,小孔內(nèi)部的力學(xué)平衡和形貌隨之發(fā)生變化,從而導(dǎo)致小孔中噴發(fā)出的等離子體相應(yīng)也發(fā)生了變化.反之,當(dāng)?shù)入x子體的形態(tài)、波動(dòng)特征或熱力學(xué)參數(shù)發(fā)生變化后,高溫等離子體對(duì)小孔壁的對(duì)流輻射效應(yīng)及對(duì)小孔壁的摩擦力的大小及方向會(huì)發(fā)生變化,這樣又會(huì)導(dǎo)致小孔發(fā)生波動(dòng).研究表明小孔的穩(wěn)定性與等離子體的波動(dòng)具有密切的聯(lián)系[2-5].等離子體的研究對(duì)于了解小孔行為、提高焊接質(zhì)量具有重要意義.
等離子體會(huì)輻射光、聲波,在一定條件下產(chǎn)生電場[6].很多學(xué)者對(duì)等離子體中包含的與焊接過程有關(guān)的信息進(jìn)行了研究.李妍坤等[7]通過高速攝像拍攝光致等離子體形態(tài)的變化發(fā)現(xiàn)等離子體的高度呈周期性波動(dòng),且波動(dòng)頻率約為530,Hz.段愛琴等[8]研究發(fā)現(xiàn)1Cr18Ni9Ti不銹鋼激光焊中等離子體存在蒸發(fā)、激增、分離和消散這一周期性變化過程,且變化頻率為1~3,kHz.Szymanski等[9]檢測激光等離子體光信號(hào)發(fā)現(xiàn)等離子體光信號(hào)的功率譜在0.5~4.0,kHz會(huì)出現(xiàn)特征峰,特征峰的寬度與大小和焊接條件有關(guān).Wang等[10]利用高速攝像對(duì)激光深熔焊過程中的等離子體波動(dòng)狀態(tài)進(jìn)行研究,實(shí)驗(yàn)得出等離子體的波動(dòng)周期范圍為450~600,μs.
目前,高速攝像作為一種比較成熟的光信號(hào)檢測手段被廣泛用于等離子體的研究,但高速攝像成本較高、采集條件較為苛刻.本文利用自主開發(fā)制作的無源電探針檢測裝置檢測等離子體的電信號(hào),這種檢測方法新穎,并且具有對(duì)設(shè)備要求低、采集穩(wěn)定性好、采集頻率高的優(yōu)點(diǎn).通過在時(shí)域和自相關(guān)域?qū)Σ煌附訁?shù)下電探針采集到的電信號(hào)與同步采集的高速攝像圖片進(jìn)行對(duì)比分析,驗(yàn)證了無源探針電信號(hào)研究等離子體波動(dòng)的可行性.
實(shí)驗(yàn)利用無源電探針和高速攝像同步采集等離子體光、電信號(hào),如圖1所示.高速攝像的拍攝方向與焊接方向垂直,拍攝頻率為3,kHz.無源電信號(hào)采集裝置由金屬探針、信號(hào)調(diào)理電路、數(shù)據(jù)采集卡、計(jì)算機(jī)構(gòu)成.信號(hào)采樣頻率為100,kHz.檢測電信號(hào)先經(jīng)過調(diào)理電路進(jìn)行去噪、放大和濾波后輸入數(shù)據(jù)采集卡進(jìn)行存儲(chǔ)、處理.
在激光深熔化焊接過程中,激光與金屬材料強(qiáng)烈作用形成小孔,從小孔內(nèi)噴出的等離子體接觸到金屬探針時(shí),由于帶電粒子質(zhì)量不同而導(dǎo)致粒子存在速度差,在探針表面形成等離子鞘層.雖然小孔噴發(fā)的等離子體數(shù)量與金屬蒸氣數(shù)量相比較少,研究表明焊接過程的光致等離子體處于局部熱力學(xué)平衡(LTE)狀態(tài)[11-14].因此,電探針采集的電壓值可表示為[11-12]
???(1)
式中:為玻爾茲曼常數(shù);為電子電量;e為離子質(zhì)量;為等離子體溫度;i為電子質(zhì)量.
焊接參數(shù)與焊縫形貌如表1所示.研究采用額定功率為2,kW的Nd∶YAG激光器(JK2003SM),透鏡焦距為160,mm,激光光斑直徑為0.6,mm且焦點(diǎn)位于工件表面下方1,mm處,焊接材料為A304不銹鋼,工件尺寸為300,mm×80,mm×3,mm.
圖1?等離子體光電信號(hào)同步采集系統(tǒng)
表1?焊接參數(shù)
Tab.1?Welding parameters
激光深熔焊接過程中,能量密度很高的激光加熱金屬材料,形成小孔.孔內(nèi)噴發(fā)的等離子的波動(dòng)與小孔的周期性運(yùn)動(dòng)有關(guān).Seto等[15]指出小孔的波動(dòng)會(huì)影響等離子體高度的波動(dòng).在本研究中,定義等離子體未斷開和未出現(xiàn)較大縮頸部分作為其有效高度,如圖2所示.等離子體圖片像素大小為38×120,等離子體高度用像素表示.
圖3為=1,250,W、=8,mm/s時(shí)激光深熔焊光電信號(hào)對(duì)比分析圖.為方便分析電信號(hào)的電壓波動(dòng)曲線,本文對(duì)采集的信號(hào)取絕對(duì)值.當(dāng)電探針檢測到的電信號(hào)處于波峰時(shí),等離子體處于充分?jǐn)U張狀態(tài),等離子體的高度較大,如圖3中的編號(hào)3、11和18等;當(dāng)電信號(hào)處于波谷時(shí),對(duì)應(yīng)等離子體處于充分收縮狀態(tài),如圖3中的編號(hào)8、15和19等.如圖3所示,當(dāng)?shù)入x子體高度值從大到小變化時(shí),電信號(hào)電壓值由高到低,如圖3中的編號(hào)3~8等;而等離子體高度值從小到大變化時(shí),電信號(hào)電壓曲線變化規(guī)律與之一致,如圖3中的編號(hào)8~11等.由式(1)可知探針檢測的電信號(hào)電壓值與溫度有關(guān).激光深熔焊過程中,小孔內(nèi)產(chǎn)生大量的等離子體,孔內(nèi)的等離子體通過逆韌致輻射吸收激光能量導(dǎo)致等離子體的溫度上升,小孔內(nèi)壓力增大,當(dāng)小孔內(nèi)壓力和溫度達(dá)到臨界值時(shí),等離子體從孔內(nèi)噴出,在這個(gè)噴發(fā)周期中等離子體高度最大,溫度最高,因此探針采集電信號(hào)電壓值最大;隨著等離子體的噴出,小孔內(nèi)的壓力和等離子體溫度逐漸減小,等離子體高度和電信號(hào)電壓值也逐漸降低.
將多組實(shí)驗(yàn)參數(shù)下無源電探針檢測的電信號(hào)電壓||-圖與等離子體圖進(jìn)行對(duì)比,如圖3、4所示.電信號(hào)||曲線圖與等離子體曲線圖升降趨勢基本一致,因此電信號(hào)的波動(dòng)特征與等離子體形態(tài)波動(dòng)特征基本相同.
編號(hào)12345678910111213141516171819202122232425262728293031 t/ms0.000.330.671.001.331.672.002.332.673.003.333.674.004.334.675.005.335.676.006.336.677.007.337.678.008.338.679.009.339.6710.0 高速攝像
上述光、電信號(hào)在時(shí)域內(nèi)的對(duì)比結(jié)果表明可以用電信號(hào)來描述等離子體波動(dòng)特征.為進(jìn)一步了解光、電信號(hào)對(duì)等離子體波動(dòng)特征描述的一致性,在更長的時(shí)間段內(nèi)利用自相關(guān)系數(shù)分析方法對(duì)等離子體的波動(dòng)周期進(jìn)行研究.
目前,時(shí)域和頻域是普遍使用的信號(hào)處理域.但信號(hào)采集系統(tǒng)中的無用信號(hào)對(duì)于有用信號(hào)的干擾較大,難以準(zhǔn)確分析信號(hào)的特征.上述研究表明無源電信號(hào)的波動(dòng)具有周期性,自相關(guān)域是一種描述信號(hào)基本特征的處理域,能夠有效分析信號(hào)中的周期性特征.而等離子體光電信號(hào)特征比較復(fù)雜,對(duì)其進(jìn)行自相關(guān)系數(shù)分析可以排除干擾信號(hào)的影響.自相關(guān)系數(shù)()表示為
(2)
(3)
(4)
式中:()為處理的信號(hào);為信號(hào)平均值;為時(shí)間;為延遲時(shí)間;Cov(·)和Var(·)分別為協(xié)方差和方差函數(shù).當(dāng)取值為信號(hào)的周期時(shí),自相關(guān)系數(shù)()為峰值.
圖4?等離子體高度與等離子體電信號(hào)對(duì)比
Fig 4?Comparison of the electrical signal and the height of plasma
自相關(guān)系數(shù)的求取過程是:首先,選擇一定時(shí)間長度的原始信號(hào)0,然后取一個(gè)延后時(shí)間長度為的信號(hào)1,根據(jù)式(2)與0求自相關(guān)系數(shù).以此類推,取延后時(shí)間長度分別得到2、3等,根據(jù)式(2)與0求自相關(guān)系數(shù).如果為該信號(hào)的周期,則式(2)求得自相關(guān)系數(shù)較大,曲線出現(xiàn)峰值;如果取時(shí)間長度為2,、3,等,也會(huì)得到自相關(guān)系數(shù)的峰值,但會(huì)相對(duì)比為的峰值小,且為遞減過程.由于干擾信號(hào)隨機(jī)無規(guī)律的特點(diǎn),其自相關(guān)系數(shù)較小.在由式(2)得到的自相關(guān)曲線中,第1個(gè)最大峰值對(duì)應(yīng)的是信號(hào)的主要波動(dòng)周期,是信號(hào)本質(zhì)性的波動(dòng)特征,不會(huì)包含隨機(jī)性出現(xiàn)的干擾信號(hào).
在表1中的各組焊接參數(shù)下,隨機(jī)選取25,ms的信號(hào)計(jì)算等離子體電信號(hào)和等離子體高度的自相關(guān)系數(shù),結(jié)果如圖5和圖6所示.每個(gè)自相關(guān)系數(shù)()-曲線圖都存在一個(gè)()值較大的波峰,其對(duì)應(yīng)的值就是該時(shí)間段內(nèi)等離子體電信號(hào)或等離子體高度的波動(dòng)周期的大?。鐖D5(a)和6(a)中光、電信號(hào)自相關(guān)曲線第一個(gè)最大峰值對(duì)應(yīng)的分別為1.620,ms和1.667,ms,二者基本一致.
圖5?等離子體電信號(hào)自相關(guān)系數(shù)
圖6?等離子體高度自相關(guān)系數(shù)
在自相關(guān)域內(nèi)對(duì)采集信號(hào)進(jìn)行分析,1為等離子體電信號(hào)的波動(dòng)周期;2為等離子體高度的波動(dòng)周期,由式(5)計(jì)算1與2的相對(duì)差別,結(jié)果如表2所示.
???(5)
表2?自相關(guān)分析出的1與2的差別
Tab.2?Difference between T1 and T2 in autocorrelation analysis
文獻(xiàn)[7-10, 16]指出,等離子體形態(tài)波動(dòng)頻率介于數(shù)百至數(shù)千赫茲,本實(shí)驗(yàn)中得到的等離子體波動(dòng)頻率也處于此范圍內(nèi).在自相關(guān)域分析得到的等離子體電信號(hào)波動(dòng)周期1和等離子體高度波動(dòng)周期2之間的差別最大為8.30%,.考慮到儀器精度和測量誤差的影響,可以認(rèn)為電信號(hào)波動(dòng)與等離子體高度的波動(dòng)周期基本一致.在自相關(guān)域中,利用高速攝像信號(hào)驗(yàn)證了無源電探針檢測等離子體波動(dòng)規(guī)律的有效性.
(1) 通過等離子體電信號(hào)與同步采集的高速攝像圖片時(shí)域分析發(fā)現(xiàn)等離子體電信號(hào)的波動(dòng)與等離子體高度波動(dòng)具有一致性.
(2) 在自相關(guān)域分別對(duì)等離子體電信號(hào)和等離子體高度的波動(dòng)周期分析對(duì)比,得出兩種信號(hào)波動(dòng)周期基本一致,波動(dòng)周期范圍為1.620~3.667,ms.
(3) 等離子體電信號(hào)和等離子體高度的波動(dòng)趨勢和波動(dòng)周期具有一致性,利用無源探針檢測等離子體波動(dòng)特征具備可行性.
[1] 龐盛永. 激光深熔焊接瞬態(tài)小孔和運(yùn)動(dòng)熔池行為及相關(guān)機(jī)理研究[D]. 武漢:華中科技大學(xué),2011.
Pang Shengyong. A Study on the Transient Keyhole and Moving Weld Pool Behaviors and Mechanisms of Deep Penetration Laser Welding[D]. Wuhan:Huazhong University of Science and Technology,2011(in Chinese).
[2] Pang S,Chen X,Zhou J,et al. 3D transient multiphase model for keyhole,vapor plume,and weld pool dynamics in laser welding including the ambient pressure effect[J]. Optics & Lasers in Engineering,2015,74:47-58.
[3] Chen X,Pang S,Shao X,et al. Sub-microsecond vapor plume dynamics under different keyhole penetration regimes in deep penetration laser welding [J]. Journal of Physics D Applied Physics,2017,50(20):205601.
[4] Fabbro R,Slimani S,Coste F,et al. Study of keyhole behaviour for full penetration Nd-Yag CW laser welding [J]. Journal of Physics D Applied Physics,2005,38(12):1881.
[5] Katayama S,Kawahito Y,Mizutani M. Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects[J]. Physics Procedia,2010,5:9-17.
[6] 陳武柱. 激光焊接與切割質(zhì)量控制[M]. 北京:機(jī)械工業(yè)出版社,2010.
Chen Wuzhu. Quality Control of Laser Welding and Cutting[M]. Beijing:Machinery Industry Press,2010(in Chinese).
[7] 李妍坤,鄒江林,牛建強(qiáng). 不銹鋼CO2激光焊接等離子體行為特性實(shí)驗(yàn)研究[J]. 應(yīng)用激光,2012,32(3):180-183.
Li Yankun,Zou Jianglin,Niu Jianqiang,et al. Experimental study on plasma characteristics in CO2laser welding of stainless steel[J]. Applied Laser,2012,32(3):180-183(in Chinese).
[8] 段愛琴,陳?俐,王亞軍,等. CO2激光焊接不銹鋼光致等離子體動(dòng)態(tài)特性分析[J]. 焊接學(xué)報(bào),2005,26(11):17-20.
Duan Aiqin,Chen Li,Wang Yajun,et al. Dynamic behavior of plasma in CO2laser welding of stainless steel [J]. Transactions of the China Welding Institution,2005,26(11):17-20(in Chinese).
[9] Szymanski Z,Hoffman J,Kurzyna J. Plasma plume oscillations during welding of thin metal sheets with a CW CO2laser[J]. Journal of Physics D:Applied Physics,2000,34(2):189-199.
[10] Wang Jun,Wang Chunming,Meng Xuanxuan,et al. Study on the periodic oscillation of plasma/vapor induced during high power fiber laser penetration welding[J]. Optics & Laser Technology,2012,44(1):67-70.
[11] Bi Chao,Yang Lijun,Xu Wenhao. An electrical detection of the fluctuating plasma of laser welding with a passive probe[J]. Journal of Physics D:Applied Physics,2012,45(38):385202-385207.
[12] 邱文聰,楊立軍,劉?桐,等. 激光深熔焊等離子體波動(dòng)特征光電信號(hào)分析[J]. 中國激光,2018,45(4):0402001
Qiu Wencong,Yang Lijun,Liu Tong,et al. Analysis of optic-electrical signals of plasma fluctuation characteristic in laser deep penetration welding[J]. Chinese J Lasers,2018,45(4):0402001(in Chinese).
[13] Griem H R. Principle of Plasma Spectroscopy[M]. Cambridge:Cambridge University Press,1997.
[14] Griem H R. Plasma Spectroscopy[M]. New York,USA:Mc Graw-Hill Publishing,1964.
[15] Seto N,Katayama S,Matsunawa A. High-speed simultaneous observation of plasma and keyhole behavior during high power CO2laser welding:Effect of shielding gas on porosity formation[J]. Journal of Laser Applications,2000,12(6):245-250.
[16] Kim J D,Kim Y H,Oh J S. Diagnostics of laser-induced plasma in welding of aluminum alloy[J]. Key Engineering Materials,2004,261/262/263:1671-1676.
(責(zé)任編輯:王新英)
Time Domain and Autocorrelation Analysis of Optic-Electrical Signals of Plasma in Laser Welding
Zhao Dejin1,Yang Lijun1, 2,Qiu Wencong1,WANG Qian3,Liu Tong1
(1.School of Materials Science and Engineering,Tianjin University,Tianjin 300350,China;2.Tianjin Key Laboratory of Advanced Joining Technology,Tianjin University,Tianjin 300350,China;3.College of Electronic and Information Engineering,Tianjin Vocational Institute,Tianjin 300410,China)
In order to verify the effectiveness of the passive electrical probe detection device in the detection of electrical signals of plasma. A passive electrical probe based on the principle of plasma sheaths and a high-speed CCD camera were used to detect the plasma electrical signals and record the plasma shape in A304 stainless steel YAG laser welding,respectively.The electrical signals and plasma plume height curves were analyzed in time and autocorrelation domains.The results show that the fluctuation characteristic and fluctuation period of electrical signal are consistent with those of optical signals,with their fluctuation period ranging from 1.620 ms to 3.667 ms.So,the high-speed camera signals are used to verify the validity of the passive probe for detecting the fluctuation of plasma.
laser penetration welding;optical and electrical signal;plasma;time domain;autocorrelation domain
10.11784/tdxbz201801094
TK448.21
A
0493-2137(2019)02-0211-06
2018-01-25;
2018-03-26.
趙德金(1993—??),男,碩士研究生,525964737@qq.com.
楊立軍,yljabc@163.com.
國家自然科學(xué)基金資助項(xiàng)目(51175374);天津市自然科學(xué)基金資助項(xiàng)目(16JCZDJC38700).
the National Natural Science Foundation of China(No.,51175374) and the Natural Science Foundation of Tianjin,China(No.,16JCZDJC38700).
天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版)2019年2期