江蘇省昆山開發(fā)區(qū)晨曦小學(xué) 楊天溪
提升小學(xué)生的數(shù)學(xué)發(fā)散思維應(yīng)該從三個(gè)方面入手:首先,教師要保證在教學(xué)時(shí)充分激發(fā)學(xué)生的聯(lián)想能力,用形象化的教學(xué)方式、舉例式的教學(xué)方式開闊學(xué)生的眼界,增強(qiáng)學(xué)生的聯(lián)想能力。其次,教師也可以通過引導(dǎo)性的教學(xué)方式,讓學(xué)生自己形成思考的習(xí)慣,從而在不斷的訓(xùn)練中獲得能力的提升。最后,教師還可以通過引導(dǎo)學(xué)生進(jìn)行實(shí)踐,在實(shí)踐中培養(yǎng)學(xué)生的動(dòng)腦能力,進(jìn)而讓學(xué)生逐漸掌握良好的思維映射。
為了鍛煉小學(xué)生的發(fā)散思維,首先要確保小學(xué)生對(duì)基礎(chǔ)概念有一個(gè)形象化的認(rèn)識(shí),這種形象化的認(rèn)識(shí)是學(xué)生能夠全面看待問題、全面認(rèn)識(shí)知識(shí)的關(guān)鍵。形象化教學(xué)包括許多內(nèi)容,例如教師借助PPT、多媒體、電子白板進(jìn)行展示,確保學(xué)生產(chǎn)生直觀的平面視覺。在這一過程中,學(xué)生通過視覺捕捉到的信息要比教師單純性地講述要更加豐富一些,正是因?yàn)檫@些豐富的信息能夠刺激學(xué)生大腦,學(xué)生在認(rèn)知上要更加深刻,而深刻的印象恰恰是學(xué)生學(xué)會(huì)遷移應(yīng)用的前提。
例如,教師在教學(xué)平面幾何圖形時(shí),首先向?qū)W生展示一些簡(jiǎn)單幾何圖形,教師可以說明這些圖形的基本性質(zhì),最重要的是教師還可以通過多媒體設(shè)備展示這些圖形的細(xì)節(jié),甚至包括這些圖形的變化。此外,教師還可以向?qū)W生展示這些形狀在生活中的存在,比如由生活中的山、臺(tái)歷聯(lián)想到三角形,學(xué)生還可以由輪子、太陽聯(lián)想到教師講過的圓。教師在講圓的周長(zhǎng)時(shí),為了培養(yǎng)學(xué)生的發(fā)散思維,可以讓學(xué)生自己提出一些方案來測(cè)量圓的周長(zhǎng)。例如有的學(xué)生可能會(huì)想到用皮尺繞著圓周轉(zhuǎn)一圈,如果這個(gè)圓很小,小到比你們的手掌還小怎么辦呢?于是又有學(xué)生想到,可以用線圍著小圓轉(zhuǎn)一圈,然后測(cè)量線的長(zhǎng)度。當(dāng)然,這些學(xué)生的合理聯(lián)想是他們以后解決問題的重要基礎(chǔ),這樣的思考習(xí)慣對(duì)于學(xué)生以后的成長(zhǎng)來說作用是良好的。
在小學(xué)中,許多孩子缺乏自主思維,缺乏發(fā)散性思維。這些問題的來源往往是學(xué)生習(xí)慣于教師單方面的引導(dǎo),缺乏自主思考習(xí)慣。為了培養(yǎng)學(xué)生自主思考的能力,教師應(yīng)該注重在關(guān)鍵處引導(dǎo)學(xué)生自主思考,以導(dǎo)帶學(xué),教師與學(xué)生的角色關(guān)系相對(duì)于傳統(tǒng)的課堂有所轉(zhuǎn)變。教師從原本的講者轉(zhuǎn)變?yōu)槁犝吆鸵龑?dǎo)者,在課堂上,教師可以給學(xué)生提供更多的自主學(xué)習(xí)時(shí)間和自主學(xué)習(xí)空間。當(dāng)然,這種引導(dǎo)性的教學(xué)雖然讓教師主導(dǎo)性的地位有所改變,但是以學(xué)生為中心的教學(xué)形式并不會(huì)減少教師教導(dǎo)的關(guān)鍵作用。
在啟發(fā)學(xué)生進(jìn)行思考探究的同時(shí)也一定要注意保障學(xué)生思考過程中的實(shí)際效用,小學(xué)生的理解能力、思考能力是有限的。如果教師在引導(dǎo)過程中缺乏對(duì)學(xué)生能力的預(yù)估,導(dǎo)致學(xué)生在自主學(xué)習(xí)時(shí)出現(xiàn)困難,老師應(yīng)該及時(shí)補(bǔ)充引導(dǎo),絕不能對(duì)學(xué)生不管不顧,這樣反而會(huì)對(duì)學(xué)生產(chǎn)生相反的作用。要通過引導(dǎo)學(xué)生,加強(qiáng)學(xué)生自主思考能力,擴(kuò)充學(xué)生思考維度,擴(kuò)展學(xué)生思考能力,教師需要在課堂引導(dǎo)中提出并解決一些問題:哪些地方可以讓學(xué)生自己解決?哪些地方學(xué)生無法解決?必須要教師的幫助?我們教師又該通過什么方式確認(rèn)學(xué)生對(duì)這個(gè)問題已經(jīng)理解透徹了呢?此外,即使有些東西是學(xué)生自主探究得到的,教師還是要通過總結(jié)和提問的方式確保學(xué)生已經(jīng)牢固掌握了這些知識(shí)。
例如,在學(xué)習(xí)《圖形的運(yùn)動(dòng)》時(shí),教師可以先讓學(xué)生自己拿著教具移動(dòng),自行演示軸對(duì)稱、旋轉(zhuǎn)、平移等運(yùn)動(dòng)帶來的變化,然后自行總結(jié)規(guī)律。在此過程中,學(xué)生可能會(huì)遇到困難。例如有的學(xué)生不知道從哪個(gè)方面去總結(jié)特點(diǎn),那么教師就可以通過提問引導(dǎo)的方式,讓學(xué)生進(jìn)行總結(jié)。例如,教師可以問學(xué)生:經(jīng)過軸對(duì)稱的圖形,線段的長(zhǎng)度發(fā)生變化了嗎?角度發(fā)生變化了嗎?連接前后兩個(gè)圖形相同的地方得到許多線段,這些線段是否相等呢?如果換成是平移呢?經(jīng)過平移后的圖形,線段的長(zhǎng)度發(fā)生變化了嗎?角度發(fā)生變化了嗎?連接前后兩個(gè)圖形相同的點(diǎn),得到的線段是否相等呢?當(dāng)然,如果學(xué)生能夠自行歸納、自行總結(jié),就說明學(xué)生的數(shù)學(xué)發(fā)散思維已經(jīng)很不錯(cuò)了。
引導(dǎo)性教學(xué)是讓學(xué)生在學(xué)習(xí)過程中有一定的自學(xué)成分,使得學(xué)生的思維更加開闊,對(duì)知識(shí)的理解更加全面。實(shí)際上,引導(dǎo)性教學(xué)已經(jīng)帶有了實(shí)踐性教學(xué)的特點(diǎn),但是學(xué)生在數(shù)學(xué)學(xué)習(xí)上還會(huì)有其他比較廣泛的實(shí)踐內(nèi)容,例如,教師可以讓學(xué)生在學(xué)習(xí)了相關(guān)的運(yùn)算知識(shí)之后進(jìn)行計(jì)算練習(xí),也可以讓學(xué)生現(xiàn)場(chǎng)總結(jié)計(jì)算規(guī)律或者是計(jì)算技巧。
例如,學(xué)生在學(xué)習(xí)了加法之后,教師在課堂上給出幾道例題,讓學(xué)生對(duì)這些例題進(jìn)行計(jì)算,并且鼓勵(lì)學(xué)生提出在計(jì)算過程中的疑問。教師也可以通過觀察學(xué)生的計(jì)算步驟,進(jìn)而分析學(xué)生是否存在薄弱點(diǎn)。在自我實(shí)踐中,學(xué)生逐漸獲得了計(jì)算的訓(xùn)練,進(jìn)而對(duì)運(yùn)算的過程有了新的認(rèn)識(shí),許多學(xué)生都可以尋找到適合自己的計(jì)算技巧。例如一些學(xué)生在開始計(jì)算加法的時(shí)候,總是避免不了用手指頭去數(shù),總結(jié)了自己的計(jì)算過程,學(xué)生慢慢發(fā)現(xiàn)了加法口訣的好處,于是自己慢慢就熟悉了用加法口訣計(jì)算加法,提高了計(jì)算速度。通過實(shí)際訓(xùn)練,學(xué)生的思維慢慢得到發(fā)展,許多學(xué)生題目做多了,便學(xué)會(huì)了遷移應(yīng)用,比如學(xué)生在計(jì)算小數(shù)乘法時(shí),他們會(huì)自然地聯(lián)系到以前學(xué)習(xí)過的整數(shù)乘法,自己在整數(shù)乘法中容易犯的錯(cuò)誤,在小數(shù)乘法訓(xùn)練中就可以注意避免,這就是很重要的一種發(fā)散思維,即學(xué)生可以根據(jù)過去的錯(cuò)誤預(yù)防未來的錯(cuò)誤,根據(jù)過去的知識(shí)聯(lián)系現(xiàn)在的知識(shí)。
小學(xué)生的聯(lián)想能力和想象力都是相對(duì)比較豐富的,為了能夠最大程度地幫助學(xué)生獲得發(fā)散思維,數(shù)學(xué)教師應(yīng)當(dāng)在平時(shí)教學(xué)時(shí)處處留意,如果有可以訓(xùn)練學(xué)生思維能力的地方,教師要盡量予以利用。相信通過不斷總結(jié)教學(xué)經(jīng)驗(yàn),教師能夠?qū)ふ业教嵘龑W(xué)生思維能力的更多方案。