• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A One-Dimensional Discrete Boltzmann Model for Detonation and an Abnormal Detonation Phenomenon?

    2019-01-10 06:58:34YuDongZhang張玉東AiGuoXu許愛(ài)國(guó)GuangCaiZhang張廣財(cái)andZhiHuaChen陳志華
    Communications in Theoretical Physics 2019年1期
    關(guān)鍵詞:愛(ài)國(guó)

    Yu-Dong Zhang(張玉東),Ai-Guo Xu(許愛(ài)國(guó)), Guang-Cai Zhang(張廣財(cái)),and Zhi-Hua Chen(陳志華)

    1Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China

    2Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3Center for Applied Physics and Technology,MOE Key Center for High Energy Density Physics Simulations,College of Engineering,Peking University,Beijing 100871,China

    Abstract A one-dimensional discrete Boltzmann model for detonation simulation is presented.Instead of numerical solving Navier-Stokes equations,this model obtains the information offlow field through numerical solving specially discretized Boltzmann equation.Several classical benchmarks including Sod shock wave tube,Colella explosion problem,and one-dimensional self-sustainable stable detonation are simulated to validate the new model.Based on the new model,the influence of negative temperature coefficient of reaction rate on detonation is further investigated.It is found that an abnormal detonation with two wave heads periodically appears under negative temperature coefficient condition.The causes of the abnormal detonation are analyzed.One typical cycle of the periodic abnormal detonation and its development process are discussed.

    Key words:detonation,discrete Boltzmann model,negative temperature coefficient,abnormal detonation

    1 Introduction

    Detonation is one kind violent combustion mode accompanied with a large amount of heat release within a short time.[1]It can be treated as a shock wave driven by chemical reaction and propagates with a supersonic speed.[2]Detonation is closely related to the energy use and production safety.

    In some cases,it is necessary to generate detonation waves to improve the utilization efficiency of fuels.Because detonation possesses an approximate isovolumetric characteristic during chemical reaction,it has a higher mechanical efficiency than the general combustion mode.[3]Based on the detonation mechanism,several kinds of aeroengines conception including pulse detonation engine,[4]rotating detonation engine,[5]oblique detonation ramjetin-tube,[6]etc.have been presented and well investigated recently.While in other cases,the formation of detonation should be avoided as far as possible such as in coal mines.[7]Detonation is closely related to both the industrial production and our daily life.However,there still exists much unknown for its deep formation and propagation mechanisms.[3,8]

    It has been well known that combustion and detonation are complex chemical reaction processes with various non-equilibrium behaviors including Hydrodynamic Non-Equilibrium(HNE),Thermodynamic Non-Equilibrium(TNE)and chemical reaction non-equilibrium.[9?10]For detonation research,traditional methods are mainly by using Navier-Stokes(NS)equations to describe the flow behaviour and using phenomenological reaction rate formula to describe the reaction process.[11]In addition,high resolution difference schemes are often needed to track the detonation interface and improve the numerical accuracy.[12?13]Of course,great progress has been made on the studies of detonation by the traditional method,especially in recent years.[3,9]However,NS equations themselves are not sufficient in describing the non-equilibrium effects in the reactive flow.The coefficients of viscosity and heat conduction in NS equations are generally calculated by empirical formula,such as Sutherland equation,or measured by experiments.[14?15]This method is not accurate enough when simulating the flow phenomena with strong non-equilibrium characteristics.Compared with NS equations,Boltzmann equation is more fundamental to describe the flow process.Rooted from the non-equilibrium statistic mechanics,Boltzmann equation is a mesoscale model and contains more kinetic information.By means of the Chapman-Enskog analysis,[16]a well-known multi-scale asymptotic expansion,the Euler equations can be obtained from the Boltzmann equation when the system is exactly in its local thermodynamic equilibrium state,and the NS equations can be obtained when the system linearly,in the Knudsen number,deviates from its local thermodynamic equilibrium state.However,when the system deviates much farther from its local thermodynamic equilibrium state,NS equations will not be accurate enough and fail to capture many important flow behaviors,whereas the Boltzmann equation naturally adapts to all of the above situations.

    Unfortunately,the original Boltzmann equation is too complex to be solved directly,and some attempts have been made to simplify this model,among which the Lattice Boltzmann Model(LBM)[17?20]is a typicalone. ThefirstLBM forcombustion simulation was presented by Succi in 1997.[21]Subsequently,Filippova,[22]Yamamoto,[23]Chiavazzo,[24]Chen[25]and other researchers further developed the application of LBM to combustion simulation.However,all of those previous works aim only at simulating incompressible combustion and cannot satisfy the requirements of detonation simulation which shows pronounced compressible behaviors.Recently,Xu’s group made some attempts in simulating high speed compressible flows using LBM and developed it into a kinetic modeling method to investigate non-equilibrium characteristics.[26?30]To distinguish from the LBM aiming at numerical solving partial di ff erential equations,the kinetic modeling LBM is referred to simply as discrete Boltzmann method/model(DBM).Discrete Boltzmann method now has been well developed and widely used in various complex flow simulations including compressible flows,[31]multiphase flows,[32]Rayleigh-Taylor instability,[33?34]combustion and detonation.[35?38]The new observations brought by DBM are helpful to understand the mechanisms for formation and e ff ects of shock wave,phase transition,energy transformation,and entropy increase in various complex flows. Besides by theory,results of DBM have been con firmed and supplemented by results of molecular dynamics,[39?41]direct simulation Monte Carlo[42?43]and experiment.[44]In the system containing both material interface and mechanical interface(such as shock wave and rarefaction wave),non-equilibrium characteristics have been used to recover the main feature of real distribution function,and to provide physical criteria for discriminating various interfaces. The latter has been used to design appropriate tracking schemes for various interfaces.[28,33,45?46]In recent studies,[34,47]the correlations between the various macroscopical nonuniformity and the relevant non-equilibrium strengths in systems with Rayleigh-Taylor instability and/or Richtmyer-Meshkov instability are used to probe the material mixing processes.In 2013,the first DBM for detonation was presented[35]then a series of extensions have been made.For example,the Multiple-relaxation-time DBM[38,48]and double-distribution-function DBM[36]have been developed.However,those works are all two-dimensional model and at least 16 discrete velocities are needed.[37]The calculation efficiency is much low for some cases where the main behaviors can be described by one-dimensional model.In those cases,a one-dimensional DBM model for detonation is in demand.

    Generally speaking,during a combustion process,many species of reactants and a large number of reactions are involved.For example,the combustion of CH4in air involves 53 species and 325 reactions.[49]The reaction rate varies with the special reaction paths.A detonation process may guide the reactions into different reaction chains because of the type of fuel,shock strength,premixing homogeneity,etc.Consequently,the global reaction rates show different behaviors for different conditions and may possess a non-monotonic dependence on the temperature.Although most of the reaction rates have an exponential temperature dependence and the Arrhenius model is commonly be adopted to describe the reaction rate,the phenomenon of Negative Temperature Coefficient(NTC)in reaction rate has been observed in combustion process and has drawn great attention in recent years.[9,50?51]The existence of NTC may also cause significantly special phenomena during the detonation process.However,to the authors′knowledge,possible effects of NTC on detonation have not been well studied.In 2016,we conducted a preliminary study on the effects of NTC during detonation.[37]In that work,we found that the effect of NTC during detonation is to lower the reaction rate and delay the formation of detonation wave.In this paper,we further study the characteristics of detonation under NTC based on the one-dimensional DBM.An abnormal detonation phenomenon with two wave heads is observed and carefully studied.

    2 Model and Verification

    2.1 Discrete Boltzmann Model and Chemical Reaction Rate Model

    For the one-dimensional discrete Boltzamnn model,the evolution of the distribution function fifor the discrete velocity viis governed by Eq.(1),

    The subscript i in fiindicates the index of discrete velocity vi.The variables,t and x,are the time and spatial coordinates,respectively,and τ is the relaxation parameter.is the local equilibrium distribution function taking into account the effects of chemical reaction and can be calculated by

    where ρ,u,and T are the density,velocity,and temperature,respectively.γ is the ratio of special heats,ω is the chemical reaction rate,and Q is the amount of heat release per unit mass of reactant.Theon the right-hand of Eq.(2)can be solved by the following seven equations:

    where ηiis a free parameter introduced to describe the n extra degrees of freedom corresponding to molecular rotation and/or vibration.[27]In this paper ηi= η0for i=1,2,3 and ηi=0 for i=4,5,6,7.

    From multi-scale asymptotic expansion,we know that NS equations with chemical reactions,Eqs.(10)–(12),can be deduced from Eq.(1)under the conditions of Eqs.(3)–(9).

    where P=ρT is the pressure,e=(n+1)T/2 is the internal energy density, μ = τρT and κ =cpτρT are the coefficients of viscosity and heat conduction,respectively,the constant-pressure specific heat is cp=(n+3)/2 and the specific heat ratio is γ=(n+3)/(n+1).

    Fig.1 Discrete velocity model for one-dimensional DBM.

    Table 1 Values of discrete velocities.

    In order to solve the above seven equations,at least seven velocities are needed.The discrete velocities model adopted in this paper is shown schematically in Fig.1.The corresponding values of discrete velocities are listed in Table 1 and c0is a free parameter depends on the numerical stability.

    The chemical reaction rate ω is described by

    where k is reaction rate constant and λ indicates reaction process.It has λ=0 at the beginning of the reaction and λ=1 at the end of the reaction.Tthis defined as ignition temperature and there is no reaction happens below this threshold value.

    In addition to being able to recover to NS equations with chemical reactions,DBM provides a set of non-equilibrium measurements,which is also its advantage over the traditional hydrodynamic model.The nonequilibrium quantities are represented by the difference between the moments of distribution function and its corresponding local equilibrium distribution function at a certain time.Those non-equilibrium quantities are defined as

    Another set of non-equilibrium quantities can also be defined by the kinetic center moment in a similar way.Each of those quantities re fl ects the non-equilibrium characteristic of system from a di ff erent perspective which cannot be provided by the traditional hydrodynamic model.Those non-equilibrium quantities are signi ficant around the detonation wave front because of the e ff ects of impact compression and chemical reactions.

    2.2 Model Verification

    In order to validate the new model,several typical benchmarks are carried out.Firstly,two shock wave problems,including the Sod shock tube and Colella explosion wave problem,are simulated and compared with the Riemann solutions.Then a one-dimensional self-sustainable stable detonation is simulated and compared with CJ theoretical solutions.

    (i)Sod Shock Tube Test

    Sod shock tube is a well benchmark and has been widely used to test the ability of processing discontinue for a numerical model.The initial conditions are

    (ρ,u,T)L=(1,0,1), (ρ,u,T)R=(0.125,0,0.8),(18)where the subscripts“L” and “R” indicate the left half region and right half region,respectively.Simulation is carried out under the conditions:τ=2×10?5,?x=2× 10?4,Nx=5000,?t=5× 10?6.c0=1.2 and η0=3 are chosen to ensure numerical stability.Besides,it has n=4 so that γ=1.4.The free in flow and outflow boundary conditions are adopted in left and right boundaries,respectively,which means fi,?1=fi,0=fi,1and fi,Nx+2=fi,Nx+1=fi,Nx.In order to solve the space derivation and the time derivation in Eq.(1),the second-order nonoscillatory non-free-parameter and dissipative(NND)[52]scheme and the first-order forward difference scheme are used,respectively.Figure 2 shows the comparison of the DBM results and Riemann exact solutions at t=0.22.From Fig.2 we can see that the DBM results are well consistent with the exact solutions,so the new model can well process discontinuity in the flow field.

    Fig.2 Comparisons between DBM results and exact solutions for Sod shock tube test.(a)density ρ,(b)temperature T,(c)pressure P,(d)velocity u.The solid lines and symbols are the Riemann solutions and DBM results,respectively.

    Fig.3 Comparisons between DBM results and exact solutions for Colella explosion wave test.(a)density ρ,(b)temperature T,(c)pressure P,(d)velocity u.The solid lines are Riemann solutions and symbols indicate DBM results.

    (ii)Colella Explosion Wave Test

    Colella explosion problem is another challenging test to examine the numerical stability and precision of a model.The initial conditions are

    The simulation conditions are τ=1× 10?5,?x=2× 10?3,Nx=2000,?t=5× 10?6,and n=4(i.e.,γ =1.4).Besides,it has c0=20 and η0=16 so that the calculation is stable.The boundary conditions and difference schemes are the same with those in Fig.2.Simulation results at t=0.025 are shown in Fig.3 and the exact solutions based on Riemann analysis are also plotted for comparison.The solid lines are Riemann solutions and symbols indicate DBM results.The simulations and the exact solutions are very consistent,from which we can conclude that the new DBM is applicable to simulate flows with very high ratios of temperature(up to 105).

    (iii)Self-sustainable Stable Detonation

    As the last test,a one-dimensional self-sustainable stable detonation is simulated.Considering that there is a rigid tube full of premixed combustible gas and the initial condition in this tube is set as

    Parameters are set as τ=2×10?5,?x=2×10?4,Nx=5000,?t=5×10?6,and n=4(i.e.,γ =1.4).In order to ensure the numerical stability,it has c0=2 and η0=2.The chemical reaction rate is given by Eq.(13)and k=2000.The left boundary is set as fixed wall while the right boundary is set as outflow.The difference schemes are the same with those in Fig.2.From Fig.4(a),we can see that the self-sustained detonation with a stable wave speed is formed.Then the macroscopic quantities at sound velocity surface behind the detonation wave front are compared with the CJ theoretical values.The corresponding values are shown in Table 2 and it shows that relative errors are all less than 5.43%.So,it can be concluded that the new DBM can be used to investigate the one-dimensional detonation problem.

    Fig.4 Simulation results of self-sustained stable detonation.(a)the position of von Neumann peak of pressure where the solid line is CJ theoretical solution and the symbol is DBM result.(b)the macroscopic quantities(density,temperature,velocity,and reaction process)profiles at t=0.4.

    Table 2 Comparisons between DBM results and CJ theoretical values for stable detonation.

    3 An Abnormal Detonation Induced by Negative Temperature Coefficient

    3.1 Simulation of the Abnormal Detonation

    In order to investigate the NTC of chemical reaction rate,we adopt the following formula to describe the temperature dependence of rate constant k in Eq.(13)which has been presented in Ref.[37].

    with

    where h1and h2are the peak and valley value of k,respectively.T1and T2are values of temperature corresponding to h1and h2,respectively.In this work,we set h1=2000,h2=10,T1=1.14,T2=1.45.Besides,the ignition temperature in Eq.(13)is set as Tth=1.1.The rate constant-temperature curve is shown in Fig.5.It can be clearly seen that there is an NTC interval where the reaction rate constant decreases with the increase of temperature.

    Fig.5 Relation curve of rate constant with temperature.

    Fig.6 Comparisons between(a)the normal detonation wave and(b)the abnormal detonation wave.

    Fig.7 Profiles of non-equilibrium quantities for(a)normal detonation,(b)abnormal detonation at t=0.135,(c)abnormal detonation at t=0.145,and(d)abnormal detonation at t=0.155.

    Except the chemical reaction rate and Nx=50000,other simulation conditions are all the same with those in Fig.4.Under this chemical reaction condition,an abnormal detonation phenomenon is obtained,which is shown in Fig.6(b).The normal stable detonation processes with a constant speed and a stable waveform are also shown in Fig.6(a)for comparison.For the abnormal detonation,there is no constant wave speed and the waveform changes with time periodically.Figure 6(b)gives the evolution of the waveform in one cycle.Firstly,at a certain time,a local hotspot is generated behind the wave head.Then a local detonation wave appears and develops with a speed faster than its downstream wave front.So the new formed detonation wave chases the front wave and finally the two waves merge into an over-driven detonation wave.However,the over-driven detonation wave cannot self-sustain,so the wave velocity gradually decreases until it reaches the CJ detonation wave velocity.After that,a local hotspot generates again and a new cycle begins.

    The corresponding non-equilibrium quantities?2,?3,?3,1,and ?4,2defined in Eqs.(14)–(17)are plotted in Fig.7.For the normal detonation shown in Fig.6(a),the shape of the wave front does not depend on time so the non-equilibrium characteristics around the wave front keep unchange with time.The profiles of?2,?3,?3,1,and?4,2for the normal detonation are given in Fig.7(a).It can be seen the system deviates from the equilibrium in the opposite direction at two sides of the wave front.In fact,it has been known that the nonequilibrium quantities are close to zero near the von Neumann peak point.[28,35]However,for the abnormal detonation,the pro files of non-equilibrium quantities vary with time. Figures 7(b),7(c),and 7(d)give the profiles of non-equilibrium quantities for the abnormal detonation at three typical moments.From Fig.6,we can see the wave front of the abnormal detonation is very similar to the normal detonation at t=0.135 but the pro files of non-equilibrium quantities in Fig.7(b)and those in Fig.7(a)are much di ff erent.The non-equilibrium deviations in Fig.7(b)are always in the same direction.From Figs 7(c)and 7(d)which correspond to t=0.145 and t=0.155,respectively,double wave fronts can be observed.The non-equilibrium characteristics around the back detonation wave(the left wave)is very similar to those in Fig.7(a)and the non-equilibrium characteristics around the front detonation wave(the right wave)is similar to those in Fig.7(b).In addition,the non-equilibrium strength is more significant for the abnormal detonation than the normal detonation when two wave fronts exist.

    3.2 Analysis and Discussion about the Abnormal Detonation

    In this section,we will discuss the causes of the abnormal detonation wave.For convenience,we roughly divide the reaction into three stages according to the temperature.Those three stages are denoted as S1,S2,and S3,respectively,as shown in Fig.8.The first stage(S1)is in the low temperature region but has a fast reaction rate because of NTC.The second stage(S2)has a slower reaction rate at a specific temperature range.The third stage(S3)has a fast reaction rate at high temperature and the reaction rate increases dramatically with the increment of temperature.

    Fig.8 Three stages of chemical reaction rate.

    The development of the abnormal detonation is shown in Fig.9.At t=0.12,as shown in Fig.9(a),the detonation wave is still a normal detonation followed by a long rarefaction wave region.The temperature behind the wave head has not reached the third stages(S3).So it has only the first two stages,S1 and S2,of the chemical reaction.At t=0.13,as shown in Fig.9(b),a local hotspot appears in the rarefaction wave region and the temperature in this hotspot achieves to S3,then the third stage of chemical reaction appears.Because it has a rapid reaction rate in S3,a local detonation wave is formed and developed quickly.The local detonation wave moves forward and obtains more fuel,so it continues being strengthened and has an increasing wave speed.From Fig.9(c)we can see S3 gradually widens while S2 becomes narrower.At t=0.15,the new formed detonation wave almost catches up with the front detonation wave.At this time,S2 is nearly disappeared,which can be seen from Fig.9(d).After that,two waves merge and the overdriven detonation occurs.

    The evolution of the process from overdriven detonation to the normal detonation is shown in Fig.10.Fig.10(a)shows the overdriven detonation wave at t=0.155,which has a wave speed faster than the CJ detonation.At this time,almost all of the chemical reactions occur in S3.However,overdriven detonation cannot selfsustain and rarefaction waves would gradually form behind the wave head.At t=0.165,as shown in Fig.10(b),the temperature behind the detonation wave front begins to go down due to the effect of the rarefaction waves.When the temperature goes down to the region of S2,the second stage of the chemical reaction occurs.Then the rarefaction waves behind the wave head continue growing and temperature behind the wave keeps going down.When the temperature declines to the region of S1,the first stage of reaction occurs.As more and more fuel reacts in S1 and S2 reactions occur in S3 gradually decrease,which can be seen from Figs.10(c)and 10(d).As a result,the overall reaction rate slows down.With the chemical reaction rate slows down,the detonation wave speed gradually decreases to CJ detonation wave speed.After that,a local hotspot reappears and a new local detonation wave is developed again,which means the above process is repeated.The whole process of the development of the abnormal detonation within a period can be summarized by Fig.11.

    Fig.9 Detonation waveforms at(a)t=0.155,(b)t=0.165,(c)t=0.175,and(d)t=0.18.

    Fig.10 Detonation waveforms at(a)t=0.155,(b)t=0.165,(c)t=0.175,and(d)t=0.18.

    Fig.11 Schematic diagram of development process of the abnormal detonation.

    4 Conclusion

    In this work,we present a one-dimensional discrete Boltzmann model for detonation.The validity of the new model is veri fied by three tests.The new detonation model possesses both high computational efficiency and numerical accuracy.Based on the new model,the e ff ects of negative temperature coefficient of reaction rate in a detonation are further investigated.An abnormal detonation phenomenon is presented and its development process is analyzed.It is found that the main reason for the abnormal detonation is that the chemical reaction has three stages,namely S1,S2,and S3.The first stage,S1,is in the low temperature region but has a fast reaction rate,the second stage,S2,has a slower reaction rate at a specific temperature range,and the third stage,S3,has a fast reaction rate at high temperature and the reaction rate increases dramatically with the increase of temperature.For a normal detonation,the chemical reactions occur mainly in S1 and S2.For the abnormal detonation,however,at a certain time a local hotspot is formed as a consequence of the S3.Then a new detonation with a more violent chemical reaction appears behind the old detonation wave front.The new detonation wave has a faster speed than the wave ahead,it catches up with the front wave and f inally two waves merge.Then the speed of the detonation wave begins to slow down until it reaches a CJ detonation value.After that,the local hotspot appears again and the previous process reappears.

    猜你喜歡
    愛(ài)國(guó)
    愛(ài)國(guó)豈能怕掛頭 郭亮
    愛(ài)國(guó)擁軍矢志不渝 扶危濟(jì)困不遺余力
    公民與法治(2022年5期)2022-07-29 00:48:08
    額吉教我愛(ài)國(guó)旗
    黃河之聲(2021年9期)2021-07-21 14:56:32
    用國(guó)旗上好愛(ài)國(guó)這一課
    愛(ài)祖國(guó) 愛(ài)國(guó)旗
    愛(ài)國(guó)
    愛(ài)國(guó)學(xué)·曬佳作
    愛(ài)國(guó)學(xué)·曬佳作
    愛(ài)國(guó)是心中唱不完的歌
    青年歌聲(2017年9期)2017-03-15 03:33:18
    性高湖久久久久久久久免费观看| 日韩制服骚丝袜av| 国产精品一区二区精品视频观看| 五月开心婷婷网| 在现免费观看毛片| 99热国产这里只有精品6| 秋霞伦理黄片| 免费人妻精品一区二区三区视频| 亚洲国产精品国产精品| 在线观看国产h片| 日韩熟女老妇一区二区性免费视频| 国产一级毛片在线| 国产精品女同一区二区软件| 亚洲人成电影观看| 国产一区二区三区综合在线观看| 精品亚洲乱码少妇综合久久| 精品卡一卡二卡四卡免费| 777米奇影视久久| 亚洲国产欧美一区二区综合| 18禁国产床啪视频网站| 中文字幕亚洲精品专区| av不卡在线播放| 欧美 亚洲 国产 日韩一| 色婷婷久久久亚洲欧美| av不卡在线播放| 国产精品99久久99久久久不卡 | 十八禁高潮呻吟视频| 精品第一国产精品| 亚洲精品国产一区二区精华液| 爱豆传媒免费全集在线观看| 2018国产大陆天天弄谢| 午夜激情久久久久久久| av又黄又爽大尺度在线免费看| 国产欧美日韩综合在线一区二区| 中文欧美无线码| 亚洲av中文av极速乱| 亚洲精品aⅴ在线观看| 亚洲av日韩在线播放| 日韩熟女老妇一区二区性免费视频| 一本一本久久a久久精品综合妖精| 一区二区三区激情视频| 在线观看免费高清a一片| 亚洲av男天堂| 亚洲成人免费av在线播放| 国产亚洲一区二区精品| 高清av免费在线| 国产有黄有色有爽视频| 免费在线观看完整版高清| 国产免费又黄又爽又色| 纯流量卡能插随身wifi吗| 一级a爱视频在线免费观看| 99九九在线精品视频| 欧美久久黑人一区二区| 亚洲综合色网址| 日本vs欧美在线观看视频| 街头女战士在线观看网站| 亚洲七黄色美女视频| 女人久久www免费人成看片| 赤兔流量卡办理| 午夜影院在线不卡| 亚洲国产精品国产精品| 国产乱人偷精品视频| 97在线人人人人妻| 伊人久久国产一区二区| 纯流量卡能插随身wifi吗| 日韩一区二区三区影片| 欧美精品亚洲一区二区| 侵犯人妻中文字幕一二三四区| 亚洲欧美日韩另类电影网站| 啦啦啦啦在线视频资源| 亚洲成人手机| 我的亚洲天堂| 国产一区二区在线观看av| 久久久亚洲精品成人影院| 不卡视频在线观看欧美| av在线老鸭窝| 另类精品久久| 又黄又粗又硬又大视频| 国产一区二区 视频在线| 日日撸夜夜添| 日韩人妻精品一区2区三区| 国产在线免费精品| 国产精品麻豆人妻色哟哟久久| 日韩一区二区三区影片| 欧美乱码精品一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人精品久久久久久| 另类亚洲欧美激情| 久久精品国产a三级三级三级| 国语对白做爰xxxⅹ性视频网站| 亚洲av福利一区| 国产 一区精品| 在线天堂最新版资源| 国产伦理片在线播放av一区| 亚洲精品美女久久av网站| 51午夜福利影视在线观看| 国产 一区精品| 国产一区二区三区av在线| 少妇人妻久久综合中文| 久久人人爽av亚洲精品天堂| 大片免费播放器 马上看| 最近的中文字幕免费完整| 伊人久久大香线蕉亚洲五| 晚上一个人看的免费电影| 国产精品久久久久久精品电影小说| 一区二区三区激情视频| tube8黄色片| 亚洲精品美女久久av网站| 国产黄色视频一区二区在线观看| 久久久久久久大尺度免费视频| 精品视频人人做人人爽| 亚洲av日韩精品久久久久久密 | 丁香六月天网| 国产一区二区三区综合在线观看| 一级片免费观看大全| 日韩制服骚丝袜av| 欧美日韩视频高清一区二区三区二| 99久国产av精品国产电影| 悠悠久久av| 欧美老熟妇乱子伦牲交| 一区二区日韩欧美中文字幕| 无遮挡黄片免费观看| 久久狼人影院| 一本一本久久a久久精品综合妖精| 在线观看免费视频网站a站| 久久久精品免费免费高清| 国产在线免费精品| 午夜福利网站1000一区二区三区| 色精品久久人妻99蜜桃| 成人手机av| 操美女的视频在线观看| 成人三级做爰电影| 狂野欧美激情性xxxx| 多毛熟女@视频| 精品久久蜜臀av无| 久久久久久久精品精品| 精品久久久精品久久久| 麻豆乱淫一区二区| 午夜福利视频在线观看免费| 亚洲国产精品999| 成年美女黄网站色视频大全免费| av福利片在线| 色视频在线一区二区三区| 久久久久精品性色| 亚洲av在线观看美女高潮| 国产精品久久久人人做人人爽| 久久鲁丝午夜福利片| 亚洲国产精品一区二区三区在线| 久久精品亚洲av国产电影网| 亚洲伊人久久精品综合| 我的亚洲天堂| 女性被躁到高潮视频| 婷婷成人精品国产| 精品视频人人做人人爽| 免费观看av网站的网址| 桃花免费在线播放| 视频区图区小说| 久久这里只有精品19| 久久综合国产亚洲精品| 曰老女人黄片| 丝袜喷水一区| 91精品三级在线观看| 日韩一本色道免费dvd| 桃花免费在线播放| 一级片'在线观看视频| 老司机深夜福利视频在线观看 | 免费在线观看黄色视频的| 男女高潮啪啪啪动态图| 一本大道久久a久久精品| 十八禁高潮呻吟视频| 久热这里只有精品99| 久久免费观看电影| 可以免费在线观看a视频的电影网站 | 肉色欧美久久久久久久蜜桃| 久久精品国产亚洲av高清一级| 日本wwww免费看| 日韩中文字幕视频在线看片| 国产高清国产精品国产三级| 日日摸夜夜添夜夜爱| 秋霞在线观看毛片| 在线观看免费视频网站a站| 少妇被粗大的猛进出69影院| 国产熟女欧美一区二区| 国产精品国产三级专区第一集| 国产精品国产三级专区第一集| 少妇人妻久久综合中文| 人人妻人人添人人爽欧美一区卜| 国产片特级美女逼逼视频| 国产深夜福利视频在线观看| 亚洲人成网站在线观看播放| 国产av码专区亚洲av| 香蕉国产在线看| 在线观看三级黄色| 免费观看性生交大片5| 亚洲欧美一区二区三区国产| 国产精品麻豆人妻色哟哟久久| 日韩av在线免费看完整版不卡| 久久人人爽av亚洲精品天堂| 国产色婷婷99| 又大又黄又爽视频免费| 最近2019中文字幕mv第一页| 国产在线视频一区二区| 国产精品人妻久久久影院| 亚洲欧美日韩另类电影网站| 香蕉丝袜av| 黑人猛操日本美女一级片| 欧美成人精品欧美一级黄| 亚洲成人av在线免费| 亚洲精品国产一区二区精华液| 国产精品久久久久久精品古装| 国产精品av久久久久免费| 夫妻午夜视频| 十八禁高潮呻吟视频| 一级,二级,三级黄色视频| 久久国产亚洲av麻豆专区| 搡老岳熟女国产| 91国产中文字幕| 一区二区三区乱码不卡18| 午夜免费观看性视频| 69精品国产乱码久久久| 777久久人妻少妇嫩草av网站| 成年人免费黄色播放视频| 成人国产av品久久久| 久久久久国产一级毛片高清牌| 国产精品免费视频内射| 成人亚洲欧美一区二区av| 激情五月婷婷亚洲| 国产一区有黄有色的免费视频| 十八禁人妻一区二区| 亚洲欧美一区二区三区久久| 亚洲在久久综合| 中文字幕色久视频| 黄网站色视频无遮挡免费观看| 欧美最新免费一区二区三区| 黑人欧美特级aaaaaa片| 欧美97在线视频| 国产黄频视频在线观看| 国产精品嫩草影院av在线观看| 91精品三级在线观看| 国产一区亚洲一区在线观看| 亚洲精品国产区一区二| 男女边摸边吃奶| 91精品国产国语对白视频| 美女午夜性视频免费| 成人黄色视频免费在线看| 亚洲自偷自拍图片 自拍| 欧美黄色片欧美黄色片| 夫妻午夜视频| 午夜影院在线不卡| 亚洲国产av影院在线观看| 九色亚洲精品在线播放| 国产熟女欧美一区二区| 国产成人免费无遮挡视频| 欧美黑人精品巨大| 国产97色在线日韩免费| 国产精品久久久久久精品古装| 亚洲欧美精品自产自拍| 在线观看免费高清a一片| 赤兔流量卡办理| 日本vs欧美在线观看视频| 亚洲熟女毛片儿| 中文字幕人妻丝袜制服| 国产成人免费无遮挡视频| 久久久精品免费免费高清| 日韩精品有码人妻一区| 亚洲精品中文字幕在线视频| 午夜日本视频在线| 亚洲精品日本国产第一区| 欧美日本中文国产一区发布| 久久影院123| 亚洲国产毛片av蜜桃av| 少妇人妻久久综合中文| 超碰97精品在线观看| 精品国产乱码久久久久久男人| 亚洲国产精品一区三区| 午夜福利一区二区在线看| 久久这里只有精品19| 日韩中文字幕欧美一区二区 | bbb黄色大片| 一边摸一边做爽爽视频免费| 在线看a的网站| 高清不卡的av网站| 80岁老熟妇乱子伦牲交| 啦啦啦在线观看免费高清www| 18禁观看日本| 亚洲精品自拍成人| 亚洲自偷自拍图片 自拍| 啦啦啦 在线观看视频| 欧美中文综合在线视频| 亚洲国产毛片av蜜桃av| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 亚洲av日韩在线播放| 亚洲av福利一区| 欧美精品亚洲一区二区| 制服丝袜香蕉在线| 亚洲,一卡二卡三卡| 一区二区日韩欧美中文字幕| 久久免费观看电影| 久久青草综合色| 欧美97在线视频| 国产精品 国内视频| 国产精品女同一区二区软件| 国产不卡av网站在线观看| 可以免费在线观看a视频的电影网站 | 伦理电影大哥的女人| 中文字幕最新亚洲高清| 午夜福利乱码中文字幕| 最近最新中文字幕免费大全7| 亚洲精品中文字幕在线视频| 在线观看免费日韩欧美大片| 亚洲精品成人av观看孕妇| 欧美激情高清一区二区三区 | 性高湖久久久久久久久免费观看| 黑人欧美特级aaaaaa片| 亚洲成人国产一区在线观看 | av电影中文网址| 啦啦啦 在线观看视频| 亚洲欧洲精品一区二区精品久久久 | 国产午夜精品一二区理论片| 啦啦啦在线观看免费高清www| 18禁观看日本| 街头女战士在线观看网站| 午夜激情av网站| 99精国产麻豆久久婷婷| 9191精品国产免费久久| 伦理电影大哥的女人| 欧美日韩视频高清一区二区三区二| 久久狼人影院| 大片电影免费在线观看免费| 国产又爽黄色视频| 国产精品人妻久久久影院| 乱人伦中国视频| 男人操女人黄网站| 青春草国产在线视频| 中文字幕人妻丝袜一区二区 | 黄网站色视频无遮挡免费观看| av有码第一页| 2018国产大陆天天弄谢| 欧美97在线视频| 一级毛片 在线播放| 狠狠精品人妻久久久久久综合| 中文欧美无线码| 少妇 在线观看| 纵有疾风起免费观看全集完整版| 国产老妇伦熟女老妇高清| 色网站视频免费| 久久人人爽av亚洲精品天堂| 国产伦理片在线播放av一区| 夫妻午夜视频| 午夜福利一区二区在线看| 啦啦啦在线观看免费高清www| av在线app专区| 亚洲欧美成人综合另类久久久| 国产无遮挡羞羞视频在线观看| 精品福利永久在线观看| 亚洲欧美中文字幕日韩二区| 国产福利在线免费观看视频| 99久国产av精品国产电影| 成人免费观看视频高清| 日日摸夜夜添夜夜爱| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美中文字幕日韩二区| 日日啪夜夜爽| 大话2 男鬼变身卡| 在现免费观看毛片| 亚洲精品aⅴ在线观看| 热99国产精品久久久久久7| 老司机影院毛片| 日日爽夜夜爽网站| 国产在线免费精品| 中文字幕高清在线视频| 夫妻性生交免费视频一级片| 女人爽到高潮嗷嗷叫在线视频| 久久鲁丝午夜福利片| 欧美日韩视频高清一区二区三区二| 国产成人91sexporn| 九九爱精品视频在线观看| 美女主播在线视频| 男人舔女人的私密视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久精品古装| 91国产中文字幕| 日韩中文字幕欧美一区二区 | 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 久久久久国产一级毛片高清牌| 91成人精品电影| 亚洲免费av在线视频| 飞空精品影院首页| 久久久久精品久久久久真实原创| 美女视频免费永久观看网站| 看非洲黑人一级黄片| 悠悠久久av| 大香蕉久久成人网| 美女视频免费永久观看网站| 国产熟女午夜一区二区三区| 女人被躁到高潮嗷嗷叫费观| 欧美日韩福利视频一区二区| 久久久久久久国产电影| 亚洲国产av影院在线观看| 久久精品国产a三级三级三级| 亚洲av成人精品一二三区| 国产欧美日韩一区二区三区在线| 国产熟女午夜一区二区三区| 免费黄网站久久成人精品| 国产国语露脸激情在线看| 中文字幕亚洲精品专区| 菩萨蛮人人尽说江南好唐韦庄| 纯流量卡能插随身wifi吗| 国产熟女午夜一区二区三区| 久久人人97超碰香蕉20202| 一区二区av电影网| 极品少妇高潮喷水抽搐| 777米奇影视久久| 男人添女人高潮全过程视频| 熟女少妇亚洲综合色aaa.| h视频一区二区三区| xxx大片免费视频| 亚洲专区中文字幕在线 | 色婷婷久久久亚洲欧美| 免费日韩欧美在线观看| 亚洲国产成人一精品久久久| 国产精品久久久人人做人人爽| 色综合欧美亚洲国产小说| 青春草国产在线视频| 男女之事视频高清在线观看 | 少妇被粗大猛烈的视频| 免费观看av网站的网址| 国产精品久久久久久人妻精品电影 | 国产一区二区三区av在线| 婷婷色综合www| 不卡视频在线观看欧美| 丰满乱子伦码专区| 午夜影院在线不卡| 亚洲美女视频黄频| 国产精品一二三区在线看| 亚洲av欧美aⅴ国产| 亚洲综合精品二区| 不卡视频在线观看欧美| 国产高清国产精品国产三级| 女人高潮潮喷娇喘18禁视频| 欧美精品人与动牲交sv欧美| 好男人视频免费观看在线| 久久久精品免费免费高清| 国产麻豆69| 97精品久久久久久久久久精品| 人人妻人人澡人人爽人人夜夜| svipshipincom国产片| 妹子高潮喷水视频| 亚洲精品视频女| netflix在线观看网站| 18禁国产床啪视频网站| 亚洲一级一片aⅴ在线观看| 国产精品蜜桃在线观看| 麻豆av在线久日| 午夜福利影视在线免费观看| 99国产精品免费福利视频| 男女高潮啪啪啪动态图| 久久国产精品男人的天堂亚洲| 亚洲欧美成人综合另类久久久| 久久久久久免费高清国产稀缺| 国产日韩欧美视频二区| 免费在线观看完整版高清| 欧美中文综合在线视频| 波多野结衣av一区二区av| 日本色播在线视频| 久久人人爽人人片av| 午夜福利网站1000一区二区三区| 国产精品久久久久成人av| 久久精品人人爽人人爽视色| 一区二区三区四区激情视频| 深夜精品福利| av天堂久久9| 在线观看免费视频网站a站| 可以免费在线观看a视频的电影网站 | 午夜影院在线不卡| e午夜精品久久久久久久| 亚洲av在线观看美女高潮| 久久精品久久久久久噜噜老黄| 蜜桃国产av成人99| 成人手机av| 亚洲av综合色区一区| 青草久久国产| av女优亚洲男人天堂| 在线天堂最新版资源| 色播在线永久视频| 国产欧美亚洲国产| 在线观看国产h片| 精品一区二区三卡| 日韩大片免费观看网站| 国产爽快片一区二区三区| 欧美精品一区二区免费开放| 亚洲精品第二区| 麻豆av在线久日| 曰老女人黄片| 肉色欧美久久久久久久蜜桃| 中文字幕高清在线视频| 九草在线视频观看| 黄片播放在线免费| 亚洲欧美成人精品一区二区| 一级毛片电影观看| 一区二区日韩欧美中文字幕| 2018国产大陆天天弄谢| 巨乳人妻的诱惑在线观看| 久久久久视频综合| 久久久国产欧美日韩av| 99精品久久久久人妻精品| 婷婷色av中文字幕| 视频在线观看一区二区三区| 中文乱码字字幕精品一区二区三区| 免费观看人在逋| 热re99久久国产66热| 黄色一级大片看看| 在线观看免费高清a一片| 五月开心婷婷网| av国产精品久久久久影院| 岛国毛片在线播放| 久久 成人 亚洲| 五月开心婷婷网| 一级毛片我不卡| 99精国产麻豆久久婷婷| 又黄又粗又硬又大视频| 99国产综合亚洲精品| 一级毛片我不卡| 国产成人精品久久久久久| 在现免费观看毛片| 美女大奶头黄色视频| 亚洲五月色婷婷综合| 欧美精品一区二区免费开放| 999精品在线视频| av免费观看日本| 亚洲国产精品国产精品| 少妇人妻久久综合中文| videos熟女内射| 精品午夜福利在线看| 日韩电影二区| 欧美少妇被猛烈插入视频| 久久毛片免费看一区二区三区| av网站在线播放免费| 国产成人系列免费观看| 亚洲av福利一区| 中文字幕亚洲精品专区| 久久久精品国产亚洲av高清涩受| 免费黄网站久久成人精品| 国产麻豆69| 搡老乐熟女国产| 国产淫语在线视频| 国产成人啪精品午夜网站| 人妻 亚洲 视频| 丰满乱子伦码专区| 热99久久久久精品小说推荐| 国产亚洲最大av| 久久av网站| 久久久久久久精品精品| 精品酒店卫生间| 亚洲国产欧美网| 在线天堂中文资源库| 9191精品国产免费久久| 在线看a的网站| 晚上一个人看的免费电影| 又粗又硬又长又爽又黄的视频| 欧美日本中文国产一区发布| av女优亚洲男人天堂| 99热国产这里只有精品6| 秋霞伦理黄片| 大片免费播放器 马上看| 午夜日本视频在线| 男女午夜视频在线观看| 黄片播放在线免费| 久久精品国产亚洲av高清一级| 悠悠久久av| 日韩av免费高清视频| 啦啦啦 在线观看视频| www日本在线高清视频| 婷婷色综合大香蕉| 久久婷婷青草| 嫩草影院入口| 欧美亚洲 丝袜 人妻 在线| 久久久国产欧美日韩av| 日本av手机在线免费观看| 男女下面插进去视频免费观看| 建设人人有责人人尽责人人享有的| 亚洲免费av在线视频| 中文字幕人妻丝袜一区二区 | 狠狠婷婷综合久久久久久88av| 青春草国产在线视频| 爱豆传媒免费全集在线观看| 捣出白浆h1v1| 97人妻天天添夜夜摸| 菩萨蛮人人尽说江南好唐韦庄| 熟女av电影| 欧美 亚洲 国产 日韩一| 观看av在线不卡| 精品人妻在线不人妻| 99九九在线精品视频| 国产极品天堂在线| 精品亚洲成国产av| xxxhd国产人妻xxx| 亚洲国产欧美一区二区综合| 精品亚洲乱码少妇综合久久| 久久综合国产亚洲精品| 男女下面插进去视频免费观看| 自线自在国产av| 国产日韩一区二区三区精品不卡| 欧美xxⅹ黑人| 天天躁夜夜躁狠狠躁躁| 欧美中文综合在线视频| 最近中文字幕2019免费版| 欧美亚洲日本最大视频资源| 国产精品免费大片| 天天添夜夜摸| 亚洲精品国产区一区二| 国产成人啪精品午夜网站| 国产av精品麻豆|