• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hopf Bifurcation of a Nonresident Computer Virus Model with Delay

    2019-01-08 00:58:10ZizhenZhangYougangWangandMassimilianoFerrara
    Analysis in Theory and Applications 2018年3期

    Zizhen Zhang,Yougang Wangand Massimiliano Ferrara

    1School of Management Science and Engineering,Anhui University of Finance and Economics,Bengbu 233030,Anhui,China

    2Department of Law,Economics and Human Sciences,Mediterranea University of Reggio Calabria,Via dei Bianchi 2,89127 Reggio Calabria,Italy

    Abstract.In this paper,a delayed nonresident computer virus model with graded infection rate is considered in which the following assumption is imposed:latent computers have lower infection ability than infectious computers.With the aid of the bifurcation theory,sufficient conditions for stability of the infected equilibrium of the model and existence of the Hopf bifurcation are established.In particular,explicit formulae which determine direction and stability of the Hopf bifurcation are derived by means of the normal form theory and the center manifold reduction for functional differential equations.Finally,a numerical example is given in order to show the feasibility of the obtained theoretical findings.

    Key Words:Computer virus,delay,Hopf bifurcation,SLA model,Periodic solution.

    1 Introduction

    With the advance of software and hardware technologies,computer viruses have been a major threat to our daily life[1].It is an important matter to understand the spread law of computer viruses over the network.To achieve this goal,many dynamical models,such as SIR model[2],SIRS model[3-5],SEIR model[6],SEIRS model[7,8]and SEIQRS model[9,10]have been established by scholars at home and abroad to characterize the propagation of computer viruses.

    Recently,the nonresident computer viruses that do not store or execute themselves from the computer memory have caused the attentions of many researchers[11].In order to analyze and protect against the nonresident computer viruses,Muroya and Kuniya proposed the following SLA computer virus model[12]:

    where S(t),L(t)and A(t)denote the numbers of uninfected computers,latent computers and infectious computers at time t,respectively;b is the number of external computers that are accessed to the network at time t;μ1,μ2and μ3are the rates at which the uninfected computers,latent computers and infectious computers are disconnected from the network;α1and α2are the rates of the nonresident computer viruses within latent computers are loaded into memory and nonresident computer viruses within infectious computers transfer control to the application program,respectively; β1and β2are the transmission rates of latent computers and infectious computers,respectively;γ1and γ2are the cure rates of latent computers and infectious computers,respectively.All the parameters in system(1.1)are positive constant.Muroya and Kuniya[12]investigated global stability and permanence of system(1.1).

    However,studies on dynamical systems not only involve stability and permanence,but also involve some others such as bifurcation phenomenon and periodic solutions.Particularly,Hopf bifurcation of the dynamical systems with time delay are of considerable interest[13-16].Motivated by the work above and considering that the nonresident computer viruses within latent computers need a period to be loaded into memory,we consider the following system with time delay:

    where τ1is the time delay due to the period that the nonresident computer viruses within latent computers need to be loaded into memory.

    The subsequent materials of this paper are organized as follows.In Section 2,stability of the infected equilibrium and existence of Hopf bifurcation are discussed by analyzing the characteristic equation of system(1.2).The formulas for determining the properties of the Hopf bifurcation are derived by using the normal form method and center manifold theory.Then,a numericalexample is carried outto illustrate the validity of the theoretical results.Finally,conclusions are given in the last section.

    2 Stability of the infected equilibrium and existence of Hopf bifurcation

    Based on the analysis in[12]and by a direct computation,we know that if

    then system(1.2)has a unique infected equilibrium E?(S?,L?,A?),where

    The Jacobian matrix of system(1.2)at the infected equilibrium E?is

    where

    The characteristic equation is

    where

    When τ=0,Eq.(2.1)reduces to

    Thus,Routh-Hurwitz criterion implies that E?is locally asymptotically stable without delay if the condition(H1)holds

    For τ>0.Substituting λ=i ω(ω>0)into Eq.(2.1)and separating the real and imaginary parts,we can obtain

    It is easy to see from Eq.(2.3)that

    where

    Let ω2=v,then

    Define f(v)=v3+a2v2+a1v+a0.Song et al.[17]obtained the following results on the distribution of roots of Eq.(2.5).

    Lemma 2.1.For the polynomial Eq.(2.5),

    (1)if a0<0,then Eq.(2.5)has at least one positive roots;

    (2)if a0≥0 and Δ=-3a1≤0,then Eq.(2.5)has no positive roots;

    (3)if a0≥0 and Δ=-3a1>0,then Eq.(2.5)has positive roots if and only ifand f()≤0.

    Next,we assume that the coefficients in Eq.(2.5)satisfy the following condition

    Thus,Eq.(2.4)has at least one positive root such that Eq.(2.1)has a pair of purely imaginary roots ±iω0.The corresponding critical value τ0can be obtained from Eq.(2.3)

    Taking derivative with respect to τ on both sides of Eq.(2.1),we obtain

    Further,we have

    Thus,if the condition(H3):holds,thenwhich implies that the transversality conditions is satisfied.From the discussions above and according to the Hopf bifurcation theorem in[18],we have the following.

    Theorem 2.1.For system(1.2),if the conditions(H1)-(H3)hold,then the infected equilibrium E?(S?,L?,A?)of system(1.2)is locally asymptotically stable for τ ∈ [0,τ0)and system(1.2)undergoes a Hopf bifurcation at the positive equilibrium E?(S?,L?,A?)when τ =τ0,where τ0is defined in Eq.(2.6).

    3 Direction and stability of the Hopf bifurcation

    Let u1(t)=S(t)-S?,u2(t)=L(t)-L?,u3(t)=A(t)-A?,τ=τ0+μ,μ∈R.Then,wecanknow thatμ=0 is the Hopf bifurcation value for system(1.2).Rescale the time by t→(t/τ)to normalize the time delay so that system(1.2)can be rewritten as

    where ut=(u1(t),u2(t),u3(t))T∈C=C([-1,0],R3),

    and

    where

    AAccording to the representation theorem, there exists a 3×3 matrix function with bounded variation components η(θ,μ),θ∈[-1,0]such that

    In fact,we choose

    where δ is the Dirac delta function.

    For φ∈C([-1,0],R3),define

    and

    Then system(3.1)is equivalent to

    For ? ∈C1([0,1]),(R3)?,the adjoint operator A?of A is defined as

    and a bilinear inner product is defined by

    where η(θ)=η(θ,0).

    Let q(θ)=(1,q2,q3)Teiω0τ0θbe the eigenvector of A(0)belonging to+iω0τ0and q?(s)=D(1,,)eiω0τ0sbe the eigenvector of A?(0)belonging to-iω0τ0.By a direct computation,we can get

    From Eq.(3.2),we can get

    Then we choose

    such that〈q?,q〉=1.

    Next,we can obtain the coefficients by using the method introduced in[18]and a computation process similar as that in[13]:

    with

    where E1and E2are given by the following equations,respectively

    Then,we can get the following coefficients which determine the properties of the Hopf bifurcation:

    In conclusion,we have the following results.

    Theorem 3.1.For system(1.2),Ifμ2>0(μ2<0),then the Hopf bifurcation is supercritical(subcritical).If β2<0(β2>0),then the bifurcating periodic solutions are stable(unstable).If T2>0(T2<00),then the bifurcating periodic solutions increase(decrease).

    4 Numerical simulation

    In order to verify the analytical predictions obtained in our paper,we present some numerical simulations in this section.By extracting some values from[12]and taking the conditions for the existence of the Hopf bifurcation into account,we consider the following special case of system(1.2)with the parameters b=10,α1=4,α2=1.5,β1=1,β2=2.5,γ1=0.25,γ2=0.75,μ1=1,μ2=1.5,μ3=2.Then,we get the following system:

    By means of Matlab 7.0,we get R0=7.7288 and that system(4.1)has a unique infected equilibrium E?(1.2939,2.5740,2.4226).Then,wehave a00+b00=163.6174,a01+b01=92.8527,a02+b02=18.3366.Obviously,The condition(H1)is satisfied for system(4.1).Further,we can validate that the condition(H2)is satisfied and we can obtain ω0=0.9623,τ0=1.8150 and f′()=152.6377>0.That is,the condition(H3)holds.Thus,according to Lemma 2.1,we can conclude that E?(1.2939,2.5740,2.4226)is locally asymptotically stable when τ ∈ [0,τ0=1.8150).However,when the time delay passes through τ0,E?(1.2939,2.5740,2.4226)loses its stability and a Hopf bifurcation occurs and a family of periodic solutions bifurcate from E?(1.2939,2.5740,2.4226).The bifurcation phenomenon of system(4.1)can be illustrated by the computer simulation in Fig.1.

    5 Conclusions

    In this paper,a delayed nonresident computer virus model is investigated by incorporating the time delay due to the period used to load the nonresident virus within latent computers into memory into the SLA model proposed in[12].Compared with the conventional computer virus models such as SIRS model[3-5],the SEIRS model[7,8]and SEIQRS model[9,10],we not only consider the infection ability of the infective computers but also the infection ability of the latent computers.That is,the model considered in this paper is more realistic.On the other hand,the main purpose of this paper is to investigate the effect of the time delay on the model compared with the work in[12].

    Figure 1:The bifurcation diagram with respect to τ.

    It is found that,under moderate conditions,the infected equilibrium of the model is locally asymptotically stable when the value of the delay is suitable small(τ < τ0),which implies that propagation of the computer virus can be predicted and controlled effectively.However,a Hopf bifurcation emerges when the delay passes through the critical value τ0.This means that the state of the computer virus prevalence changes from the infected equilibrium to a limit cycle.Namely,the propagation of the computer virus is out of control.Therefore,we can conclude that we should take some measures to postpone the occurrence of the Hopf bifurcation in order to control the propagation of the computer virus.From the numerical simulation,we find that onset of the Hopf bifurcation can be delayed if the values of the parameter γ1and γ2increase,which can be realized by means of strengthening the immunization of the new computers connected to the network.Thus,we can conclude that the managers of the network should strengthen the immunization of the new computers connected to the network so as to predict and control the propagation of the computer virus in the network easily.Furthermore,the properties of the Hopf bifurcation have also been investigated in the paper.

    Acknowledgements

    The author would like to thank the editor and the anonymous referees for their valuable comments and suggestions on the paper.This work was supported by Natural Science Foundation of Anhui Province(Nos.1608085QF145,1608085QF151)and Project of Support Program for Excellent Youth Talent in Colleges and Universities of Anhui Province(No.gxyqZD2018044).

    e午夜精品久久久久久久| 麻豆av在线久日| 99热只有精品国产| 免费在线观看影片大全网站| 50天的宝宝边吃奶边哭怎么回事| 最近最新中文字幕大全电影3| 老司机午夜十八禁免费视频| 首页视频小说图片口味搜索| 精品久久久久久成人av| 丰满人妻熟妇乱又伦精品不卡| 人妻丰满熟妇av一区二区三区| 看黄色毛片网站| 麻豆成人av在线观看| 小说图片视频综合网站| av国产免费在线观看| 亚洲av电影在线进入| 久久久国产成人免费| 国产aⅴ精品一区二区三区波| 又黄又爽又免费观看的视频| 国产精品香港三级国产av潘金莲| 欧美性猛交╳xxx乱大交人| 久久性视频一级片| 91大片在线观看| 成年版毛片免费区| 国产高清激情床上av| 亚洲七黄色美女视频| x7x7x7水蜜桃| 国产午夜精品论理片| 亚洲av成人不卡在线观看播放网| 亚洲18禁久久av| 午夜a级毛片| 人成视频在线观看免费观看| 亚洲男人天堂网一区| 美女免费视频网站| 国产aⅴ精品一区二区三区波| 亚洲精品中文字幕一二三四区| 俄罗斯特黄特色一大片| 欧美黑人巨大hd| 久久久国产成人免费| 成人三级做爰电影| 成人18禁高潮啪啪吃奶动态图| 亚洲精品av麻豆狂野| 一本精品99久久精品77| 欧美性猛交黑人性爽| 日韩 欧美 亚洲 中文字幕| 五月伊人婷婷丁香| 18禁黄网站禁片免费观看直播| 美女免费视频网站| 丁香欧美五月| 草草在线视频免费看| 少妇被粗大的猛进出69影院| 国产区一区二久久| 欧美丝袜亚洲另类 | 亚洲国产精品合色在线| 国产精品1区2区在线观看.| 曰老女人黄片| 91字幕亚洲| 草草在线视频免费看| 国产黄色小视频在线观看| 亚洲人与动物交配视频| 免费在线观看日本一区| 久久香蕉精品热| 色噜噜av男人的天堂激情| 一级作爱视频免费观看| 久久久久九九精品影院| 国产亚洲欧美98| 久久热在线av| 成人永久免费在线观看视频| 一本一本综合久久| 麻豆国产av国片精品| 制服诱惑二区| 午夜激情福利司机影院| 亚洲一区二区三区不卡视频| 窝窝影院91人妻| 欧美性长视频在线观看| 成人国产综合亚洲| 亚洲电影在线观看av| 三级国产精品欧美在线观看 | 欧美国产日韩亚洲一区| 很黄的视频免费| 亚洲色图 男人天堂 中文字幕| 毛片女人毛片| 欧美成人一区二区免费高清观看 | av福利片在线| 婷婷丁香在线五月| 免费一级毛片在线播放高清视频| 久久久久久久久中文| 国产精品影院久久| 大型av网站在线播放| 欧洲精品卡2卡3卡4卡5卡区| 小说图片视频综合网站| АⅤ资源中文在线天堂| 一进一出抽搐动态| www日本在线高清视频| 99re在线观看精品视频| 久久性视频一级片| 99久久99久久久精品蜜桃| 91字幕亚洲| 亚洲av成人不卡在线观看播放网| 欧美大码av| 午夜日韩欧美国产| 国产一区二区三区视频了| 国产高清视频在线播放一区| 亚洲国产精品sss在线观看| 久久精品国产亚洲av香蕉五月| 亚洲精品国产精品久久久不卡| 在线观看午夜福利视频| 1024手机看黄色片| 午夜精品在线福利| 久久性视频一级片| 人妻久久中文字幕网| 狂野欧美白嫩少妇大欣赏| 两性夫妻黄色片| 久久久精品国产亚洲av高清涩受| 啦啦啦韩国在线观看视频| 国产精品98久久久久久宅男小说| 在线观看一区二区三区| 深夜精品福利| 香蕉丝袜av| 一个人观看的视频www高清免费观看 | 欧美在线一区亚洲| 国产精华一区二区三区| 精品午夜福利视频在线观看一区| 欧美日本视频| 黄色 视频免费看| 国产私拍福利视频在线观看| 日日干狠狠操夜夜爽| 亚洲成人久久爱视频| a在线观看视频网站| 又粗又爽又猛毛片免费看| 人人妻,人人澡人人爽秒播| 亚洲激情在线av| 精品免费久久久久久久清纯| 可以在线观看的亚洲视频| 少妇的丰满在线观看| xxx96com| 亚洲av五月六月丁香网| 女人高潮潮喷娇喘18禁视频| 19禁男女啪啪无遮挡网站| 99riav亚洲国产免费| 精品日产1卡2卡| 亚洲av中文字字幕乱码综合| av在线播放免费不卡| 午夜免费激情av| 国产激情欧美一区二区| av中文乱码字幕在线| 欧美zozozo另类| 久久午夜综合久久蜜桃| 2021天堂中文幕一二区在线观| 欧美zozozo另类| 久久热在线av| av国产免费在线观看| a在线观看视频网站| 天堂av国产一区二区熟女人妻 | 亚洲七黄色美女视频| √禁漫天堂资源中文www| 精品国产超薄肉色丝袜足j| 亚洲中文av在线| 首页视频小说图片口味搜索| 黄色 视频免费看| 免费看美女性在线毛片视频| 日本一本二区三区精品| 一级a爱片免费观看的视频| 18美女黄网站色大片免费观看| 日韩大尺度精品在线看网址| 日韩 欧美 亚洲 中文字幕| 国产亚洲av嫩草精品影院| 色综合婷婷激情| 中文字幕人成人乱码亚洲影| 99久久国产精品久久久| 精品少妇一区二区三区视频日本电影| 舔av片在线| 亚洲精品国产一区二区精华液| 亚洲国产高清在线一区二区三| 欧美一区二区国产精品久久精品 | 伊人久久大香线蕉亚洲五| 岛国在线免费视频观看| 大型黄色视频在线免费观看| 一夜夜www| 精品久久久久久久久久久久久| 久久久久久九九精品二区国产 | 一边摸一边做爽爽视频免费| 欧美日韩乱码在线| 久久久久精品国产欧美久久久| 久久久久久九九精品二区国产 | 色哟哟哟哟哟哟| 国内毛片毛片毛片毛片毛片| 免费观看精品视频网站| 亚洲欧美日韩无卡精品| 在线观看日韩欧美| 国产亚洲精品av在线| 国产高清激情床上av| 在线观看免费午夜福利视频| 精品不卡国产一区二区三区| 日韩欧美免费精品| 啦啦啦韩国在线观看视频| 美女免费视频网站| 免费在线观看黄色视频的| 日韩精品中文字幕看吧| 亚洲成人国产一区在线观看| 欧美3d第一页| 亚洲国产高清在线一区二区三| 成在线人永久免费视频| 50天的宝宝边吃奶边哭怎么回事| 欧美黑人精品巨大| 国产麻豆成人av免费视频| 757午夜福利合集在线观看| 国产成年人精品一区二区| 首页视频小说图片口味搜索| 91字幕亚洲| 最近最新免费中文字幕在线| 男女那种视频在线观看| 一a级毛片在线观看| 欧美日韩一级在线毛片| 亚洲av五月六月丁香网| or卡值多少钱| 久久国产精品人妻蜜桃| 人人妻人人澡欧美一区二区| 久久久国产成人免费| 激情在线观看视频在线高清| 久久久久久国产a免费观看| 欧美极品一区二区三区四区| 久久久久亚洲av毛片大全| 在线观看午夜福利视频| 日韩精品中文字幕看吧| 免费看美女性在线毛片视频| 看免费av毛片| 1024香蕉在线观看| 精品久久久久久成人av| 少妇人妻一区二区三区视频| 成人av在线播放网站| 免费无遮挡裸体视频| a级毛片a级免费在线| 精品久久久久久久久久久久久| 男女午夜视频在线观看| 精品熟女少妇八av免费久了| 久久久久久免费高清国产稀缺| 久久精品国产亚洲av高清一级| 国产激情欧美一区二区| 深夜精品福利| 欧美大码av| 亚洲国产精品999在线| 国产欧美日韩一区二区精品| 精品少妇一区二区三区视频日本电影| 欧美在线一区亚洲| 日韩国内少妇激情av| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 神马国产精品三级电影在线观看 | 国产精品久久久久久亚洲av鲁大| 麻豆国产av国片精品| 午夜激情av网站| 中文字幕熟女人妻在线| 成人一区二区视频在线观看| 免费av毛片视频| av片东京热男人的天堂| 999久久久国产精品视频| 中亚洲国语对白在线视频| 亚洲av片天天在线观看| 久久久久久国产a免费观看| 正在播放国产对白刺激| 搡老岳熟女国产| 可以在线观看的亚洲视频| 一级黄色大片毛片| 欧美黑人巨大hd| 国产伦在线观看视频一区| 99在线人妻在线中文字幕| www.熟女人妻精品国产| 欧美黑人精品巨大| 午夜福利成人在线免费观看| av中文乱码字幕在线| 后天国语完整版免费观看| 香蕉久久夜色| 亚洲18禁久久av| 性欧美人与动物交配| 女同久久另类99精品国产91| 少妇裸体淫交视频免费看高清 | 精品一区二区三区视频在线观看免费| 制服丝袜大香蕉在线| 国产成人啪精品午夜网站| 国产精品1区2区在线观看.| av有码第一页| 亚洲第一电影网av| 日本五十路高清| a级毛片在线看网站| 天堂av国产一区二区熟女人妻 | 亚洲一码二码三码区别大吗| 午夜日韩欧美国产| 91麻豆精品激情在线观看国产| 18禁黄网站禁片午夜丰满| 欧美性长视频在线观看| 亚洲国产欧美人成| 一本精品99久久精品77| 2021天堂中文幕一二区在线观| 成人手机av| 成人精品一区二区免费| 国产高清视频在线观看网站| 国内久久婷婷六月综合欲色啪| 国产成人系列免费观看| 欧美丝袜亚洲另类 | 亚洲中文av在线| 亚洲人成网站高清观看| 免费在线观看完整版高清| 蜜桃久久精品国产亚洲av| 国产亚洲精品第一综合不卡| 亚洲人成伊人成综合网2020| 久久精品人妻少妇| 欧美日韩一级在线毛片| 日韩免费av在线播放| 日本一二三区视频观看| 一边摸一边做爽爽视频免费| 十八禁人妻一区二区| 国产精品98久久久久久宅男小说| 母亲3免费完整高清在线观看| 99国产精品一区二区三区| 露出奶头的视频| 丁香六月欧美| 国产精品九九99| 久久久久久久久免费视频了| 精品乱码久久久久久99久播| 欧洲精品卡2卡3卡4卡5卡区| 两个人免费观看高清视频| 成人三级做爰电影| 亚洲成人中文字幕在线播放| 亚洲成a人片在线一区二区| ponron亚洲| 精品欧美国产一区二区三| 欧美成人午夜精品| 久久精品91无色码中文字幕| 黄色成人免费大全| 免费看十八禁软件| 亚洲熟女毛片儿| 一级片免费观看大全| 亚洲欧美日韩东京热| 亚洲九九香蕉| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久电影中文字幕| 国产高清激情床上av| 亚洲av电影不卡..在线观看| 男人舔女人下体高潮全视频| 久久伊人香网站| 国产又色又爽无遮挡免费看| 中文字幕精品亚洲无线码一区| 久久久久久免费高清国产稀缺| 男人的好看免费观看在线视频 | 国产麻豆成人av免费视频| 成人av一区二区三区在线看| 女警被强在线播放| 人人妻,人人澡人人爽秒播| 三级毛片av免费| 亚洲 国产 在线| 国产成人aa在线观看| 99久久久亚洲精品蜜臀av| 男人的好看免费观看在线视频 | 久久久久性生活片| 男女午夜视频在线观看| 久久草成人影院| 好男人电影高清在线观看| 欧美人与性动交α欧美精品济南到| 动漫黄色视频在线观看| 香蕉国产在线看| 亚洲国产高清在线一区二区三| 久久久久九九精品影院| 身体一侧抽搐| 女警被强在线播放| 亚洲精品一区av在线观看| 国产成人一区二区三区免费视频网站| 12—13女人毛片做爰片一| 亚洲色图 男人天堂 中文字幕| 身体一侧抽搐| 热99re8久久精品国产| 久久久久久九九精品二区国产 | av在线播放免费不卡| 欧美极品一区二区三区四区| 国产免费av片在线观看野外av| 国内久久婷婷六月综合欲色啪| 国产免费av片在线观看野外av| 高清在线国产一区| 88av欧美| 精品久久久久久久人妻蜜臀av| 国产精品九九99| 精品久久久久久久人妻蜜臀av| 色综合站精品国产| 国产亚洲精品av在线| 精品国产乱码久久久久久男人| 一本综合久久免费| av视频在线观看入口| 婷婷亚洲欧美| 麻豆av在线久日| 变态另类成人亚洲欧美熟女| 青草久久国产| 麻豆久久精品国产亚洲av| 国产欧美日韩一区二区精品| 波多野结衣高清无吗| 国产视频内射| 亚洲国产精品sss在线观看| 亚洲欧美精品综合久久99| av国产免费在线观看| 美女扒开内裤让男人捅视频| 国产免费av片在线观看野外av| 天堂影院成人在线观看| 老汉色av国产亚洲站长工具| 麻豆一二三区av精品| 亚洲国产欧美人成| 亚洲一区二区三区不卡视频| 欧美在线一区亚洲| 亚洲熟女毛片儿| 亚洲色图 男人天堂 中文字幕| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 午夜福利在线在线| 亚洲第一欧美日韩一区二区三区| 一区福利在线观看| 一本精品99久久精品77| 国产午夜精品久久久久久| 国产1区2区3区精品| 久久久国产精品麻豆| 亚洲一区二区三区不卡视频| 99久久无色码亚洲精品果冻| 变态另类成人亚洲欧美熟女| 国产熟女午夜一区二区三区| 国产精品影院久久| 成熟少妇高潮喷水视频| 免费电影在线观看免费观看| 亚洲 欧美一区二区三区| 视频区欧美日本亚洲| 在线观看舔阴道视频| 日本免费a在线| 免费无遮挡裸体视频| 一本久久中文字幕| 亚洲 国产 在线| 成人国语在线视频| 国产主播在线观看一区二区| 午夜精品一区二区三区免费看| 麻豆国产97在线/欧美 | 国产一区二区在线av高清观看| 99久久99久久久精品蜜桃| 18禁美女被吸乳视频| 免费无遮挡裸体视频| 桃红色精品国产亚洲av| 午夜福利高清视频| 久久精品国产99精品国产亚洲性色| 午夜a级毛片| 久久国产精品人妻蜜桃| 九九热线精品视视频播放| 亚洲自偷自拍图片 自拍| 亚洲国产精品成人综合色| 亚洲熟女毛片儿| 欧美日韩福利视频一区二区| 亚洲欧美日韩无卡精品| 精品久久久久久久久久久久久| 老汉色av国产亚洲站长工具| 一本综合久久免费| 麻豆av在线久日| 悠悠久久av| 免费在线观看成人毛片| 国内揄拍国产精品人妻在线| 人妻丰满熟妇av一区二区三区| 久久国产精品人妻蜜桃| 免费在线观看完整版高清| 亚洲av中文字字幕乱码综合| 最近最新中文字幕大全免费视频| 亚洲中文字幕日韩| 18禁黄网站禁片午夜丰满| 美女大奶头视频| 日本三级黄在线观看| 亚洲男人天堂网一区| 国产成人精品久久二区二区免费| 日日干狠狠操夜夜爽| 熟女电影av网| 黄色片一级片一级黄色片| 亚洲欧美日韩无卡精品| 最新美女视频免费是黄的| 天堂√8在线中文| 国产午夜精品论理片| 精品久久久久久久末码| 国内少妇人妻偷人精品xxx网站 | 少妇熟女aⅴ在线视频| 又大又爽又粗| 好男人电影高清在线观看| 精品午夜福利视频在线观看一区| 深夜精品福利| 黄色毛片三级朝国网站| 亚洲18禁久久av| 亚洲av成人精品一区久久| 男人舔女人下体高潮全视频| 十八禁网站免费在线| 精品日产1卡2卡| 午夜免费成人在线视频| 一本久久中文字幕| 又紧又爽又黄一区二区| 亚洲一码二码三码区别大吗| 亚洲一区二区三区不卡视频| 久久久久久大精品| 看免费av毛片| 亚洲国产欧洲综合997久久,| 久久人妻av系列| 国产精品av视频在线免费观看| 国产v大片淫在线免费观看| 亚洲美女黄片视频| 久久久久久亚洲精品国产蜜桃av| 99国产极品粉嫩在线观看| 在线观看免费午夜福利视频| 少妇粗大呻吟视频| 国产真实乱freesex| 夜夜看夜夜爽夜夜摸| 又大又爽又粗| 全区人妻精品视频| www.www免费av| 熟女电影av网| 久久九九热精品免费| 日本黄大片高清| 欧美色视频一区免费| 日本黄大片高清| 国产熟女午夜一区二区三区| 悠悠久久av| 日本一区二区免费在线视频| 97碰自拍视频| 两人在一起打扑克的视频| 亚洲精品一区av在线观看| 麻豆久久精品国产亚洲av| 成人手机av| 午夜福利18| 两个人看的免费小视频| 精品国产乱码久久久久久男人| 亚洲成人免费电影在线观看| 国产97色在线日韩免费| 国产91精品成人一区二区三区| 中文字幕av在线有码专区| 久久亚洲真实| 此物有八面人人有两片| 伦理电影免费视频| 亚洲性夜色夜夜综合| 国产视频一区二区在线看| xxxwww97欧美| 1024香蕉在线观看| 亚洲一区二区三区不卡视频| 久久九九热精品免费| 久久国产乱子伦精品免费另类| 中文在线观看免费www的网站 | 精品第一国产精品| 亚洲av电影在线进入| 精品少妇一区二区三区视频日本电影| 国产日本99.免费观看| 一a级毛片在线观看| 一级毛片精品| 99久久无色码亚洲精品果冻| www.自偷自拍.com| 国产v大片淫在线免费观看| 老汉色av国产亚洲站长工具| 激情在线观看视频在线高清| 99久久国产精品久久久| 久久婷婷人人爽人人干人人爱| 亚洲av片天天在线观看| 俺也久久电影网| 日韩欧美精品v在线| 午夜精品一区二区三区免费看| 日日干狠狠操夜夜爽| 一区二区三区高清视频在线| √禁漫天堂资源中文www| 淫秽高清视频在线观看| 一边摸一边做爽爽视频免费| 性欧美人与动物交配| 长腿黑丝高跟| 欧美激情久久久久久爽电影| 99久久国产精品久久久| 久久天堂一区二区三区四区| 成人永久免费在线观看视频| 欧美色视频一区免费| 日本 av在线| netflix在线观看网站| 在线观看免费日韩欧美大片| 搡老岳熟女国产| 国产激情偷乱视频一区二区| 一级片免费观看大全| 午夜免费成人在线视频| 精品一区二区三区av网在线观看| 国产成人精品无人区| 亚洲全国av大片| 午夜久久久久精精品| 丝袜美腿诱惑在线| 身体一侧抽搐| 久久伊人香网站| 国产午夜精品久久久久久| 久热爱精品视频在线9| 97超级碰碰碰精品色视频在线观看| 深夜精品福利| 手机成人av网站| 国产成人一区二区三区免费视频网站| 久久中文看片网| 亚洲自偷自拍图片 自拍| 欧美日韩一级在线毛片| 久久天堂一区二区三区四区| 不卡av一区二区三区| 欧美日韩一级在线毛片| 久久天堂一区二区三区四区| 99国产精品一区二区三区| 女警被强在线播放| 国产精品免费一区二区三区在线| 欧美绝顶高潮抽搐喷水| 麻豆成人午夜福利视频| 国产精品久久久人人做人人爽| 无限看片的www在线观看| 国产熟女午夜一区二区三区| 国产精品久久久人人做人人爽| 国产亚洲精品一区二区www| 好男人在线观看高清免费视频| av欧美777| 香蕉久久夜色| 欧美日韩一级在线毛片| 久久精品国产清高在天天线| 亚洲自偷自拍图片 自拍| 亚洲人与动物交配视频| 久久久久久久久久黄片| 激情在线观看视频在线高清|