• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QM/MM and MD Studies of the First Proton Transfer for O2 Activation in the Catalytic Cycle of Cytochrome P450cin①

    2019-01-05 09:34:30LIUFengJioSONGJinShuiLUQinQinWEIJingZHANGMinYiHUANGJingLIChunSen
    結(jié)構(gòu)化學(xué) 2018年12期

    LIU Feng-Jio SONG Jin-Shui LU Qin-Qin WEI Jing ZHANG Min-Yi HUANG Jing LI Chun-Sen

    ?

    QM/MM and MD Studies of the First Proton Transfer for O2Activation in the Catalytic Cycle of Cytochrome P450cin①

    LIU Feng-Jiaoa, bSONG Jin-Shuaia, cLU Qian-Qiana, cWEI JingaZHANG Min-Yia, cHUANG JingaLI Chun-Sena, c②

    a(350002)b(100049)c(361005)

    P450cin (CYP176A1) isolated fromis a biodegradation enzyme that catalyzes the enantiospecific conversion of 1,8-cineole to (1R)-6-hydroxycineole. In many P450 family members the mechanism of proton delivery for O2activation is proposed to require a conserved acid-alcohol dyad in the active area, while P450cin has no such residue with alcohol but asparagine instead. In the present work, the mechanism of the first proton transfer of O2activation in P450cin has been investigated by molecular dynamics (MD) and hybrid quantum mechanics/molecular mechanics (QM/MM) techniques. The MD simulation suggests there are two hydrogen bonding networks around the active site, one involving Asp241 and the other involving Glu356. According to our MD and QM/MM calculations, this Asp241 channel is proposed to be the energy accessible. MD results show that the hydrogen bonds around the substrate may contribute to regio- and stereo-oxidation of the substrate.

    P450cin, CYP176A1, QM/MM, proton transfer;

    1 INTRODUCTION

    The cytochromes P450 constitute a superfamily of heme-containing monooxygenases which perform various biochemical transformations, such as C–H bond hydroxylation, C=C bond epoxidation, sulfoxi- dation, N-dealkylation and O-dealkylation[1-4]. These transformations are important for a vast array of vital processes including biosynthesis of hormones, biodegradation of xenobiotics, and drug metabo- lism[4]. It is commonly accepted that the high-valent iron(IV)-oxo porphyrin-radical cation species known as Compound I (Cpd I, in Scheme 1) is responsible for these oxygenation reactions[5]. In the consensus P450 catalytic cycle[1], the formation of Cpd I involves two subsequent proton transfers: the ferric peroxo complex (shown in Scheme 1) is first protonated to yield the hydroperoxo compound, so called Compound 0, (Cpd 0 in Scheme 1), which then accepts a second proton followed by heterolytic O–O bond cleavage to generate Cpd I and water. It has been suggested that along with the water network at active site the conserved aspartate and threonine (or serine) residues forming acid-alcohol pair in most P450s play a crucial role in proton delivery mechanism[6, 7]. However, there are also some special cases in P450s. For example, P450eryF which lacks the conserved theronine could transfer proton from the 5-OH group of its substrate DEB (6-deoxyerythronolide B)[8]. Intriguingly, P450cin (CYP176A1)[9]lacks the conserved threonine or serine residue and the substrate cineole has no OH group to assist the proton delivery, indicating that a distinct mecha- nism is responsible for the formation of Cpd I.

    Scheme 1. Formation of Cpd I from ferric peroxo complexCpd 0

    Up to now, two possible proton channels invol- ving Asp241 and Glu356 (see Fig. 1) were proposed for O2activation in P450cin[10, 11]. Asp241 is believed to play a similar role as Asp251 of the well-studied P450cam[12, 13], since the Asp241 mutant of P450cin has an influence on the reaction rate. Three vital groups may be involved in the proton delivery from Asp241, including Asn242, Gly238 and substrate cineole[14-16]. However, the mutant of Asn242Ala for P450cin gave a higher coupling than P450cam, and the coupling of Asn242Thr was not very efficient compared with the wild type. These results indicate that the asparagine seems not so important in proton delivery[14]. Compared with Asp241, Gly238 could form a hydrogen bond with a water through its carbonyl group, and thus it is more likely to facilitate the proton delivery[15]. Besides, the substrate cineole was also proposed to contribute to proton delivery[16]. However, another experiment showed that mass coupling is still obtained in the absence of the ethereal oxygen atom, suggesting this ethereal oxygen does not play a significant role in proton transfer[14]. In addition, for Glu356 though lacking of both mutant experimental results and hydrogen bond networks connecting to the protein surface, the channel involving this residue has also to be considered.

    According to the previous work reported above, both Asp241 and Glu356 channels could be respon- sible for proton delivery leading to the formation of Cpd I in P450cin. In this work, we report combined MD and QM/MM studies for the first proton transfer to ferric peroxo complex that leads to the formation of Cpd 0 in the wild-type P450cin and related mutation. The possible proton transfer channels related to Asp241 and Glu356 will be presented. Our results provide a detailed mechanism of the first proton delivery and reveal the important roles of the active species or residues. These results can enrich the oxygen activation mechanism for P450s.

    2 COMPUTATION METHODS AND DETAILS

    The initial structure of the reduced hemecomplex was taken from the X-ray structure of P450cin-NO (PDB code 4FYZ)[15]. Chain B with definite occupancy was used in our model, from which the polyethylene glycol was removed and the axial NO ligand was replaced by O2. The protonation states of titratable residues (His, Glu, Asp) were designed on the basis of pKa values from PROPKA calcula- tions[17]as well as careful visual inspection of their local chemical environment. Histidine residues were dealt with three manners, including doubly proto- nated (52, 98, 267, 351, 391), or singly protonated at N(16, 342, 345), or protonated at N(18, 28, 176, 193, 337). Glutamic acid residues (32, 47, 85, 134, 178, 182, 225, 294, 356, 363, 370, 378, 404) and Aspartic acid residues (127, 241) were protonated. The generated neutral protein was immersed with a 16 ? layer of water molecules, yielding a total of ca. 8300 water molecules in the protein model. Afterwards, a classical MD run was performed for 2 ns using the CHARMM36 force fields[18-20]as implemented in the CHARMM program[21].

    In addition to O2-coordinated simplified porphyrin and substrate cineole, some relevant amino acid side chains and water molecules were also included in the QM region. In details, Asp241, Asn242, Tyr81 and Wat612 were included in the Asp241 channel, while Glu356, Thr243 and Wat636 were contained in the Glu356 channel. During QM/MM geometry optimizations, atoms within 8 ? of the QM region were defined as the active region, and the rest was kept frozen.

    The QM/MM calculations were performed with ChemShell[22, 23], combining Turbomole[24]for the QM part, DL_POLY[25]with CHARMM36 force field for the MM part, and HDLC optimizer[26]for geometry optimizations. The electronic embedding scheme[27]was adopted to explain the polarizing effect of the enzyme environment on the QM region. The QM/MM boundary was treated through hydro- gen link atoms with the charge shift model[22, 23]. In QM/MM geometry optimizations, the QM region was calculated by the hybrid UB3LYP[28]functional with two basis sets. For geometry optimization, a combined basis set including def2-TZVP for iron and def2-SVP for other atoms was used. The energies were further corrected with the large basis set def2-TZVP. All QM/MM geometry optimizations were carried out on the doublet state.

    3 RESULTS AND DISCUSSION

    PROPKA calculations show the pKa values of Asp241 and Glu356 are 6.84 and 8.15, implying that these two residues are likely to be protonated under physiological conditions. Thus, two proton transfer channels including these two residues are explored in our present study. In the Asp241 channel, proton could be transferred to distal oxygen atom of the bound O2of ferric peroxo complex via Asn242 and/or the crystal water Wat612, while the Glu356 may deliver proton through a network containing crystal water Wat636, Thr243 and the nearby residues (Fig. 1).

    Fig. 1. Two possible proton channels of P450cin. The Asp241, Glu356 and nearby residues are highlighted

    3. 1 Asp241 channel

    Proton transfer in the Asp241 channel involves three steps: protonating distal oxygen atom of ferric peroxo by Asn242, protonating the deprotonated Asn242 by Asp241, and reprotonating Asp241 via water channels from bulk solvent as suggested by Yarrow Madrona[10]. As there are many possibilities for reprotonating Asp241 from bulk solvent, we here only explore the previous two steps involved in Asp241 channel. The calculated potential energy surface and the optimized geometries of key species for the protonation involving Asp241 channel are shown in Figs. 2 and 3, respectively. As discussed above, the first step in Asp241 channel is the proto- nation of ferric peroxo center with the proton coming from NH2group of Asn242. Before this proton transfer occurs, the Fe(III)O2-group of RC undergoes an internal rotation along the Fe–Opbond to make the distal oxygen Odof Fe(III)O2-group getting close to the HD22 of Asn242. The rotation transition state TSa1 only has a tiny barrier of 0.4 kcal/mol, mainly due to the large space for rotation and the electrostatic interaction between Odand HD22. The resulted species ICa1 thus has a short Op–HD22 distance of 1.49 ?, which is similar to the geometry character of the conserved Thr252 and ferric peroxo in the P450cam crystal structure[6].Subsequently, the proton of HD22 of Asn242 transfers to the distal oxygen Odyielding interme- diate ICb1, of which Cpd 0 has been generated. This step is exothermic by 11.5 kcal/mol without any barrier. The barrierless process may be owing to the strong electrostatic interaction produced by the short distance of HD22 and distal oxygen. This process accords with the proton transfer of Thr252 in P450cam[29]and the proton transfer of DEB 5-OH group in P450eryF[8]. The high activity of RC explains why the super oxo species of P450cin is difficult to trap experimentally[15].

    The deprotonated residue Asn242 could abstract a proton from nearby residue Asp241 or, alternatively, from the crystal water Wat612 in the vicinity. As shown in Fig. 3, in ICb1 the distance between the terminal proton HD2 of Asp241 and ND2 of Asn242 is 6.40 ?, which is too far for direct proton transfer. Therefore, the side chain rotation of Asp242 and Asp241 is required. In this transformation, the acid side chain of Asp241 rotates via transition state TSc1 with a barrier of 11.8 kcal/mol. The generation of ICc1 is endothermic by 4.4 kcal/mol. It is noteworthy that the orientation of the side chain of Asp241 in ICc1 is quite similar to the Asp251 in P450cam[29, 30]. Subsequently, the side chain of Asn242 in ICc1 also undergoes an internal rotation along the CB–CG bond toward the proton source Asp241 to shorten the distance of HD2–ND2. As a result, the proton transfer from Asp241 to Asn242 then occurs via transition state TSd1 to generate ICd1. This step is exothermic by 24.0 kcal/mol with a small barrier of 6.8 kcal/mol. As such, from ICc1 to ICd1, Asn242 directly accepts the proton from Asp241 without crystal water Wat612 in the proton shuttle network[11].

    Fig. 2. QM/MM relative energies (kcal/mol) for the first proton transfer via Asp241 channel

    Fig. 3. Geometries and bond distances (?) of key residues

    Another possible pathway to deliver the proton from Asp241 to the deprotonated Asn242 is with the assistance of Wat612. All attempts to find energy feasible pathway involving proton transfer from Wat612 to the deprotonated NH group of Asn242 failed as the calculated barriers were quite high, ca. 26.1 kcal/mol. However, interestingly, as shown in Fig. 2, we found an alternative pathway in which the hydrogen HD2 of Asp241 is transferred to OD1 rather than the ND2 of Asn242 via Wat612. The corresponding transition state TSd1 only has a much small energy barrier of 1.6 kcal/mol. Although the resulting species ICd2 is less stable than IC1d by 9.4 kcal/mol, it is still possible to be involved in the second proton delivery as suggested by Kim et al[31]. The classical MD simulation results in Fig. 4 show that Wat612 is held by hydrogen bonds constituted by Asp241, Asn242, Tyr81 and substrate, and does not escape from the protein pocket during the 2ns simulation. As such, the crystal water Wat612 is possible to serve as a node in the hydrogen bond network by transferring proton from Asp241 to Asn242.

    Fig. 4. H-bonds of Wat612 of MD simulations

    3. 2 Glu356 channel

    The proton transfer from Glu356 was also investigated because similar channel has been reported in P450cam[30]and P450eryF[8]. As shown in Fig. 5, the Glu356 could deliver proton through the hydrogen bond network formed by Wat636 and Thr243. No additional water was found to enter the space between Thr243 and ferric peroxo group during the 2 ns MD simulation. As such, the distance between HG1 of Thr243 and Odis 6.6 ?, which is much longer than the distances between the distal oxygen atom and the Thr252 in P450cam[30](1.923 ?) or the WatA in P450eryF[8](3.35 ?). To locate the proton transfer from the HG1 of Thr243 to the distal oxygen Od, we performed the potential energy surface scan by shortening the distance between Fe(III)O2-and Thr243. The calculated results lead to the breaking of Fe–Op bond and the dissociation of O2(Fig. 5a). Therefore, proton transfers direct from Thr243 to ferric peroxo group is impossible. Alternatively, we attempted to find the pathway in which the proton transfer from Thr243 to ferric peroxo group is mediated by the carboxyl group of the backbone of Gly238 in vicinity. However, even the barrier for HG1 transferring from Thr243 to carboxyl group of Gly238 is 16.1 kcal/mol (Fig. 5b), the distance between protonated Gly238 and Odof ferric peroxo group is about 4.7 ?, which is too far to accomplish the subsequent proton transfer. To sum up, the Glu356 channel is failed to deliver proton to ferric peroxo group, because Glu356 is far away from the distal oxygen atom of Fe(III)O2-and there are neither appropriate residues nor additional waters that could cooperate with Glu356 to deliver proton. These findings are consistent with the results from P450cin mutation experiments in which replacing Glu356 with other residues leads to the coupling efficiency unchanged.

    (a)

    (b)

    Fig. 5. (a) Potential energy surface scan of HG1-Odbond, (b) Proton transfer of HG1 to Gly238. The distances are given in ? and the energies in kcal/mol

    3. 3 Discussion

    In the whole process, the hydrogen bond network plays a significant role in proton transfer. A strong hydrogen bond between Wat612 and oxygen of cineole was also found as the hydrogen bond length ranging from 1.72 to 2.19?. As shown in Figs. 3 and 4, Wat612 is sustained by hydrogen bond networks interacted by Tyr81, Asp241 and Asn242. In addition, in most intermediates there is an hydrogen bond between HD21 of Asn242 and oxygen of substrate ranging from 2.17 to 2.70 ?, which is in consistence with crystal structure[32].Moreover, it should be noted that the conformation of the substrate maintained by the hydrogen bond network may contribute to the regio- and stereo- selectivity in the subsequent oxidation reactions catalyzed by Cpd I generated after O2activation.

    Fig. 6. Hydrogen bond networks of (a) Asn242Ala and (b) Asn242Thr

    According to the above results, we found that residue Asn242 has two significant roles in the proton delivery. Firstly, Asn242 is the nearest residue with respect to the Fe porphyrin. The distances of HD22Asn242and the distal oxygen of ferric peroxo complex are in the range of 2.5~3.5 ? (MD results), which leads to a low barrier of proton transfer as discussed before (Fig. 2). Secondly, Asn242 could form strong hydrogen bonds with cineole (CNL) and Wat612 as the distances of ND2Asn242···OCNL, Wat612···OD1Asn242and Wat612···OCNLare about 2.42, 1.67 and 1.92 ?, respectively. The hydrogen bond networks support a stable geometry and include additional water for proton transfer. Thus, Asn242 is indispensable for the proton transfer. The oxygen atom of cineole is fixed by Asn242 and Wat612, and thus cineole loses the activity of proton transfer. This is consistent with experimental results that replacement of the cineole with no ethereal oxygen has no obvious changes in reaction rate and coupling efficient[14]. Therefore, cineole does not play a key role in proton delivery process. The crystal structure of substrate-free P450cin indicated that Gly238 forms a hydrogen bond chain that lies close to the Fe center, thus Gly238 may contribute to the O2activation. However, the hydrogen bonding chain formed by Gly238 does not exist in the present study, because of the missing crystal waters around the active area. All attempts to locate the proton transfer from Gly238 for O2activation failed. Compared with wide type of P450cin, the mutants Asn242Thr and Asn24Ala have a larger space around the substrate and flexible hydrogen bond networks (Fig. 6). Thus, the increased freedom of the substrate would decrease the regio-selectivity of C–H bond activa- tion, which is also in consistence with experimental findings[14].

    4 CONCLUSION

    P450cin has two distinct hydrogen bond networks involving Asp251 and Glu356 that are capable of shuttling protons for O2activation. In the Asp241 channel, the Asp241 residue has a direct access to bulky water and thus can be easily reprotonated. The first proton transfer from Asp241 to distal oxygen proceeds via Asn242 to produce the Cpd 0 species. It was found that Asn242 is indispensable among proton delivery process, since this residue is an important proton bridge in the first proton delivery from Asn241 to ferric peroxo center. In the proton transfer from Asp241 to Asn242, two possible pathways are found. One involves direct proton transfer to form species ICd1, whereas the other forms ICd2 via Wat612. MD results show Wat612 plays a significant role for the latter process. In comparison, the Glu356 channel lacks the connectivity with bulky water, which casts doubt on the feasibility of the requisite reprotonation of Glu356. Moreover, our calculation shows that it is difficult to transmit proton from Glu356 to the ferric peroxo center. Our work presents a detailed mecha- nism of the first proton transfer for the O2activation of P450cin, which has shown distinct characters as compared with P450cam. This new mechanism may provide new insights for understanding the proton transfer for similar P450 enzymes. The second proton-transfer step is under investigation.

    (1) Ortiz de Montellano, P. R.3rd ed. Kluwer Academic/Plenum Publisher: New York 2005, p1-24.

    (2) Meunier, B.; de Visser, S. P.; Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes.2004, 104, 3947-3980.

    (3) Shaik, S.; Kumar, D.; de Visser, S. P.; Altun, A.; Thiel, W. Theoretical perspective on the structure and mechanism of cytochrome P450 enzymes.2005, 105, 2279-2328.

    (4) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations.2010, 110, 949-1017.

    (5) Yamazaki, H. Springer Japan: Tokyo2014, p132.

    (6) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, B. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. The catalytic pathway of cytochrome P450cam at atomic resolution.2000, 287, 1615-1622.

    (7) Nebert, D. W.; Nelson, D. R.; Coon, M. J.; Estabrook, R. W.; Feyereisen, R.; Fujiikuriyama, Y.; Gonzalez, F. J.; Guengerich, F. P.; Gunsalus, I. C.; Johnson, E. F.; Loper, J. C.; Sato, R.; Waterman, M. R.; Waxman, D. J. The P450 superfamily-update on newsequences, gene-mapping, and recommended nomenclatrue.1991, 10, 1-14.

    (8) Sen, K.; Thiel, W. Role of two alternate water networks in compound I formation in P450eryF.2014, 118, 2810-2820.

    (9) Hawkes, D. B.; Adams, G. W.; Burlingame, A. L.; de Montellano, P. R. O.; De Voss, J. J. Cytochrome P450cin(CYP176A), isolation, expression, and characterization.2002, 277, 27725-27732.

    (10) Madrona, Y.; Hollingsworth, S. A.; Khan, B.; Poulos, T. L. P450cin active site water: implications for substrate binding and solvent accessibility.2013, 52, 5039-5050.

    (11) Stok, J. E.; Yamada, S.; Farlow, A. J.; Slessor, K. E.; De Voss, J. J. Cytochrome P450cin(CYP176A1) D241N: investigating the role of the conserved acid in the active site of cytochrome P450s.2013, 1834, 688-696.

    (12) Gerber, N. C.; Sligar, S. G. Catalytic mechanism of cytochrome-P-450-evidence for a distal charge relay.1992, 114, 8742-8743.

    (13) Gerber, N. C.; Sligar, S. G. A role for Asp-251 in cytochrome P-450cam oxygen activation.1994, 269, 4260-4266.

    (14) Slessor, K. E.; Farlow, A. J.; Cavaignac, S. M.; Stok, J. E.; De Voss, J. J. Oxygen activation by P450cin: protein and substrate mutagenesis.2011, 507, 154-162.

    (15) Madrona, Y.; Tripathi, S.; Li, H. Y.; Poulos, T. L. Crystal structures of substrate-free and nitrosyl cytochrome P450cin: implications for O2activation.2012, 51, 6623-6631.

    (16) Meharenna, Y. T.; Li, H. Y.; Hawkes, D. B.; Pearson, A. G.; De Voss, J.; Poulos, T. L. Crystal structure of P450cin in a complex with its substrate, 1,8-cineole, a close structural homologue to D-camphor, the substrate for P450cam.2004, 43, 9487-9494.

    (17) Olsson, M. H. M.; Sondergaard, C. R.; Rostkowski, M.; Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pK(a) predictions.2011, 7, 525-537.

    (18) Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles.2012, 8, 3257-3273.

    (19) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins.1998, 102, 3586-3616.

    (20) Mackerell, A. D.; Feig, M.; Brooks, C. L. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations.2004, 25, 1400-1415.

    (21) Brooks, B. R.; Brooks III, C. L.; Mackerell, A. D. Jr.; Nilsson, L.; Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable, R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D. M.; Karplus, M. CHARMM: the biomolecular simulation program.2009, 30, 1545-1614.

    (22) Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schafer, A.; Lennartz, C. QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis.2003, 632, 1-28.

    (23) Metz, S.; K?stner, J.; Sokol, A. A.; Keal, T. W.; Sherwood, P. ChemShell-a modular software package for QM/MM simulations.2014, 4, 101-110.

    (24) Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C. Electronic-structure calculations on workstation computers - the program system turbomole.1989, 162, 165-169.

    (25) Smith, W.; Forester, T. R. DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package.1996, 14, 136-141.

    (26) Billeter, S. R.; Turner, A. J.; Thiel, W. Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates.2000, 2, 2177-2186.

    (27) Bakowies, D.; Thiel, W. Hybrid models for combined quantum mechanical and molecular mechanical approaches.1996, 100, 10580-10594.

    (28) Becke, A. D. Density-functional thermichemistry. 3. The role of exact exchange.1993, 98, 5648-5652.

    (29) Wang, D. Q.; Zheng, J. J.; Shaik, S.; Thiel, W. Quantum and molecular mechanical study of the first proton transfer in the catalytic cycle of cytochrome P450cam and its mutant D251N.2008, 112, 5126-5138.

    (30) Zheng, J. J.; Wang, D. Q.; Thiel, W.; Shaik, S. QM/MM study of mechanisms for compound I formation in the catalytic cycle of cytochrome P450cam.2006, 128, 13204-13215.

    (31) Kim, D.; Heo, Y. S.; Ortiz de Montellano, P. R. Efficient catalytic turnover of cytochrome P450camis supported by a T252N mutation.2008, 474, 150-156.

    (32) Meharenna, Y. T.; Slessor, K. E.; Cavaignac, S. M.; Poulos, T. L.; De Voss, J. J. The critical role of substrate-protein hydrogen bonding in the control of regioselective hydroxylation in P450cin.2008, 283, 10804-10812.

    28 February 2018;

    11 June 2018

    ①This project was supported by the National Natural Science Foundation of China (No. 21573237, 21603227, 21403242, 21703246) and the Natural Science Foundation of Fujian Province (2017J05032)

    . Male, born in 1978, professor, majoring in theoretical chemistry. E-mail: chunsen.li@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-2029

    h日本视频在线播放| 国产精品久久久久久亚洲av鲁大| 国产成人91sexporn| 俄罗斯特黄特色一大片| 精品无人区乱码1区二区| 欧美一级a爱片免费观看看| 老熟妇乱子伦视频在线观看| 久久亚洲精品不卡| 听说在线观看完整版免费高清| 亚洲精品国产av成人精品 | 在线天堂最新版资源| 黄片wwwwww| 深爱激情五月婷婷| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站高清观看| 国产精品亚洲一级av第二区| 香蕉av资源在线| 日日干狠狠操夜夜爽| 国产真实乱freesex| 日本一本二区三区精品| 亚洲欧美精品自产自拍| 国产亚洲91精品色在线| 1024手机看黄色片| 欧美最黄视频在线播放免费| 日韩人妻高清精品专区| 亚洲国产欧洲综合997久久,| 国产欧美日韩一区二区精品| 联通29元200g的流量卡| 日本免费一区二区三区高清不卡| 哪里可以看免费的av片| 午夜爱爱视频在线播放| 国产精品野战在线观看| 又粗又爽又猛毛片免费看| 九色成人免费人妻av| 久久久久国内视频| 国产在线精品亚洲第一网站| 国产精品一区二区性色av| 黑人高潮一二区| 一本久久中文字幕| 青春草视频在线免费观看| 不卡一级毛片| 国产高清视频在线观看网站| 一本一本综合久久| 精品一区二区三区av网在线观看| 夜夜看夜夜爽夜夜摸| 丰满人妻一区二区三区视频av| 嫩草影院入口| 国产乱人偷精品视频| 国语自产精品视频在线第100页| 波多野结衣高清无吗| 久久99热这里只有精品18| 99热只有精品国产| 深爱激情五月婷婷| 少妇猛男粗大的猛烈进出视频 | 国产爱豆传媒在线观看| 亚洲精品日韩在线中文字幕 | 国产国拍精品亚洲av在线观看| 99在线人妻在线中文字幕| 97在线视频观看| 性插视频无遮挡在线免费观看| 国产片特级美女逼逼视频| 久久精品国产99精品国产亚洲性色| 中文在线观看免费www的网站| 麻豆一二三区av精品| 一级黄色大片毛片| 无遮挡黄片免费观看| 国产精品av视频在线免费观看| 日本 av在线| 亚洲精品色激情综合| 日本免费a在线| 性欧美人与动物交配| 久久亚洲国产成人精品v| 国产高潮美女av| 久久人人爽人人爽人人片va| 亚洲国产精品成人久久小说 | 国产女主播在线喷水免费视频网站 | 舔av片在线| 久久人人爽人人片av| 免费av观看视频| 午夜影院日韩av| 我要搜黄色片| 成人亚洲精品av一区二区| 色综合色国产| 高清日韩中文字幕在线| 日韩亚洲欧美综合| 小蜜桃在线观看免费完整版高清| 亚洲自拍偷在线| 校园人妻丝袜中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 又黄又爽又免费观看的视频| 日韩欧美三级三区| 亚洲人与动物交配视频| 免费看光身美女| 一区福利在线观看| 亚洲精品国产av成人精品 | 一级毛片久久久久久久久女| 精品99又大又爽又粗少妇毛片| 亚洲av二区三区四区| 亚洲综合色惰| 国产精品嫩草影院av在线观看| 亚洲三级黄色毛片| 22中文网久久字幕| 免费大片18禁| 成人二区视频| av福利片在线观看| 国产精品一及| 乱系列少妇在线播放| 欧美高清成人免费视频www| av在线观看视频网站免费| 一个人免费在线观看电影| 午夜精品国产一区二区电影 | 亚洲av中文av极速乱| 欧美性猛交╳xxx乱大交人| 麻豆av噜噜一区二区三区| 国产免费男女视频| 日韩欧美一区二区三区在线观看| av女优亚洲男人天堂| 亚洲中文日韩欧美视频| 色噜噜av男人的天堂激情| 日韩欧美精品免费久久| 一级毛片aaaaaa免费看小| 久久久午夜欧美精品| 午夜亚洲福利在线播放| 老女人水多毛片| 我的老师免费观看完整版| 十八禁网站免费在线| 51国产日韩欧美| 搞女人的毛片| 99久久中文字幕三级久久日本| 亚洲欧美日韩高清专用| 搡老熟女国产l中国老女人| 精品久久久久久久久亚洲| 一边摸一边抽搐一进一小说| 可以在线观看毛片的网站| 午夜福利在线在线| 免费人成视频x8x8入口观看| 黄色欧美视频在线观看| 亚洲成人精品中文字幕电影| 久久久久国内视频| 国产精品不卡视频一区二区| 亚洲美女视频黄频| 国产精品一区www在线观看| av在线亚洲专区| 亚洲欧美成人综合另类久久久 | 久久韩国三级中文字幕| 免费观看精品视频网站| 一a级毛片在线观看| 亚洲精品国产av成人精品 | 亚洲国产精品成人综合色| 一本精品99久久精品77| 亚洲精品在线观看二区| 18禁裸乳无遮挡免费网站照片| 免费人成在线观看视频色| 午夜福利在线在线| 美女cb高潮喷水在线观看| 国产av麻豆久久久久久久| 国产真实伦视频高清在线观看| 99久久无色码亚洲精品果冻| 欧美最黄视频在线播放免费| 午夜a级毛片| 精品欧美国产一区二区三| 免费av观看视频| 久久精品国产自在天天线| 免费观看的影片在线观看| 午夜视频国产福利| 久久精品国产自在天天线| 久久九九热精品免费| 看黄色毛片网站| 五月伊人婷婷丁香| 禁无遮挡网站| 搞女人的毛片| 久久中文看片网| 日韩 亚洲 欧美在线| 日本熟妇午夜| 99在线人妻在线中文字幕| 国产单亲对白刺激| 1000部很黄的大片| 99国产精品一区二区蜜桃av| 黄色欧美视频在线观看| 男人舔女人下体高潮全视频| 51国产日韩欧美| 欧美不卡视频在线免费观看| 国产成人福利小说| 国产精品久久电影中文字幕| 天天躁夜夜躁狠狠久久av| 两个人视频免费观看高清| 老师上课跳d突然被开到最大视频| 又粗又爽又猛毛片免费看| 黄色配什么色好看| 欧美日韩在线观看h| 成年女人永久免费观看视频| 久久九九热精品免费| 亚洲在线观看片| 欧美三级亚洲精品| 国产一区亚洲一区在线观看| 禁无遮挡网站| 又黄又爽又刺激的免费视频.| 看十八女毛片水多多多| 欧美日本亚洲视频在线播放| 性欧美人与动物交配| 亚洲av中文字字幕乱码综合| 色噜噜av男人的天堂激情| 插阴视频在线观看视频| 在线播放国产精品三级| 九九在线视频观看精品| 久久久精品欧美日韩精品| 九九爱精品视频在线观看| 一进一出抽搐gif免费好疼| 欧美日韩乱码在线| 真人做人爱边吃奶动态| 免费电影在线观看免费观看| 欧美3d第一页| 麻豆久久精品国产亚洲av| 午夜亚洲福利在线播放| 国产在线男女| 国内揄拍国产精品人妻在线| a级毛色黄片| 日本成人三级电影网站| 一夜夜www| 国产成人a区在线观看| 国产精品无大码| 午夜福利视频1000在线观看| 亚洲国产精品合色在线| 女生性感内裤真人,穿戴方法视频| 成熟少妇高潮喷水视频| 蜜臀久久99精品久久宅男| 一边摸一边抽搐一进一小说| 国产精品不卡视频一区二区| 亚洲熟妇熟女久久| 久久久久久久久久久丰满| 神马国产精品三级电影在线观看| 亚洲最大成人手机在线| 黄色日韩在线| 在线观看美女被高潮喷水网站| 亚洲在线自拍视频| 国内揄拍国产精品人妻在线| 欧美3d第一页| 男女啪啪激烈高潮av片| 久久午夜亚洲精品久久| 亚洲经典国产精华液单| 一个人免费在线观看电影| 联通29元200g的流量卡| 在线免费观看的www视频| 成人二区视频| 91午夜精品亚洲一区二区三区| 中国美女看黄片| 91狼人影院| 欧美精品国产亚洲| av黄色大香蕉| 一级a爱片免费观看的视频| 久久久国产成人免费| 99久久九九国产精品国产免费| 国产一区二区亚洲精品在线观看| 黄色欧美视频在线观看| 久久久久久久久大av| 国产视频内射| 99久久久亚洲精品蜜臀av| 欧美成人a在线观看| 日韩成人伦理影院| 长腿黑丝高跟| 国产乱人偷精品视频| 亚洲成人精品中文字幕电影| 免费在线观看成人毛片| 国产免费一级a男人的天堂| 亚洲国产精品成人综合色| 国产亚洲精品综合一区在线观看| 国产成人福利小说| 黄色欧美视频在线观看| 丰满人妻一区二区三区视频av| 老司机福利观看| 日韩精品青青久久久久久| 久久久久九九精品影院| 亚洲精品一卡2卡三卡4卡5卡| 嫩草影院精品99| 亚洲av成人精品一区久久| 最新中文字幕久久久久| 国产精品伦人一区二区| 国产av在哪里看| 欧美色视频一区免费| 精品福利观看| 成人午夜高清在线视频| 国产探花极品一区二区| 听说在线观看完整版免费高清| 亚洲av成人精品一区久久| 国内揄拍国产精品人妻在线| 成熟少妇高潮喷水视频| 亚洲乱码一区二区免费版| 老司机影院成人| 国产黄片美女视频| 69av精品久久久久久| 97超碰精品成人国产| 长腿黑丝高跟| 国产色爽女视频免费观看| 最新中文字幕久久久久| 亚洲av电影不卡..在线观看| 亚洲欧美日韩无卡精品| a级毛色黄片| 老熟妇仑乱视频hdxx| 男插女下体视频免费在线播放| 看免费成人av毛片| 一个人免费在线观看电影| 午夜视频国产福利| 国产精品日韩av在线免费观看| 国产综合懂色| 久久久成人免费电影| 亚洲av不卡在线观看| 最好的美女福利视频网| 97超级碰碰碰精品色视频在线观看| 不卡一级毛片| 久久久色成人| 身体一侧抽搐| 男插女下体视频免费在线播放| 精品福利观看| 毛片一级片免费看久久久久| 国产毛片a区久久久久| 久久久精品欧美日韩精品| 美女被艹到高潮喷水动态| 国产精品,欧美在线| 精品久久久久久成人av| 国产真实伦视频高清在线观看| 久久人人爽人人片av| 日本免费一区二区三区高清不卡| 国产成人aa在线观看| 午夜福利在线观看免费完整高清在 | 日韩高清综合在线| 国产视频一区二区在线看| 日日摸夜夜添夜夜爱| av在线亚洲专区| 亚洲熟妇中文字幕五十中出| 欧美色欧美亚洲另类二区| 人妻制服诱惑在线中文字幕| 久久久久久伊人网av| 桃色一区二区三区在线观看| 国产三级中文精品| 秋霞在线观看毛片| 久久久午夜欧美精品| 国产美女午夜福利| 久久精品人妻少妇| 中文字幕精品亚洲无线码一区| 亚洲中文字幕一区二区三区有码在线看| 在线观看午夜福利视频| 一级黄色大片毛片| 最近手机中文字幕大全| 亚洲中文字幕日韩| 久久久色成人| 久久久久久九九精品二区国产| 麻豆国产av国片精品| 国产极品精品免费视频能看的| 亚洲精品久久国产高清桃花| 日本黄色视频三级网站网址| 成人无遮挡网站| 亚洲欧美日韩东京热| 少妇的逼好多水| 性欧美人与动物交配| 亚洲国产高清在线一区二区三| 少妇裸体淫交视频免费看高清| 午夜免费男女啪啪视频观看 | 日韩,欧美,国产一区二区三区 | 国产精品综合久久久久久久免费| 国产片特级美女逼逼视频| 精品一区二区三区人妻视频| 午夜爱爱视频在线播放| 此物有八面人人有两片| 桃色一区二区三区在线观看| 少妇人妻一区二区三区视频| 欧美成人精品欧美一级黄| 欧美日韩在线观看h| 干丝袜人妻中文字幕| 亚洲真实伦在线观看| 三级毛片av免费| 又粗又爽又猛毛片免费看| 国产黄色视频一区二区在线观看 | 在线天堂最新版资源| 一级毛片我不卡| 欧美日韩综合久久久久久| 天天躁日日操中文字幕| 国产高清不卡午夜福利| 毛片女人毛片| 国内少妇人妻偷人精品xxx网站| 成人性生交大片免费视频hd| 日日啪夜夜撸| 干丝袜人妻中文字幕| 少妇人妻一区二区三区视频| 国产精品久久电影中文字幕| 我的女老师完整版在线观看| 中文字幕久久专区| 男女边吃奶边做爰视频| 国产亚洲精品av在线| 超碰av人人做人人爽久久| av在线亚洲专区| 午夜亚洲福利在线播放| 精品福利观看| 国产亚洲av嫩草精品影院| 国产精品久久久久久久电影| av女优亚洲男人天堂| 午夜福利高清视频| 美女高潮的动态| 一级a爱片免费观看的视频| 一卡2卡三卡四卡精品乱码亚洲| 成人国产麻豆网| 欧洲精品卡2卡3卡4卡5卡区| 美女黄网站色视频| 成人欧美大片| 嫩草影院精品99| 国产精品99久久久久久久久| 亚洲aⅴ乱码一区二区在线播放| 国产毛片a区久久久久| 毛片一级片免费看久久久久| 久久精品91蜜桃| 最近在线观看免费完整版| 久久热精品热| 性欧美人与动物交配| 精品久久久久久久久亚洲| 欧美高清性xxxxhd video| 久久久久久伊人网av| 精品久久久久久久久久免费视频| 欧美一区二区国产精品久久精品| 色5月婷婷丁香| 日日干狠狠操夜夜爽| 国产白丝娇喘喷水9色精品| videossex国产| 久久精品91蜜桃| 国产人妻一区二区三区在| 天天躁夜夜躁狠狠久久av| 欧美色欧美亚洲另类二区| 一级a爱片免费观看的视频| 欧美高清性xxxxhd video| 亚洲av.av天堂| 人妻丰满熟妇av一区二区三区| 精品久久久久久久久av| 亚洲国产日韩欧美精品在线观看| 69av精品久久久久久| 国产精品亚洲一级av第二区| 简卡轻食公司| 人人妻人人澡欧美一区二区| 亚洲美女搞黄在线观看 | 欧美日本视频| 少妇猛男粗大的猛烈进出视频 | 五月玫瑰六月丁香| 赤兔流量卡办理| 俄罗斯特黄特色一大片| 网址你懂的国产日韩在线| 男插女下体视频免费在线播放| 国产高潮美女av| 97超级碰碰碰精品色视频在线观看| 五月伊人婷婷丁香| 丝袜喷水一区| 97在线视频观看| 特级一级黄色大片| 亚洲高清免费不卡视频| 不卡一级毛片| 桃色一区二区三区在线观看| 久久婷婷人人爽人人干人人爱| 成人美女网站在线观看视频| 乱人视频在线观看| 亚洲经典国产精华液单| 1024手机看黄色片| av在线观看视频网站免费| 校园春色视频在线观看| 国产精品人妻久久久影院| 国产激情偷乱视频一区二区| 日韩成人av中文字幕在线观看 | 国产成人aa在线观看| 俺也久久电影网| 三级国产精品欧美在线观看| 欧美色欧美亚洲另类二区| 色噜噜av男人的天堂激情| 丝袜喷水一区| 久久久精品欧美日韩精品| 大香蕉久久网| 1024手机看黄色片| 精品人妻视频免费看| 精品久久久久久久久久久久久| 国产欧美日韩精品亚洲av| 久久久久久久久中文| 欧美zozozo另类| 女同久久另类99精品国产91| 人妻少妇偷人精品九色| 日本色播在线视频| 又黄又爽又刺激的免费视频.| 久久久久久大精品| 人妻制服诱惑在线中文字幕| 99久国产av精品国产电影| 蜜臀久久99精品久久宅男| 成年av动漫网址| www.色视频.com| 国产91av在线免费观看| 一a级毛片在线观看| 成年av动漫网址| 九九久久精品国产亚洲av麻豆| 久久人妻av系列| 噜噜噜噜噜久久久久久91| 久久久久国产精品人妻aⅴ院| 国产亚洲精品久久久com| 99国产极品粉嫩在线观看| 高清毛片免费看| 亚洲熟妇熟女久久| 久久久久国产网址| 最近在线观看免费完整版| 国产一区二区三区av在线 | 午夜精品在线福利| 日本黄大片高清| 美女高潮的动态| 高清日韩中文字幕在线| 亚洲丝袜综合中文字幕| 久久久久久国产a免费观看| 成人精品一区二区免费| 国产精品精品国产色婷婷| 亚洲无线观看免费| 久久久久久久午夜电影| 一级毛片aaaaaa免费看小| 床上黄色一级片| 国产精品野战在线观看| 色吧在线观看| 国产精品一区二区免费欧美| 国产精品一及| 真实男女啪啪啪动态图| 亚洲av免费在线观看| 又黄又爽又刺激的免费视频.| 亚洲精品色激情综合| 免费观看精品视频网站| 国产黄a三级三级三级人| 亚洲丝袜综合中文字幕| 一级毛片电影观看 | 亚洲av成人av| 欧美潮喷喷水| 成人特级av手机在线观看| 免费av观看视频| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av涩爱 | 国产精华一区二区三区| 麻豆久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| av天堂在线播放| 国产精品伦人一区二区| 五月伊人婷婷丁香| 联通29元200g的流量卡| 99国产精品一区二区蜜桃av| 亚洲成人久久性| 亚洲av电影不卡..在线观看| 午夜福利视频1000在线观看| 国产黄片美女视频| 成人无遮挡网站| 三级国产精品欧美在线观看| 亚洲国产精品成人久久小说 | 一区福利在线观看| 国产在视频线在精品| 亚洲av美国av| 成人欧美大片| 一级毛片电影观看 | 国产黄a三级三级三级人| 午夜视频国产福利| 深爱激情五月婷婷| 欧美激情久久久久久爽电影| 亚洲五月天丁香| 成年女人看的毛片在线观看| 亚洲国产色片| 亚洲av中文av极速乱| 又爽又黄无遮挡网站| 国内揄拍国产精品人妻在线| 最近最新中文字幕大全电影3| 波多野结衣高清作品| 国产精品野战在线观看| 深爱激情五月婷婷| 国产精品国产高清国产av| 日韩高清综合在线| 91久久精品电影网| 99热6这里只有精品| 18禁黄网站禁片免费观看直播| 午夜福利成人在线免费观看| 99热网站在线观看| 亚洲三级黄色毛片| 毛片一级片免费看久久久久| 久久久午夜欧美精品| 国产 一区 欧美 日韩| 国产黄色小视频在线观看| 12—13女人毛片做爰片一| 亚洲不卡免费看| 中国国产av一级| 永久网站在线| 99热这里只有精品一区| 久久久精品欧美日韩精品| 免费观看在线日韩| 午夜福利成人在线免费观看| 91久久精品国产一区二区三区| 全区人妻精品视频| 特大巨黑吊av在线直播| 男女边吃奶边做爰视频| 在线观看免费视频日本深夜| 日本黄色片子视频| 99在线人妻在线中文字幕| 人人妻人人澡人人爽人人夜夜 | 精品人妻偷拍中文字幕| av黄色大香蕉| 日本a在线网址| 91午夜精品亚洲一区二区三区| 国产aⅴ精品一区二区三区波| 精品免费久久久久久久清纯| 日本免费一区二区三区高清不卡| 天堂影院成人在线观看| 最近中文字幕高清免费大全6| 男女啪啪激烈高潮av片| 久久久a久久爽久久v久久| 欧美激情在线99| av天堂在线播放| 青春草视频在线免费观看| 18禁在线无遮挡免费观看视频 | 丝袜喷水一区| 丝袜美腿在线中文| 国产av在哪里看| 欧美最黄视频在线播放免费| 成人无遮挡网站| 亚洲精品成人久久久久久| 在线国产一区二区在线| 精品欧美国产一区二区三|