• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical Study on the Reaction Mechanism of o-Aminophenol, Acetic Acid and Phosphorus Oxytrichloride One-pot to Form 2-Methyl Benzoxazole①

    2019-01-05 09:34:26ZHANGFuLan
    結(jié)構(gòu)化學(xué) 2018年12期

    ZHANG Fu-Lan

    ?

    Theoretical Study on the Reaction Mechanism of-Aminophenol, Acetic Acid and Phosphorus Oxytrichloride One-pot to Form 2-Methyl Benzoxazole①

    ZHANG Fu-Lan②

    (408003)

    The reaction mechanism of-aminophenol, acetic acid and phosphorus oxytrichlo- ride in one-pot to form 2-methyl benzoxazole was studied by density functional theory. The geometries of the reactants, transition states, intermediates and products were optimized at the GGA/PW91/DNP level. Vibration analysis was carried out to confirm the transition state structure. Two possible reaction pathways were investigated in this study. The result indicates that the reaction Re→TS1→IM1→TSA2→IMA2→TSA3→IMA3→TSA4→IMA4→TSA5→P2is the main pathway, the activation energy of which is the lowest. Re→TS1→IM1 is the rate-limiting step, with the activation energy being 221.54 kJ·mol-1and the reaction heat being 10.06 kJ·mol-1. The dominant product predicted theoretically is in agreement with the experiment results.

    -aminophenol, acetic acid, phosphorus oxytrichloride, 2-methyl benzoxazole, density functional, reaction mechanism;

    1 INTRODUCTION

    Heterocyclic compounds exist widely in nature. It is the largest number of organic compounds. Benzo- xazoleis a kind of nitrogenous heterocyclic compounds which have been widely used. It is important for pilot skeleton and maternal in organic synthesis. Study on the synthesis of these com- pounds is one of the focuses in recent twenty years, because it has many physiological activities, drug activities, and so on[1, 2]. For example, they have been widely applied by antimicrobial[3], anticon- vulsant[4], antifungal[5], anti-inflammation[6], antitu- mor[7, 8], and so forth. According to relevant research, benzoxazoles were used as heat-resistant materials, because they have high heat resistance and corrosion resistance[9]. They have been widely applied by fluorescent brightener and scintillator[10, 11].

    In recent years, benzoxazoles are so widely used, and their synthesis reaction has become attractive in chemistry. There are many ways in the high-yield synthesis of benzoxazoles[12-17]. In particular, Tang. developed a new way[17], as shown in Fig. 1. Four new series of 2-alkyl, 2-aryl and 2-styryl benzoxazoles were synthesized by using-amino- phenol, acetic acid and phosphorus oxytrichloride in refluxing CHCl3in one-pot. Compared with the traditional methods, this method has the advantages of mild reaction conditions, simple operation, good yields, and easily available reaction substrate.However, the mechanism of these reactions still remains unclear. To make a better understanding of these reactions, we investigated the typical reaction mechanism of-aminophenol, acetic acid and phosphorus oxytrichloride one-pot to form 2-methyl benzoxazole by density functional theory (DFT). I hope that the research can provide a theoretical base for the synthesis of benzoxazoles. The computa- tional details are described in the next section. In section 3, we present the calculated results and discuss the reaction mechanism, followed by a conclusion in section 4.

    Fig. 1. Synthesis of 2-methyl benzoxazole

    2 CALCULATION METHODS

    All calculations have been performed using Dmol3code[18, 19]as implemented in Accelrys Materials Studio 5.0. The generalized gradient approximation (GGA) with the Perdew-Wang (PW91)[20]exchange-correlation functional is selected in the DFT calculations. All electrons are computationally inexpensive with good approxima- tion for elements with atomic numbers less than 21. The convergence criteria for geometry optimization are 2×10-5hartree, 0.004 hartree/?, 0.005 ?, and 1 × 10-5hartree for the energy, force, displacement, and selfconsistent field (SCF) density, respectively. Dmol3utilizes a basis set of numeric atomic func- tions, which are exact solutions to the Kohn-Sham equations for the atom[21]. The basis set of double numerical plus polarization (DNP) is used throughout the study.

    Preliminary transition state geometries are obtained using the integrated linear synchronous transit/quadratic synchronous transit (LST/QST) method[22]. All structures identified as stationary points are subject to full-frequency analysis to verify their classification as equilibrium geometries (zero imaginary frequencies) or transition states (one imaginary frequency). The solvent effects of species have also been acquired by COMSO.

    3 RESULTS AND DISCUSSION

    In this work, we have explored the reaction of acetic acid (Re1), phosphorus oxytrichloride (Re2), and-aminophenol (Re3), as shown in Fig. 2.The total energies, relative energies and frequencies of different compounds are listed in Table 1. The corresponding geometries of the reactants and products are shown in Fig. 3. The corresponding geometries of the intermediates and transition states are shown in Figs. 4 and 5, respectively. Thediagram of relative energies along the channels of reactions is shown in Fig. 6.

    Fig. 2. Processes for the synthesis of 2-methyl benzoxazole

    Table 1. Total Energies (E(a.u.)), Relative Energies (Erel/(kJ·mol-1))–and Frequencies ν (cm-1) of the Stationary Points on the Reaction Paths

    Fig. 3. Geometric parameters of the reactants and products (Bond length in nm and bond angle in degree)

    3. 1 Reaction mechanism analysis

    The reaction mechanism ofacetic acid (Re1),phosphorus oxytrichloride (Re2), and-amino- phenol (Re3) one-pot to form 2-methyl benzoxazole was studied by density functional theory at the GGA/PW91/DNP level. The first stage is that acetic acid and phosphorus oxytrichloride formed IM1, which is the substitution reaction. In the step, the hysroxyl bond of Re1 is replaced by the Cl(1) atom of Re2. Through a ring transition state TS1, IM1 and P1 are prepared. In this process, the activation energy is 221.54 kJ·mol-1, the heat of reaction is 10.06 kJ·mol-1and the only imaginary frequency is 255.60cm-1, as shown in Table 1.

    The C(1)–O(2) bonds are 0.1370 and 0.1958 nm in Re1 and TS1, respectively. The P(1)–Cl(1) bonds are 0.2028 and 0.2428 nm in Re2 and TS1, respectively. The C(1)–Cl(1) bonds are 0.2230 and 0.1829 nm in TS1 and IM1, respectively. The O(2)–P(1) bonds are 0.1814 and 0.1612 nm in TS1 and P1, respectively. The bond lengths of C(1)–O(2) and P(1)–Cl(1) are increased by 0.0588 and 0.0300 nm, while those of C(1)–Cl(1) and O(2)–P(1) are decreased by 0.0401 and 0.0202 nm, respectively. Obviously, the C(1)–O(2) and P(1)–Cl(1) bonds are partly broken, and the C(1)–Cl(1) and O(2)–P(1) bonds are partly formed in TS1. After the transition state TS1, intermediate IM1 and product P1 are formed.

    In the second stage, there are two possible reac- tion pathways from intermediate IM1 to the products P1 and P2: in paths A and B. The two reaction pathways are discussed as follows.

    3. 1. 1 Analysis of the chemical reaction mechanism of path A

    In path A,-aminophenol (Re3) form P2, in order of three stages of acylation, nucleophilic addition, and cyclization. Our calculations indicate that the whole reaction process consists of four steps, during which three intermediates and four transition states are formed.

    Firstly, with acylation reaction of compound IM1 and-aminophenol (Re3), compound IMA2 was prepared. In the process of forming IMA2, the NH2of Re3 reacts with the C(1)–Cl(1) of IM1. The H atom of NH2transfers to Cl(1), while the NH of NH2transfers to C(1). The acylation reaction occurs easily because the activation energy for the reaction from complex IM1 to TSA2 is 18.85 kJ·mol-1. As listed in Table 1, the heat of reaction is –30.14 kJ·mol-1and the only imaginary frequency is 146.30i cm-1. The N(1)–H(2) bonds are 0.1015 and 0.1419 nm in Re3 and TSA2, respectively. The C(1)–Cl(1) bonds are 0.1829 and 0.2477 nm in IM1 and TSA2, respectively. The C(1)–N(1) bonds are 0.2901 and 0.1382 nm in TSA2 and IMA2, respec- tively. The bond lengths of N(1)–H(2) and C(1)–Cl(1) are increased by 0.0404 and 0.0648 nm, while that of C(1)–N(1) is decreased by 0.1519 nm, respectively. Obviously, the N(1)–H(2) and C(1)– Cl(1) bonds are partly broken, and the C(1)–N(1) bond is partly formed in TSA2. After the reaction surpasses the transition state TSA2, the interme- diates IMA2 and HClare formed.

    Secondly, with nucleophilic addition reaction of compound IMA2 and phosphorus oxytrichloride (Re2), compound IMA3 was prepared. In the process of forming IMA3, the P(1) of phosphorus oxytrichloride transfers to the O(4) atom of OH in IMA2, while the H(4) atom of OH in IMA2 transfers to the Cl(1) of Re2. As listed in Table 1, the activation energy is 125.46 kJ·mol-1for the reaction from complex IMA2 to TSA3. To verify the process, we have located the ring transition state TSA3 (Fig. 5). For the TSA3 structure, the only imaginary frequency is 130.70·cm-1(Table 1). The analysis on the vibration modes indicates that this imaginary frequency is associated with Cl(1)–H(4) and P(1)–O(4) stretching motions. As listed in Figs. 3, 4, and 5, the O(4)–H(4) bonds are 0.0970 and 0.2266 nm in IMA2 and TSA3, respectively. The P(1)–Cl(1) bonds are 0.2028 and 0.2994 nm in Re2 and TSA3, respectively. The O(4)–P(1) bonds are 0.3450 and 0.1620 nm in TSA3 and IMA3, respectively. The bond lengths of O(4)–H(4) and P(1)–Cl(1) are increased, while that of O(4)–P(1) is decreased, respectively. Obviously, the O(4)–H(4) and P(1)–Cl(1) bonds are partly broken, and the O(4)–P(1) bond is partly formed in TSA3. After the transition state TSA3, and intermediate IMA3 and HClare formed.

    Subsequently, the IMA3 is isomerized. Rotating aroundC(2)–N(1) bond,IMA4 is prepared through transition state TSA4. In this process, the activation energy is 28.29 kJ·mol-1, the heat of reaction is 24.14 kJ·mol-1, and the only imaginary frequency is 73.67cm-1, as shown in Table 1.

    Finally, the IMA4 is isomerized. The imino H(3) atom transfers to the phenolic hydroxyl O(4) atom, and carbonyl O(1) crashes to C(3) on the benzene ring. Through a six-membered ring transition state TSA5, the main product P2 and by-product P1 are prepared. In this process, the activation energy is 71.92 kJ·mol-1, the heat of reaction is 67.77 kJ·mol-1, and the only imaginary frequency is 489.10cm-1, as shown in Table 1. The C(3)–O(4) bonds are 0.1406 and 0.2394 nm in IMA4 and TSA5, respectively. The N(1)–H(3) bonds are 0.1015 and 0.1030 nm in IMA4 and TSA5, respectively. The O(4)–H(3) bonds are 0.3098 and 0.0978 nm in TSA3 and P1, respectively. The C(3)–O(1) bonds are 0.2377 and 0.1379 nm in TSA5 and P2, respectively. The C(1)–N(1) bonds are 0.1392, 0.1311, and 1298 nm in IMA4, TSA5, and P2, respectively. The C(1)–O(1) bonds are 0.1222, 0.1237, and 1391 nm in IMA4, TSA5, and P2, respectively. The bond lengths of N(1)–H(3), C(3)–O(4), and C(1)–O(1) are increased, while those of C(3)–O(1), O(4)–H(3), and C(1)–N(1) are decreased, respectively. Obviously, the N(1)– H(3), C(3)–O(4), and C(1)–O(1) bonds are partly broken, and the C(3)–O(1), O(4)–H(3), and C(1)– N(1) bonds are partly formed in TSA5.

    Fig. 4. Geometric parameters of the intermediates (Bond length in nm)

    Fig. 5. Geometric parameters of the transition states (Bond length in nm)

    3. 1. 2 Analysis of chemical reaction mechanism of path B

    In path B,-aminophenol (Re3) forms P2, in order of three stages of nucleophilic addition, acylation, and cyclization. Similarly, in path A, our calculations indicate that the whole reaction process consists of four steps, during which three interme- diates and four transition states are formed, too.

    Firstly, similar to forming IMA3 in path A, with nucleophilic addition reaction of-aminophenol (Re3) and phosphorus oxytrichloride (Re2), com- pound IMB2 was prepared. In the process of forming IMB2, the P(1) of phosphorus oxytri- chloride transfers to the O(4) atom of OH in-aminophenol (Re3), while the H(4) atom of OH in-aminophenol (Re3) transfers to the Cl(1) of Re2. As listed in Table 1, the activation energy is 153.58 kJ·mol-1for the reaction. To verify the process, we have located the ring transition state TSB2 (Fig. 5). For the TSB2 structure, the only imaginary frequency is 212.40cm-1(Table 1). The analysis on the vibration modes indicates that this imaginary frequency is associated with Cl(1)–H(4) and P(1)–O(4) stretching motions. The O(4)–H(4) bonds are 0.0971 and 0.1472 nm in Re3 and TSB2, respectively. The P(1)–Cl(1) bonds are 0.2028 and 0.2965 nm in Re2 and TSB2, respectively. The O(4)–P(1) bonds are 0.2854 and 0.1607 nm in TSB2 and IMB2, respectively. The bond lengths of O(4)–H(4) and P(1)–Cl(1) are increased, while that of O(4)–P(1) is decreased, respectively. Obviously, the O(4)–H(4) and P(1)–Cl(1) bonds are partly broken, and the O(4)–P(1) bond is partly formed in TSB2. After the transition state TSB2, the intermediates IMB2 and HClare formed. Compared with path A, the bond length of O(4)–P(1) is much shorter because there is a hydrogen bond between O(3) of phosphorus oxytrichloride and amino H(3) of-aminophenol.

    Secondly, similar to forming IMA2 in path A, with the acylation reaction of compounds IM1 and IMB2, compound IMB3 was prepared. In the process of forming IMB3, the NH2of IMB2 reacts with the C(1)–Cl(1) of IM1. The H atom of NH2transfers to Cl(1), while the NH of NH2transfers to C(1). The acylation reaction occurs easily because the activation energy for the reaction from complex IMB3 to TSB3 is 105.50 kJ·mol-1. As listed in Table 1, the heat of reaction is –3.27 kJ·mol-1, and the only imaginary frequency is 422.00cm-1. The N(1)–H(2) bonds are 0.1015 and 0.1067 nm in IMB2 and TSB3, respectively. The C(1)–Cl(1) bonds are 0.1829 and 0.2481 nm in IM1 and TSB3, respectively. The C(1)–N(1) bonds are 0.1898 and 0.1396 nm in TSB3 and IMB3, respectively. The bond lengths of N(1)– H(2) and C(1)–Cl(1) are increased by 0.0052 and 0.0652 nm, while that of C(1)–N(1) is decreased by 0.0502 nm, respectively. Obviously, the N(1)–H(2) and C(1)–Cl(1) bonds are partly broken, and the C(1)–N(1) bond is partly formed in TSB3. After the transition state TSB3, intermediates IMB3 and HClare formed.

    Subsequently,the IMB3 is isomerized, and the imino proton H(3) transfers to the carbonyl O(1), thus papering compound IMB4 through a four- membered ring transition state TSB4. In this process, the activation energy is 192.85 kJ·mol-1,the heat of reaction is 49.26 kJ·mol-1and the only imaginary frequency is 1730.70cm-1, as shown in Table 1. The C(1)–O(1) bonds are 0.1226, 0.1294, and 0.1368 nm in IMB3, TSB4, and IMB4, respectively. The C(1)–N(1) bonds are 0.1396, 0.1327, and 0.1277 nm in IMB3, TSB4, and IMB4, respectively. The N(1)–H(3) bonds are 0.1019 and 0.1335 nm in IMB3 and TSB4, respectively. The O(1)–H(3) bonds are 0.1332 and 0.0974 nm in TSB4 and IMB4, respectively. The bond lengths of N(1)–H(3) and C(1)–O(1) are increased, while those of C(1)–N(1) and O(1)–H(3) are decreased, respectively. Meanwhile, the C(1)=N(1) is formed.

    Finally, the IMB4 is isomerized, the hydroxy H(3) atom transfers to the phenolic hydroxyl O(3) atom, and the hydroxy O(1) crashes to C(3) on the benzene ring. Through a six-membered ring transition state TSB5, the main product P2 and the by-product P1 are prepared. In this process, the activation energy is 188.60 kJ·mol-1,the heat of reaction is –33.86 kJ·mol-1, and the only imaginary frequency is 343.90cm-1, as shown in Table 1. The C(3)–O(4) bonds are 0.1411 and 0.2114 nm in IMB4 and TSB5, respectively. The O(1)–H(3) bonds are 0.0974 and 0.1091 nm in IMB4 and TSB5, respectively. The O(3)–H(3) bonds are 0.1384 and 0.0978 nm in TSB5 and P1, respectively. The C(3)–O(1) bonds are 0.2146 and 0.1379 nm in TSB5 and P2, respectively. The bond lengths of O(1)–H(3) and C(3)–O(4) are increased, while those of C(3)–O(1) and O(3)–H(3) are decreased, respectively.

    The configuration parameters of the reaction processes are shown in Figs. 3, 4 and 5, respectively.

    3. 2 Energy analysis

    As shown in Fig. 6, the microcosmic reaction mechanism of-aminophenol, acetic acid and phosphorus oxytrichloride has two possible reaction pathways in the gas phase.The first stage is that acetic acid and phosphorus oxytrichloride formed IM1, which is the substitution reaction. In this process, the formation of intermediate IM1 is so difficult because the activation energy for the reaction from Re to TS1 is 221.54 kJ·mol-1, and Re→TS1→IM1 is the rate-limiting step in the whole reaction process. Subsequently, the results show the two possible reaction pathways from the interme- diate IM1 to the 2-methyl benzoxazole. In path A, IMA2→TSA3→IMA3 is the rate-limiting step and the activation energy is 125.46 kJ·mol-1. In path B, IMB3→TSB4→IMB4 is the rate-limiting step and the activation energy is 192.85 kJ·mol-1. By contrast, it is better to choose path A in the course of forming P2. On the other hand, in the salvation of CHCl3,IM1→TSA2→IMA2 is the rate-limiting step and the activation energy is 270.86 kJ·mol-1in path A, while IMB3→TSB4→IMB4 is the rate-limiting step and the activation energy is 357.47 kJ·mol-1in path B. Path A is also the superior path in these two paths.

    Fig. 6. Diagram of relative energies along the channels of the reactions

    Through the preceding analyses we can conclude that the main pathway of the microcosmic reaction mechanism of-aminophenol, acetic acid and phos- phorus oxytrichloride is Re→TS1→IM1→TSA2→ IMA2→TSA3→IMA3→TSA4→IMA4→TSA5→ P2. The activation energy of Re→TS1→IM1, the rate-control step, in the pathway is lower by two feasible reaction pathways. The energy barrier and the heat of formation of the rate-limiting stepare 221.54 and 10.06 kJ?mol-1, respectively. The P2 is the main product of this reaction, which is in good accordance with the experiment[17].

    4 CONCLUSION

    The microcosmic reaction mechanism of-amino- phenol, acetic acid and phosphorus oxytrichloride has been investigated in refluxing CHCl3in one-pot to form 2-methyl benzoxazole by density functional theory (DFT) at the GGA/PW91/DNP level. We optimize the geometric configurations of reactants, intermediates, transition states, and products. The energy analysis calculation approves the authenticity of intermediates and transition states. According to our calculations we found two feasible reaction pathways. The main pathway of the reaction is Re→TS1→IM1→TSA2→IMA2→TSA3→IMA3→TSA4→IMA4→TSA5→P2. The rate-limiting step is Re→TS1→IM1, for which the energy barrier and the heat of formation of are 221.54 and 10.06 kJ?mol-1, respectively. The energy barrier of the rate-limiting step is higher, so this reaction must be heated, which is in agreement with the experimental conditions under microwave irradiation[17]. The dominant product predicted theoretically is 2-methyl benzoxazole, which is in agreement with the experi- mental results in reference[17].

    (1) Seenaiah, D.; Reddy, P. R.; Reddy, G. M.; Padmaja, A.; Padmavathi, V.; Siva Krishna, N. Synthesis, antimicrobial and cytotoxic activities of pyrimidinyl benzoxazole, benzothiazole and benzimidazole.2014, 77, 1-7.

    (2) Kaur, A.; Wakode, S.; Pathak, D. P. Benzoxazole: the molecule of diverse pharmacological importance.2015, 7, 16-23.

    (3) Temiz-Arpaci, O.; Aki-Sener, E.; Yal?in, I.; Altanlar, N. Synthesis and antimicrobial activity of some 2-[-substituted-phenyl]benzoxazol- 5-yl-arylcarboxyamides.() 2002, 335, 283-288.

    (4) Tan, Y. D.; He, X. Y.; Rao, B. Q.; Cheng, B. B.; Song, M. X.; Deng, X. Q. Synthesis and evaluation of the anticonvulsant activities of triazole-containing benzo[]oxazoles.2016, 36, 2449-2455.

    (5) Modiya, P. R.; Patel, C. N. Synthesis and screening of antibacterial and antifungal activity of 5-chloro-1,3-benzoxazol-2(3h)-one derivatives.. 2012, 2, 29-38.

    (6) Iyer, V. B.; Gurupadayya, B. M.; Sairam, K. V.; Inturi, B.; Chandan, R. S.; Tengli, A. K. Anti-inflammatory activity of 1,3,4-oxadiazoles derived from benzoxazole.2015, 2, 233-241.

    (7) Paramashivappa, R.; Phani Kumar, P.; Subba Rao, P. V.; Srinivasa Rao, A.Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors.2003, 13, 657-660.

    (8) Wang, J.; Zhang, L.; Yao, Q. Z. Synthesis and anti-tumor activities of novel pyrazole derivatives containing 1,3,4-oxadiazole.2014, 22, 730-733.

    (9) Wee, D.; Yoo, S.; Kang, Y. H.; King, Y. H.; Ka, J. W.; Cho, S. Y.; Lee, C.; Ryu, J.; Yi, M. Y.; Jang, K. S.Poly(imide-benzoxazole)gate insulators with high thermal resistance for solution processed flexible indium-zinc oxide thin-film transistors.2014, 2, 6395-6401.

    (10) Dick, P. F.; Coelho, F. L.; Rodembusch, F. S.; Campo, L. F. Amphiphilic ESIPT benzoxazole derivatives as prospective fluorescent membrane probes.2014, 55, 3024-3029.

    (11) Ge, G. Z. Synthesis of bis(2-benzoxazolyl) ethylene series fluorescent brighteners.2017, 54, 24-28.

    (12) Xiao, L. W.; Gao, H. J.; Kong, J.; Liu, G. X.; Peng, X. X.; Wang, S. J. Progress in the synthesis of 2-substituted benzoxazoles derivatives.2014, 34, 1048-1060.

    (13) Sharma, H.; Sing, N.; Jang, D. O. A ball-milling strategy for the synthesis of benzothiazole, benzimidazole and benzoxazole derivatives under solvent-free conditions.2014, 16, 4922-4930.

    (14) Anand, M.; Ranjitha, A.; Himaja, M. Silica sulfuric acid catalyzed microwave-assisted synthesis of substituted benzoxazoles and their antimicrobial activity.2011, 2, 211-213.

    (15) Endo, Y.; Backvall, J. E. Biomimetic oxidative coupling of benzylamines and 2-aminophenols: synthesis of enzoxazoles.2012, 18, 13609-13613.

    (16) Mao, Z. F.; Wang, Z.; Xu, Z. Q.; Huang, F.; Yu, Z. K.; Wang, R. Copper(II)-mediated dehydrogenative cross-coupling of heteroarenes.2012, 14, 3854-3857.

    (17) Tang, Y. L.; Du, Z. B.; Jiang, G. F. A one-pot synthetic route to substituted benzoxazoles.() 2016, 47, 408-413.

    (18) Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules.1990, 92, 508-517.

    (19) Delley, B. From molecules to solids with the DMol3approach.2000, 113, 7756-7764.

    (20) Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy.1992, 45, 13244-13249.

    (21) Delley, B. Modern density functional theory: a tool for chemistry, in: theoretical and computational chemistry, Eds.: Seminario, J. M.; Politzer, P. Elsevier, Amsterdam 1995, 2.

    (22) Halgren, T. A.; Lipscomb, W. N. The synchronous-transit method for determining reaction pathways and locating molecular transition states.. 1977, 49, 225-232.

    3 April 2018;

    13 August 2018

    the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1601215) and the Ministry of Education “Chunhui Plan” (Z2016177)

    . Born in 1976, lecture, majoring in quantum chemistry. E-mail: cjsy0606@163.com

    10.14102/j.cnki.0254-5861.2011-2032

    自拍偷自拍亚洲精品老妇| 日韩中字成人| 露出奶头的视频| 午夜老司机福利剧场| 精品日产1卡2卡| 99久久精品一区二区三区| 日本黄色视频三级网站网址| 国产精品,欧美在线| 99国产精品一区二区蜜桃av| 成年女人毛片免费观看观看9| 成人精品一区二区免费| 日韩欧美 国产精品| 国产欧美日韩精品一区二区| av.在线天堂| 国产免费av片在线观看野外av| 日本a在线网址| 可以在线观看的亚洲视频| 精品人妻一区二区三区麻豆 | 亚洲va日本ⅴa欧美va伊人久久| 国产三级中文精品| 极品教师在线免费播放| 国产单亲对白刺激| 久久精品国产亚洲av涩爱 | 不卡一级毛片| 久久婷婷人人爽人人干人人爱| 免费看美女性在线毛片视频| 久久久久性生活片| 赤兔流量卡办理| 久久热精品热| or卡值多少钱| 色视频www国产| 亚洲午夜理论影院| 人人妻,人人澡人人爽秒播| 少妇的逼好多水| 亚洲四区av| 乱码一卡2卡4卡精品| 亚洲av二区三区四区| 久久精品久久久久久噜噜老黄 | 亚洲电影在线观看av| 国产精品久久久久久精品电影| 丝袜美腿在线中文| 免费黄网站久久成人精品| 欧美日韩瑟瑟在线播放| 热99在线观看视频| 高清毛片免费观看视频网站| 中文字幕久久专区| 欧美+亚洲+日韩+国产| 久久久久久久午夜电影| 欧美丝袜亚洲另类 | 欧美成人a在线观看| 色av中文字幕| 又紧又爽又黄一区二区| 五月玫瑰六月丁香| 成人av在线播放网站| 中文字幕久久专区| 97碰自拍视频| 嫩草影院新地址| 一级av片app| 欧美绝顶高潮抽搐喷水| 亚洲美女视频黄频| 亚洲欧美日韩无卡精品| or卡值多少钱| 精品99又大又爽又粗少妇毛片 | 久久午夜亚洲精品久久| 国产激情偷乱视频一区二区| 日韩中文字幕欧美一区二区| 久久热精品热| 日本与韩国留学比较| 日本-黄色视频高清免费观看| 日韩人妻高清精品专区| eeuss影院久久| 精品国产三级普通话版| 很黄的视频免费| 老司机福利观看| 91麻豆av在线| 国产av一区在线观看免费| 精品久久久久久久人妻蜜臀av| 看免费成人av毛片| 日本免费一区二区三区高清不卡| 五月伊人婷婷丁香| 神马国产精品三级电影在线观看| 欧美国产日韩亚洲一区| 十八禁国产超污无遮挡网站| 国产精品亚洲美女久久久| 中文亚洲av片在线观看爽| 91午夜精品亚洲一区二区三区 | 麻豆国产av国片精品| 特大巨黑吊av在线直播| 啦啦啦韩国在线观看视频| 免费无遮挡裸体视频| 日本免费一区二区三区高清不卡| 日本 av在线| 中文字幕熟女人妻在线| 国产真实乱freesex| 国产在线男女| 搡老岳熟女国产| 一个人观看的视频www高清免费观看| 欧洲精品卡2卡3卡4卡5卡区| 精品不卡国产一区二区三区| 国产精品三级大全| 如何舔出高潮| 亚洲电影在线观看av| 国产高清视频在线观看网站| aaaaa片日本免费| 尾随美女入室| 日韩精品有码人妻一区| 国产精品嫩草影院av在线观看 | 在线a可以看的网站| 黄色女人牲交| 少妇裸体淫交视频免费看高清| 韩国av在线不卡| 一个人看视频在线观看www免费| 精品久久久久久久久亚洲 | 亚洲 国产 在线| 深爱激情五月婷婷| 色尼玛亚洲综合影院| 精品一区二区三区视频在线观看免费| 91久久精品国产一区二区三区| 干丝袜人妻中文字幕| 黄色配什么色好看| 亚洲18禁久久av| 久99久视频精品免费| 亚洲国产日韩欧美精品在线观看| 日韩欧美一区二区三区在线观看| 可以在线观看的亚洲视频| 久久久久免费精品人妻一区二区| 久久久久久伊人网av| 毛片女人毛片| 亚洲av中文字字幕乱码综合| 国内少妇人妻偷人精品xxx网站| 国产精品三级大全| 亚洲国产精品久久男人天堂| 中文字幕av成人在线电影| 听说在线观看完整版免费高清| 免费看日本二区| 白带黄色成豆腐渣| 欧美精品国产亚洲| 老司机午夜福利在线观看视频| 白带黄色成豆腐渣| 麻豆国产97在线/欧美| 久久久久性生活片| 在线天堂最新版资源| 国产国拍精品亚洲av在线观看| 午夜激情福利司机影院| 黄色日韩在线| 91久久精品国产一区二区三区| 国产v大片淫在线免费观看| 精品不卡国产一区二区三区| 国内毛片毛片毛片毛片毛片| 观看免费一级毛片| 亚洲美女黄片视频| 最后的刺客免费高清国语| 国产av麻豆久久久久久久| 自拍偷自拍亚洲精品老妇| 啪啪无遮挡十八禁网站| 啦啦啦韩国在线观看视频| 村上凉子中文字幕在线| 中亚洲国语对白在线视频| 啦啦啦观看免费观看视频高清| 99国产极品粉嫩在线观看| 国产伦人伦偷精品视频| 免费在线观看日本一区| 久久精品久久久久久噜噜老黄 | 国产真实伦视频高清在线观看 | 日本黄大片高清| 中文字幕熟女人妻在线| 亚洲图色成人| av天堂在线播放| 亚洲国产精品成人综合色| 国产色爽女视频免费观看| 免费在线观看影片大全网站| 香蕉av资源在线| 99riav亚洲国产免费| 亚洲男人的天堂狠狠| 成人永久免费在线观看视频| 亚洲18禁久久av| 免费在线观看成人毛片| 亚洲色图av天堂| 美女高潮喷水抽搐中文字幕| 欧美3d第一页| 日韩欧美 国产精品| 日韩欧美免费精品| 亚洲三级黄色毛片| 久久亚洲精品不卡| aaaaa片日本免费| 免费av不卡在线播放| 国产一区二区亚洲精品在线观看| 亚洲av电影不卡..在线观看| 22中文网久久字幕| 中国美女看黄片| 亚洲av中文字字幕乱码综合| 亚洲一级一片aⅴ在线观看| 一级黄片播放器| 亚洲av五月六月丁香网| 国产一区二区三区在线臀色熟女| 老女人水多毛片| 日韩欧美国产一区二区入口| 毛片女人毛片| 亚洲国产精品合色在线| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 亚洲av中文av极速乱 | 两个人的视频大全免费| 日本免费a在线| 日本一本二区三区精品| 国产 一区精品| 一本久久中文字幕| 黄色一级大片看看| 我要看日韩黄色一级片| 午夜精品一区二区三区免费看| 久久国产乱子免费精品| 精品人妻熟女av久视频| 变态另类成人亚洲欧美熟女| 亚洲av一区综合| 精品久久久久久久久久久久久| 国产精品久久久久久亚洲av鲁大| 给我免费播放毛片高清在线观看| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图| 国产色爽女视频免费观看| 国产av在哪里看| 日韩欧美精品免费久久| 成人国产综合亚洲| 偷拍熟女少妇极品色| 国产大屁股一区二区在线视频| 成人av一区二区三区在线看| 国模一区二区三区四区视频| 少妇熟女aⅴ在线视频| 亚洲熟妇中文字幕五十中出| 精品人妻一区二区三区麻豆 | 一进一出好大好爽视频| 极品教师在线视频| 日韩一本色道免费dvd| 欧美激情在线99| 国产在线男女| 亚洲av免费在线观看| 免费看日本二区| 99久久久亚洲精品蜜臀av| 少妇裸体淫交视频免费看高清| 亚洲av成人精品一区久久| 少妇人妻一区二区三区视频| 欧美黑人巨大hd| 亚洲久久久久久中文字幕| 亚洲第一区二区三区不卡| 男女边吃奶边做爰视频| 亚洲人成伊人成综合网2020| 精品不卡国产一区二区三区| 亚洲国产精品成人综合色| 赤兔流量卡办理| 国产精品一及| 亚洲美女搞黄在线观看 | 免费看美女性在线毛片视频| 人妻丰满熟妇av一区二区三区| 在线观看一区二区三区| 性欧美人与动物交配| 亚洲成人久久性| 少妇猛男粗大的猛烈进出视频 | 国产av麻豆久久久久久久| 黄色女人牲交| 精品久久久久久成人av| 色在线成人网| 一级黄片播放器| 永久网站在线| 欧美成人一区二区免费高清观看| 国内精品一区二区在线观看| 亚洲av免费在线观看| 简卡轻食公司| 成人美女网站在线观看视频| 久久精品综合一区二区三区| 人妻少妇偷人精品九色| 欧美日韩亚洲国产一区二区在线观看| 欧美最新免费一区二区三区| 国产精品一及| 桃色一区二区三区在线观看| 午夜激情欧美在线| 精品人妻一区二区三区麻豆 | 99热6这里只有精品| 国产欧美日韩精品一区二区| 亚洲av中文av极速乱 | 人妻丰满熟妇av一区二区三区| 亚洲真实伦在线观看| 69人妻影院| 天堂影院成人在线观看| 一进一出抽搐gif免费好疼| 亚洲狠狠婷婷综合久久图片| 麻豆av噜噜一区二区三区| 99久久九九国产精品国产免费| 日韩欧美一区二区三区在线观看| 久久久国产成人免费| 中文资源天堂在线| 久久精品夜夜夜夜夜久久蜜豆| a在线观看视频网站| 国产欧美日韩精品一区二区| 精品久久久久久,| 欧美黑人巨大hd| 99热精品在线国产| 亚洲自拍偷在线| 最后的刺客免费高清国语| 亚洲av中文字字幕乱码综合| 精华霜和精华液先用哪个| a在线观看视频网站| 亚洲中文日韩欧美视频| 91午夜精品亚洲一区二区三区 | 亚洲三级黄色毛片| av.在线天堂| 亚洲av.av天堂| 精品人妻熟女av久视频| 不卡视频在线观看欧美| 精品一区二区免费观看| 午夜福利视频1000在线观看| 成人欧美大片| eeuss影院久久| a在线观看视频网站| 真人做人爱边吃奶动态| 18禁黄网站禁片免费观看直播| 成年人黄色毛片网站| 亚洲精华国产精华液的使用体验 | 精品人妻一区二区三区麻豆 | 少妇被粗大猛烈的视频| 精品日产1卡2卡| 国产午夜精品久久久久久一区二区三区 | 男人舔女人下体高潮全视频| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人澡欧美一区二区| 免费在线观看成人毛片| 国产男靠女视频免费网站| 1024手机看黄色片| av在线蜜桃| 久久天躁狠狠躁夜夜2o2o| 日韩国内少妇激情av| 亚洲精品国产成人久久av| 成人一区二区视频在线观看| 亚洲av成人av| 国产av麻豆久久久久久久| 国产男人的电影天堂91| 国产精品一区二区免费欧美| 美女高潮喷水抽搐中文字幕| 国内精品久久久久精免费| 2021天堂中文幕一二区在线观| 熟女人妻精品中文字幕| 精品一区二区三区人妻视频| 简卡轻食公司| 两个人的视频大全免费| 一进一出抽搐动态| 欧美又色又爽又黄视频| 亚洲成a人片在线一区二区| 亚洲av中文av极速乱 | 欧美bdsm另类| 亚洲人成网站在线播| 婷婷色综合大香蕉| 精品99又大又爽又粗少妇毛片 | 免费观看精品视频网站| 国产成人福利小说| 人人妻人人看人人澡| 精品久久国产蜜桃| 免费av观看视频| 日韩强制内射视频| 日日夜夜操网爽| 久久精品国产自在天天线| 成人av在线播放网站| 白带黄色成豆腐渣| 深夜精品福利| aaaaa片日本免费| 中文亚洲av片在线观看爽| 亚洲精品国产成人久久av| 99热这里只有精品一区| 亚洲成人免费电影在线观看| 国产一区二区亚洲精品在线观看| 日本撒尿小便嘘嘘汇集6| 欧美精品啪啪一区二区三区| 久久亚洲精品不卡| 在线免费十八禁| 一个人看的www免费观看视频| 国国产精品蜜臀av免费| 日本在线视频免费播放| av天堂在线播放| 午夜免费激情av| 久久精品国产亚洲av涩爱 | 欧美不卡视频在线免费观看| 久久人人爽人人爽人人片va| 久久人妻av系列| 搡女人真爽免费视频火全软件 | 啦啦啦观看免费观看视频高清| 免费高清视频大片| 日日摸夜夜添夜夜添小说| 变态另类丝袜制服| 日日摸夜夜添夜夜添小说| 丰满的人妻完整版| 级片在线观看| 亚洲av成人av| 免费av观看视频| 国产精品爽爽va在线观看网站| 免费av观看视频| 免费看美女性在线毛片视频| 成人国产综合亚洲| 18禁裸乳无遮挡免费网站照片| 亚洲国产高清在线一区二区三| 能在线免费观看的黄片| 亚洲精品在线观看二区| 日本撒尿小便嘘嘘汇集6| 亚洲自拍偷在线| 蜜桃亚洲精品一区二区三区| 最新中文字幕久久久久| 亚洲天堂国产精品一区在线| 国产国拍精品亚洲av在线观看| 免费一级毛片在线播放高清视频| 日韩强制内射视频| 亚洲va日本ⅴa欧美va伊人久久| 日韩av在线大香蕉| 夜夜看夜夜爽夜夜摸| 久久久色成人| 久久欧美精品欧美久久欧美| 一级av片app| avwww免费| 久久精品国产鲁丝片午夜精品 | 亚洲午夜理论影院| 岛国在线免费视频观看| 国产老妇女一区| 久久午夜亚洲精品久久| 久久久午夜欧美精品| 欧美中文日本在线观看视频| 热99在线观看视频| 精品久久久噜噜| 麻豆国产97在线/欧美| 国产亚洲精品综合一区在线观看| 亚洲av第一区精品v没综合| 99久久九九国产精品国产免费| 中国美女看黄片| 亚洲中文字幕一区二区三区有码在线看| 99精品久久久久人妻精品| 午夜福利在线在线| 老司机福利观看| 他把我摸到了高潮在线观看| 国产精品电影一区二区三区| 欧美一区二区亚洲| 白带黄色成豆腐渣| 日本欧美国产在线视频| 午夜免费男女啪啪视频观看 | 国产精品久久久久久久久免| 日韩欧美一区二区三区在线观看| 国产探花在线观看一区二区| 欧美一区二区亚洲| av福利片在线观看| 成人av在线播放网站| 日本五十路高清| 老司机福利观看| 久久精品国产清高在天天线| 国产激情偷乱视频一区二区| 嫩草影院新地址| av福利片在线观看| 久99久视频精品免费| 日本与韩国留学比较| 精品99又大又爽又粗少妇毛片 | 国产欧美日韩精品一区二区| 超碰av人人做人人爽久久| 又黄又爽又免费观看的视频| 美女cb高潮喷水在线观看| 日韩欧美 国产精品| 桃色一区二区三区在线观看| 久久99热这里只有精品18| 国产色婷婷99| 久久精品综合一区二区三区| 亚洲成人久久爱视频| 99国产极品粉嫩在线观看| 亚洲av不卡在线观看| 日韩欧美一区二区三区在线观看| 窝窝影院91人妻| 免费观看人在逋| 国产精品98久久久久久宅男小说| 麻豆国产av国片精品| av在线观看视频网站免费| 精品99又大又爽又粗少妇毛片 | 国产午夜精品论理片| 久久亚洲真实| 国产精品综合久久久久久久免费| 成人鲁丝片一二三区免费| 久久婷婷人人爽人人干人人爱| 人妻丰满熟妇av一区二区三区| 国产精品自产拍在线观看55亚洲| 少妇高潮的动态图| 99在线视频只有这里精品首页| 人人妻,人人澡人人爽秒播| 一卡2卡三卡四卡精品乱码亚洲| 美女高潮喷水抽搐中文字幕| 中文资源天堂在线| 久久久久国内视频| 波多野结衣高清无吗| 亚洲av不卡在线观看| 国产成年人精品一区二区| 欧美日本视频| 性色avwww在线观看| 久久精品人妻少妇| 欧美极品一区二区三区四区| 99久久中文字幕三级久久日本| 波多野结衣巨乳人妻| 欧美激情在线99| 欧美日韩黄片免| 夜夜夜夜夜久久久久| 色综合亚洲欧美另类图片| 日日摸夜夜添夜夜添小说| 狠狠狠狠99中文字幕| 国产极品精品免费视频能看的| 麻豆精品久久久久久蜜桃| 黄色女人牲交| 午夜免费男女啪啪视频观看 | 黄色丝袜av网址大全| 精品久久久久久久久av| 国产毛片a区久久久久| 亚洲四区av| 亚洲成人精品中文字幕电影| 一本精品99久久精品77| 综合色av麻豆| av福利片在线观看| 少妇人妻精品综合一区二区 | 国产精品98久久久久久宅男小说| 国产成人aa在线观看| 久久精品久久久久久噜噜老黄 | 99国产精品一区二区蜜桃av| 国内精品美女久久久久久| 免费看av在线观看网站| 在线免费观看的www视频| 国产精品不卡视频一区二区| 欧美成人一区二区免费高清观看| 亚洲av中文av极速乱 | 琪琪午夜伦伦电影理论片6080| 国产精品一区二区三区四区免费观看 | 国产成人av教育| 少妇丰满av| 美女被艹到高潮喷水动态| 日日干狠狠操夜夜爽| 1000部很黄的大片| 成人亚洲精品av一区二区| 十八禁网站免费在线| 伦精品一区二区三区| 最后的刺客免费高清国语| av天堂在线播放| 一本精品99久久精品77| 听说在线观看完整版免费高清| 欧美日韩综合久久久久久 | 成人毛片a级毛片在线播放| 特大巨黑吊av在线直播| 麻豆国产97在线/欧美| 免费无遮挡裸体视频| 18禁黄网站禁片午夜丰满| 男女做爰动态图高潮gif福利片| 亚洲av成人精品一区久久| 女生性感内裤真人,穿戴方法视频| 午夜免费男女啪啪视频观看 | 亚洲av第一区精品v没综合| 国产精品野战在线观看| 免费高清视频大片| 国产av麻豆久久久久久久| a级毛片a级免费在线| 国产午夜精品论理片| av视频在线观看入口| 亚洲专区国产一区二区| 男插女下体视频免费在线播放| 人妻夜夜爽99麻豆av| 少妇人妻精品综合一区二区 | 精品无人区乱码1区二区| 亚洲乱码一区二区免费版| 成熟少妇高潮喷水视频| 久久亚洲精品不卡| 国产高清三级在线| 男女边吃奶边做爰视频| 伦精品一区二区三区| 少妇猛男粗大的猛烈进出视频 | 国产精品久久久久久av不卡| 色哟哟哟哟哟哟| 一卡2卡三卡四卡精品乱码亚洲| 琪琪午夜伦伦电影理论片6080| 在线观看66精品国产| x7x7x7水蜜桃| 色吧在线观看| 欧美绝顶高潮抽搐喷水| 午夜爱爱视频在线播放| www.色视频.com| 成人永久免费在线观看视频| 精品一区二区三区视频在线| 日韩精品有码人妻一区| 亚洲午夜理论影院| 亚洲最大成人手机在线| 最新中文字幕久久久久| 日韩在线高清观看一区二区三区 | 亚洲av五月六月丁香网| 免费在线观看成人毛片| 欧美黑人欧美精品刺激| 白带黄色成豆腐渣| 99热这里只有是精品在线观看| 国产成年人精品一区二区| 国产精品一区二区三区四区免费观看 | 成人二区视频| 精品久久国产蜜桃| 九九在线视频观看精品| 亚洲欧美精品综合久久99| 丰满乱子伦码专区| 亚洲国产高清在线一区二区三| 老司机福利观看| 亚洲最大成人av| 夜夜看夜夜爽夜夜摸| 欧美极品一区二区三区四区| 狂野欧美激情性xxxx在线观看| 在线天堂最新版资源| 精品日产1卡2卡| 中文字幕熟女人妻在线| 国内精品美女久久久久久| 亚洲美女搞黄在线观看 | 如何舔出高潮| 综合色av麻豆| 不卡一级毛片| 国产精品永久免费网站| 少妇裸体淫交视频免费看高清| 在线观看av片永久免费下载| 日韩欧美国产在线观看| 成人午夜高清在线视频|