• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanoclusters Au19Pd and Au19Pt Catalyzing CO Oxidation: a Density Functional Study①

    2019-01-05 07:48:28ZHANGJingYUWeiLingZHOUShengHuLIYiZHANGYongFnCHENWenKi
    結(jié)構(gòu)化學(xué) 2018年12期

    ZHANG Jing YU Wei-Ling ZHOU Sheng-Hu LI Yi ZHANG Yong-Fn CHEN Wen-Ki, b, c

    ?

    Nanoclusters Au19Pd and Au19Pt Catalyzing CO Oxidation: a Density Functional Study①

    ZHANG JingaYU Wei-LingaZHOU Sheng-HuaaLI YiaZHANG Yong-FanaCHEN Wen-Kaia, b, c②

    a(350116)b(350116)c(610005)

    The gold atoms on the Au20clusterhad been substituted by the palladium and platinum atoms to obtain the doped clusters with more stable geometries as a function of the bind energy and interaction energy in the previous study. Therefore, we investigated the catalytic activities of the Au19Pd and Au19Pt clusters for CO oxidation along the Langmuir-Hinshelwood mechanism. It is found that the coadsorption of CO and O2on the doped clusters is obviously stronger than on the Au20cluster, especially on the doped atom, which makes potential energy of the transition state lower than the total energy of the reactants so that it can promote CO oxidation. The reaction on these doped clusters with the heteroatom on the vertex is more difficult. However, the Au19Pd (S) is more prone to catalyzing the CO oxidation, in which the rate-limiting step has thelower energy barrier of 38.84 kJ/mol for this study. Therefore, the single atom can be modified to change the catalytic activity of the cluster for the CO oxidation. Meanwhile, the different sites on the clusters have different strengths of activity for the reaction.

    bimetallic cluster, catalytic activity, CO oxidation, density functional theory;

    1 INTRODUCTION

    Note that the noble metals are widely used as catalysts in recent years. However, it is a very tough problem how to use them efficiently because of their limited resources[1]. It is found that bimetallic cataly- sts can largely improve the efficiency and selectivity of catalytic process instead of monometallic cataly- sts, which can be explained by the concepts of “ensemble” or “geometric” and “l(fā)igand” or “electronic” effect in electrochemistry and heterogenous cataly- sis[1, 2]. Therefore, the surface composition of bime- tallic alloys hinders the formation of inhibited species in the reaction, and the bimetallic systempossesses a special overall catalytic activity via the modification of electronic structure. Meanwhile, it is feasible to make full use of noble metals and improve their catalytic activities by means of size control[3, 4]. Recently, metallic nanocluster with so unique shape and size exhibits unusual physical and chemical properties that have many applications in the fields of magnetic, optical and electronic mate-rials, photocatalyts, catalysts, drug delivery and so on, which have been of great interest and intensely researched[5-9]. It is especially found that bimetallic nanoclusters have been particularly attractive because of the improvement of catalytic pro- perties[10-12]. And bimetallic catalysts also have been investigated to obtain the relationship between the metal structure and catalytic activity[13].

    The gold clusters with metal impurity have attracted considerable attention on the basis of experimental and theoretical researches, and there are many potential applications in catalysis, mole- cular electronics, material science, and biomedical diagnosis[14-21]. The presence of heteroatom in the doped gold clusters coordinates the electronic and geometric properties of these bimetallic clusters so as to alter their chemical reactivity in a desirable manner[22, 23]. The theoretical studies illustrate the influence of heteroatoms on the chemical reactivity of these bimetallic clusters, which has been proved by experiments[15, 16, 24-31]. Moreover, it is found that alkali or transition metal atoms can beselected as heteroatoms doped in the cluster, which can signifi- cantly improve the catalytic activity of the host gold cluster[25, 26, 28-32].

    Goldcan be in conjunction with transition metals like platinum[9, 33-44]or palladium as a useful alloying metal because of its relatively low reactivity in many catalytic reactions. Platinum has many applications including CO/NOoxidation, syngas reformation, and petroleum refinement as an excellent catalyst. And also palladium served as catalyst for CO oxidation and Suzuki reaction in the form of monometal and bimetal[45, 46]. It is found that gold nanoparticles possess high catalytic activity for oxidation reactions[47-51], which is demonstrated by the study about the CO oxidation on the gold nanocluster under low temperature in 1989[49]. The catalytic activities of Au–Pt nanoparticles are superior to those nanoclusters containing gold or platinum alone, which is indicated by recent theoretical studies[52]. Therefore, Pt-doped gold clusters have attracted special attention because of many potential application in catalysis[53]and high catalytic activities for a lot of reactions. There are several studies about the interaction between CO molecule and Pt-doped small gold clusters with up to 13 atoms[20, 21, 27, 28, 54]. Note that many studies indicate that the presence of platinum atom could promote the CO adsorption on the gold cluster, in which the platinum site is more prone to CO adsorption. In general, the platinum in gold clusters enhances the catalytic activity for CO oxidation. Among various bimetallic systems, Au–Pd alloy nanoparticles have also attracted particular attention as catalysts in a number of reactions like CO oxidation, acetylene cyclotrimerization, the synthe- sis of vinyl acetate monomer, and selective oxidation of alcohols to aldehydes[55-57]. Thereby, we have rationally improved the catalytic activity of Au–Pd alloy as a function of a deeper understanding of physical reasons.

    In the magical world of gold clusters, there is a gold cluster containing 20 gold atoms (Au20) which is enough chemically inert and a highly stable cluster with a tetrahedral pyramidal structure on the basis ofinitio DFT-based calculation[58, 59]and experimental studies like far-infrared vibrational spectroscopy and photoelectron spectroscopy. Fur- thermore, we have consulted review paper written by Kryachko and Remacle, regarding the properties of magic gold cluster Au20. There is a large energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) for Au20cluster, which is superior to that of C60to manifest that Au20cluster should be a chemically inert and stable cluster.Moreover, the gold atom located at the surface, vertex and edge of the Au20cluster with a tetrahedral structure could be substituted with the platinum and palladium atoms, respectively, which could not obviously change the original geometry of the Au20cluster and obtain more stable geometries on the basis of the previous study.

    In this study, we have firstly obtained the Au19Pt and Au19Pd clusters, in which the platinum and palladium atoms substitute with the gold atom of Au20cluster, respectively. Then we have detailedly investigated the catalytic activities of Au19Pt and Au19Pd clusters for CO oxidation along the Langmuir-Hinshelwood reaction pathway. Therefore, the calculated results involved in the reaction to the Au19Pt and Au19Pd clusters are obtained via DFT-based calculation so as to compare with that on the Au20cluster to obtain some information about the influence of different doped atoms located at different sites on the catalytic activity of cluster.

    2 COMPUTATIONAL METHOD

    To investigate the catalytic activities of the Au19Pt and Au19Pd clusters for CO oxidation, the program package Dmol3of Materials Studio of Accelrys[60]Inc has been performed to optimize geometries and searchtransition states. Generalized gradient appro- ximation (GGA) with exchange-correlation func- tional proposed by Perdew, Burke and Ernzerhof (PBE) is performed.The DFT semicore pseudopo- tential is employed for the core electrons of gold, platinum and palladium atoms, and the double- numerical basis with polarization functions (DNP) has been also employed in the calculation. During geometrical optimization, the energy, maximum force, and maximum displacement for convergence tolerance are 2.0′10-5Hartree, 0.004 Hartree/? and 0.005 ?, respectively.The transition states are determined by the complete LST/QST method, which means linear synchronous transition and quadratic synchronous transition, respectively. And the RMS convergence, charge mixing and spin mixing are 0.01, 0.1 and 0.2, respectively, in the process of transition state search. Furthermore, every transition state structure has a single imaginary frequency, which is in accordance with the reaction pathway.The Fermi smearing method for a window size is set as 0.005 Hartree, and it is 4.5 ? for the orbital cutoff range, which could accelerate the convergence. Meanwhile, every atom on the cluster is relaxed in the calculation.

    And also we calculate the adsorption energy of gas molecule on the cluster using the following equation:ads=system–(cluster+CO/O2), whereadsis the adsorption energy for the system,systemmeans the total energy of the substrate and gas molecule together,clusterpresents the energy of the substrate, andCO/O2is the energy of the CO or O2molecule alone.

    3 RESULTS AND DISCUSSION

    A gold atom on the Au20cluster with a tetrahedral pyramidal structure could be modified to palladium or platinum atom, as shown in Fig. 1, which does not obviously change the geometry after optimization and also makes the structure more stable as a function of the bind energy and interaction energy in the previous study. Although the stabilities of Au19Pd clusters increase in the order of Au19Pd (S) > Au19Pd (E) > Au19Pd (V), it is in accordance with the stabilities of Au19Pt clusters via DFT-based calculation. Therefore, we have investigated the catalytic activities of these clusters for CO oxidation as a function of the Langmuir-Hinshelwood mecha- nism in order to compare with the Au20cluster.

    Fig. 1. Optimized geometries of Au19X (X = Pt, Pd) clusters

    Note that CO adsorption on these doped clusters is an elementary step in this reaction, which has been firstly studied according to Langmuir-Hinshel- wood channel. The CO adsorption energies on the doped clusters have been indicated in Table 1. It is found that CO adsorption on the heteroatom is much stronger than that on other gold atoms of the doped cluster, which is in accordance with the previous study. And also it is noted that the CO is more prone to be on the vertex of the Au20cluster with the adsorption energy to be –83.94 kJ/mol, which is much weaker than that on the heteroatom located at the doped cluster, as shown in Fig. 1. Therefore, both of the palladium and platinum atoms on these clusters can promote CO adsorption in this study, especially the latter. Furthermore, the doped atoms at different sites of the cluster influence the CO adsorption, which suggests that CO is more prone to be on the heteroatom located at the vertex and edge of the doped cluster, respectively. Instead, CO adsorption in the reaction can’t totally determine catalytic activity of the cluster. The coadsorption for CO and O2on the cluster is also a crucial step for CO oxidation as a function of the previous study. Thereby, we have further studied the catalytic activities of these clusters via DFT-based calculation.

    Table 1. Adsorption Energies of CO Molecule on the Au19Pd and Au19Pt Clusters, in Which the Adsorption Sites Are as a Function of Fig. 1, Respectively

    Therefore, Figs. 2 and 3 present the energy profiles without considering the energy of the bare substrates and reaction coordinates for the first CO oxidation on the Au19Pd and Au19Pt clusters, respectively, in which the bond lengths of the molecules on the clusters are changing along the reaction channel and the calculated results are shown in Table 3 in detail. The bond distances of CO and O2are 1.14 and 1.23 ?, respectively, which are elongated to 1.16and 1.24 ? so that both CO and O2are activated after adsorption on the Au19Pd clusters. And also it is found that O2adsorption has no obvious influence on the bond distance of CO on the clusters, but can make the systems more stable. Meanwhile, the O2adsorption on the Au20cluster with CO could lower the stability of the system and coadsorption of CO and O2on the Au20cluster is much weaker than that on the Au19Pd clusters. Furthermore, the Au19Pd (V) is more prone to enhance the coadsorption of CO and O2than other two Au19Pd clusters. Meanwhile, the coadsorption of CO and O2on the Au19Pt clusters is in accordance with that on the Au19Pd clusters. However, it has been obtained that the Au19Pt clusters can facilitate the coadsorption of CO and O2more obviously, especially the Au19Pt (V) cluster, in comparison with the Au19Pd clusters. In general, these clusters shown in Fig. 1 can distinctly enhance the coadsorption of CO and O2, which make potential energy of the transition state lower than the total energy of the reactants so that it is enough to promote the first CO oxidation. Then the middle state is firstly generated by the CO and O2coadsorption on these clusters, in which the doped cluster with the heteroatom on the surface or edge catalyzes the formation of the middle state in the reaction more obviously. And also the catalytic activity of the palladium-doped cluster on the clusters is similar to that of the platinum-doped cluster for the production of the middle state. Furthermore, we have obtained that the Au20cluster possesses higher catalytic activity for the formation of the middle state with the energy barrier of 11.58 kJ/mol than those doped clusters shown in Fig. 1, in which theenergy barriers are 38.84 and 35.10 kJ/mol on Au19Pd (S) and Au19Pt (E) clusters, respectively. However, the decomposition of the middle state on the Au20cluster needs to surmount the energy barrier of 41.49 kJ/mol, which is a rate-limiting step in a complete reaction process and obviously more difficult than on the Au19Pd (S) and Au19Pt (S) with the energy barriers of 2.18 and 16.16 kJ/mol, respectively. Thereby, the palladium or platinum on the surface of the cluster is more prone to facilitating the decomposition of the middle state, especially the Au19Pd(S). That indicates that the single atom on the cluster is modified to change the catalytic activity of the substrate. Moreover, the doped atom located at different sites of the cluster has obvious influence on the activity of the substrate in the reaction process.

    Fig. 2. Energy profile and reaction coordinates for the first CO molecule oxidation on the Au19Pd clusters

    Fig. 3. Energy profile and reaction coordinates for the first CO molecule oxidation on the Au19Pt clusters

    Table 2. Comparison of the Adsorption Energy, Energy Barrier (Eband Eb2) and Reaction Energy (ΔEr1and ΔEr2) in the Process of the Intermediate States Producing and Decomposing, Respectively, with Literature Values along the Corresponding Reaction Pathways, in Which All Energies Are Given in kJ/mol

    adenotes these results obtained by Gao Y.[59]

    The second CO reacts with the residual oxygen atom along the LH reaction mechanism, as illustra- ted in Figs. 4 and 5. It is noted that the formation of the second CO2on the Au20cluster is spontaneous along the ER channel. Meanwhile, it is found that the second CO adsorption is strong as the first CO adsorption on these clusters, which promotes the CO oxidation. Furthermore, both Au19Pd (V) and Au19Pt (V) with the residual oxygen atoms are more prone to facilitating the CO adsorption. However, it is found that the second CO oxidation on Au19Pt (V) and Au19Pd (V) needs to surmount very high energy barriers of 217.94 and 257.21 kJ/mol, respectively, which are obviously higher than that on other clusters so as to hinder the reaction. Therefore, the doped cluster with heteroatom located at the surface and edge is better to promote the second CO oxida- tion, especially the Au19Pd (S) with a low energy barrier of 34.92 kJ/mol and high exothermicity of 218.64 kJ/mol.

    Fig. 4. Energy profile and reaction coordinates for the second CO molecule oxidation on the Au19Pd clusters

    Fig. 5. Energy profile and reaction coordinates for the second CO molecule oxidation on the Au19Pt clusters

    Table 3. Calculated Adsorption Energy, Energy Barrier (Eb) and Reaction Energy (ΔEr) along the LH Reaction Pathway for the Second CO Molecule Oxidation on the Cluster, in Which All Energies Are Given in kJ/mol

    4 CONCLUSION

    In summary, the gold atoms on the Au20cluster had been modified to the palladium or platinum atom to obtain a stable geometry via interaction energy in the previous study. Therefore, we have investigated the catalytic activities of Au19Pd and Au19Pt clusters for CO oxidation along the LH reaction channel. Firstly, the CO and O2coadsorp- tion on these doped clusters is stronger than that on the Au20cluster. And also the rate-limiting step on the Au20cluster is the intermediate state decom- position with an energy barrier of 41.5 kJ/mol. Instead, the formation of the middle state on the Au19Pd (S) cluster is the rate-limiting step with the lower energy barrier of 38.84 kJ/mol in this study, which is accelerated by the strong coadsorption of gas molecules and high exothermicity. Therefore, the Au19Pd (S) possesses higher catalytic activities than the Au20cluster in a complete CO oxidation. Note that the Au19Pt clusters can be more prone to enhance the adsorption of CO and O2. However, the reaction on these clusters is more difficult than on the Au19Pd clusters. Thus, the single atom on the cluster is modified to change the catalytic activity of the substrate in the reaction. Furthermore, the doped clusters with the heteroatom located at the vertexpromote the coadsorption of CO and O2but hinder the reaction with larger energy barrier. It has been shown that the doped atom on different sites of the clusterhave obvious influence on the activity of the substrate. Finally, the Au19Pd with the palladium atom on the surface of the cluster is a superior catalyst for CO oxidation. Moreover, it hopes that our theoretical study provides a clue for further investigation on the catalytic activities of Au19Pd and Au19Pt clusters on the suitable support for CO oxidation.

    (1) Chen, M.;Kumar, D.;Yi, C. W.;Goodman, D.W.The promotional effect of gold in catalysis by palladiumgold2005,310,291-293.

    (2) Bligaard, T.;N?rskov, J.K.Ligand effects in heterogeneous catalysis and electrochemistry2007,52,5512-5516.

    (3) Haruta, M.;Yamada, N.;Kobayashi, T.;Iijima, S.Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide1989,115,301-309.

    (4) Valden, M.;Lai, X.;Goodman, D.W.Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties1998,281,1647-1650.

    (5) Burda, C.;Chen, X.;Narayanan, R.;El-Sayed, M.A.Chemistry and properties of nanocrystals of different shapes2005,105,1025-1102.

    (6) Jin, R.;Cao, Y.;Mirkin, C.A.;Kelly, K.;Schatz, G.C.;Zheng, J.Photoinduced conversion of silver nanospheres to nanoprisms2001,294,1901-1903.

    (7) Sulman, E.;Matveeva, V.;Doluda, V.;Nicoshvili, L.;Bronstein, L.;Valetsky, P.;Tsvetkova, I.Nanostructured catalysts for the synthesis of vitamin intermediate products2006,39,187-190.

    (8) Schmid, G.Large clusters and colloids:metals in the embryonic state1992,92,1709-1727.

    (9) Lee, A.F.;Baddeley, C.J.;Hardacre, C.;Ormerod, R.M.;Lambert, R.M.;Schmid, G.;West, H.Structural and catalytic properties of novel Au/Pd bimetallic colloid particles: EXAFS, XRD, and acetylene coupling1995,99,6096-6102.

    (10) Toshima, N.;Yonezawa, T.;Kushihashi, K.Polymer-protected palladium-platinum bimetallic clusters: preparation, catalytic properties and structural considerations1993,89,2537-2543.

    (11) Harada, M.;Asakura, K.;Toshima, N.Catalytic activity and structural analysis of polymer-protected gold/palladium bimetallic clusters prepared by the successive reduction of hydrogen tetrachloroaurate(III) and palladium dichloride1993,97,5103-5114.

    (12) Wang, Y.;Toshima, N.Preparation of Pd-Pt bimetallic colloids with controllable core/shell structures1997,101,5301-5306.

    (13) Sinfelt, J.H.Structure of bimetallic clusters1987,20,134-139.

    (14) Li, X.;Kiran, B.;Cui, L. F.;Wang, L. S.Magnetic properties in transition-metal-doped gold clusters: M@ Au6(M = Ti, V, Cr)2005,95,253401,1-4.

    (15) De Haeck, J.;Veldeman, N.;Claes, P.;Janssens, E.;Andersson, M.;Lievens, P.Carbon monoxide adsorption on silver doped gold clusters2011,115,2103-2109.

    (16) Lin, L.;Lievens, P.;Nguyen, M.T.Theoretical study of CO adsorption on yttrium-doped gold clusters AuY (=1~9)2010,498,296-301.

    (17) Chen, H.T.;Chang, J.G.;Ju, S.P.;Chen, H.L.First-principle calculations on CO oxidation catalyzed by a gold nanoparticle2010,31,258-265.

    (18) Koyasu, K.;Mitsui, M.;Nakajima, A.;Kaya, K.Photoelectron spectroscopy of palladium-doped gold cluster anions; AuPd(= 1~4)2002,358,224-230.

    (19) Zhou, S. H.; Yu, W. L.; Zhang, J.; Li, Y.; Zhang, Y. F.; Chen, W. K. A density functional study for the reaction mechanism of CO oxidation on the copper cluster.2018, 37, 1379-1392.

    (20) Tian, W.Q.;Ge, M.;Gu, F.;Yamada, T.;Aoki, Y.Binary clusters aupt and Au6Pt: structure and reactivity within density functional theory2006,110,6285-6293.

    (21) Yuan, D.;Wang, Y.;Zeng, Z.Geometric, electronic, and bonding properties of AuM (= 1~7, M = Ni, Pd, Pt) clusters2005,122,114310,1-11.

    (22) Mondal, K.;Ghanty, T.K.;Banerjee, A.;Chakrabarti, A.;Kamal, C.Density functional investigation on the structures and properties of Li atom doped Au20cluster2013,111,725-734.

    (23) Qian, H.;Jiang, D. E.;Li, G.;Gayathri, C.;Das, A.;Gil, R.R.;Jin, R.Monoplatinum doping of gold nanoclusters and catalytic application2012,134,16159-16162.

    (24) Molina, L.;Hammer, B.The activity of the tetrahedral Au20cluster: charging and impurity effects2005,233,399-404.

    (25) Nhat, P.V.;Tai, T.B.;Nguyen, M.T.Theoretical study of AunV-CO,= 1~14: the dopant vanadium enhances CO adsorption on gold clusters2012,137,164312,1-12.

    (26) Ge, Q.;Song, C.;Wang, L.A density functional theory study of CO adsorption on Pt–Au nanoparticles2006,35,247-253.

    (27) Morrow, B.H.;Resasco, D.E.;Striolo, A.;Nardelli, M.B.CO adsorption on noble metal clusters: local environment effects2011,115,5637-5647.

    (28) Beletskaya, A.V.;Pichugina, D.A.;Shestakov, A.F.;Kuz’menko, N.E.Formation of H2O2on Au20and Au19Pd clusters: understanding the structure effect on the atomic level2013,117,6817-6826.

    (29) Le, H.T.;Lang, S.M.;De Haeck, J.;Lievens, P.;Janssens, E.Carbon monoxide adsorption on neutral and cationic vanadium doped gold clusters2012,14,9350-9358.

    (30) Torres, M.B.;Fernández, E.M.;Balbas, L.C.Theoretical study of oxygen adsorption on pure Aun+and doped MAun+cationic gold clusters for M = Ti, Fe and= 3~72008,112,6678-6689.

    (31) Jena, N.K.;Chandrakumar, K.;Ghosh, S.K.Theoretical investigation on the structure and electronic properties of hydrogen-and alkali-metal-doped gold clusters and their interaction with CO: enhanced reactivity of hydrogen-doped gold clusters2009,113,17885-17892.

    (32) Toshima, N.;Harada, M.;Yamazaki, Y.;Asakura, K.Catalytic activity and structural analysis of polymer-protected gold-palladium bimetallic clusters prepared by the simultaneous reduction of hydrogen tetrachloroaurate and palladium dichloride1992,96,9927-9933.

    (33) Turkevich, J.;Kim, G.Palladium: preparation and catalytic properties of particles of uniform size1970,169,873-879.

    (34) Mizukoshi, Y.;Okitsu, K.;Maeda, Y.;Yamamoto, T.A.;Oshima, R.;Nagata, Y.Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution1997,101,7033-7037.

    (35) Mizukoshi, Y.;Fujimoto, T.;Nagata, Y.;Oshima, R.;Maeda, Y.Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method2000,104,6028-6032.

    (36) Schmid, G.;Lehnert, A.;Malm, J.O.;Bovin, J.O.Ligand-stabilized bimetallic colloids identified by hrtem and edx1991,30,874-876.

    (37) Faji?n, J.L.;Cordeiro, M.N.D.;Gomes, J.R.DFT study of the CO oxidation on the Au (321) surface2008,112,17291-17302.

    (38) Davis, R.J.;Boudart, M.Structure of supported pdau clusters determined by X-ray absorption spectroscopy1994,98,5471-5477.

    (39) Boennemann, H.;Endruschat, U.;Tesche, B.;Rufinska, A.;Lehmann, C.W.;Wagner, F.E.;Filoti, G.;Parvulescu, V.;Parvulescu, V.I.An SiO2embedded nanoscopic Pd/Au alloy colloid2000,2000,819-822.

    (40) Yonezawa, T.;Toshima, N.Mechanistic consideration of formation of polymer-protected nanoscopic bimetallic clusters1995,91,4111-4119.

    (41) Toshima, N.;Yonezawa, T.Bimetallic nanoparticles—novel materials for chemical and physical applications1998,22,1179-1201.

    (42) Guczi, L.;Beck, A.;Horvath, A.;Koppány, Z.;Stefler, G.;Frey, K.;Sajo, I.;Geszti, O.;Bazin, D.;Lynch, J.AuPd bimetallic nanoparticles onTiO2: XRD, TEM, in situ EXAFS studies and catalytic activity in CO oxidation2003,204,545-552.

    (43) Miyaura, N.;Suzuki, A.Palladium-catalyzed cross-coupling reactions of organoboron compounds1995,95,2457-2483.

    (44) Henglein, A.Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles1989,89,1861-1873.

    (45) Leutwyler, W.K.;Bürgi, S.L.;Burgl, H.Semiconductor clusters, nanocrystals, and quantum dots1996,271,933-937.

    (46) Haruta, M.;Daté, M.Advances in the catalysis of au nanoparticles2001,222,427-437.

    (47) Daniel, M. C.;Astruc, D.Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology2004,104,293-346.

    (48) Astruc, D.;Lu, F.;Aranzaes, J.R.Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis2005,44,7852-7872.

    (49) Bond, G.C.The electronic structure of platinum-gold alloy particles2007,51,63-68.

    (50) Sadek, M.M.;Wang, L.Effect of adsorption site, size, and composition of Pt/Au bimetallic clusters on the CO frequency: a density functional theory study2006,110,14036-14042.

    (51) Baddeley, C.J.;Tikhov, M.;Hardacre, C.;Lomas, J.R.;Lambert, R.M.Ensemble effects in the coupling of acetylene to benzene on a bimetallic surface: a study with Pd {111}/Au1996,100,2189-2194.

    (52) Enache, D.I.;Edwards, J.K.;Landon, P.;Solsona-Espriu, B.;Carley, A.F.;Herzing, A.A.;Watanabe, M.;Kiely, C.J.;Knight, D.W.;Hutchings, G.J.Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2catalysts2006,311,362-365.

    (53) Zeng, Q.S.;Sun, B.Z.;Zhao, W.N.;Lin, H.X.;Li, Y.;Chen, W.K.Adsorption of Co2B2and Ni2B2clusters on the TiO2(110) surface: a density functional study2013,32,341-348.

    (54) Li, J.;Li, X.;Zhai, H. J.;Wang, L. S.Au20: a tetrahedral cluster2003,299,864-867.

    (55) Wang, J.;Wang, G.;Zhao, J.Structures and electronic properties of Cu20, Ag20, andAu20clusters with density functional method2003,380,716-720.

    (56) Gruene, P.;Rayner, D.M.;Redlich, B.;van der Meer, A.F.;Lyon, J.T.;Meijer, G.;Fielicke, A.Structures of neutral Au7, Au19, and Au20clusters in the gas phase2008,321,674-676.

    (57) Kryachko, E.S.;Remacle, F.The magic gold cluster Au202007,107,2922-2934.

    (58) Mondal, K.;Banerjee, A.;Ghanty, T.K.Structural and chemical properties of subnanometer-sized bimetallic Au19Pt cluster2014,118,11935-11945.

    (59) Gao, Y.;Shao, N.;Pei, Y.;Chen, Z.;Zeng, X.C.Catalytic activities of subnanometer gold clusters (Au16–Au18, Au20, and Au27–Au35) for CO oxidation2011,5,7818-7829.

    (60) Delley, B. From molecules to solids with the DMol3 approach.2000, 18, 7756-7764.

    4 April 2018;

    19 September 2018

    the National Natural Science Foundation of China (Nos. 51574090, 21773030) and Natural Science Foundation of Fujian Province (2017J01409)

    . Professor, majoring in computation chemistry. E-mail: wkchen@fzu.edu.cn

    10.14102/j.cnki.0254-5861.2011-1943

    热re99久久国产66热| 亚洲精品粉嫩美女一区| 两性夫妻黄色片| 午夜激情久久久久久久| 少妇猛男粗大的猛烈进出视频| 天堂俺去俺来也www色官网| 涩涩av久久男人的天堂| 日韩,欧美,国产一区二区三区| 久久久久国内视频| 成人三级做爰电影| 9热在线视频观看99| 免费黄频网站在线观看国产| 国产av精品麻豆| 国产欧美日韩综合在线一区二区| av在线播放精品| 婷婷色av中文字幕| 精品乱码久久久久久99久播| 国产色视频综合| 高清在线国产一区| 亚洲专区国产一区二区| 1024香蕉在线观看| 国产精品成人在线| 黄色怎么调成土黄色| 秋霞在线观看毛片| 国产91精品成人一区二区三区 | 久久久精品国产亚洲av高清涩受| 色播在线永久视频| 日本五十路高清| 国产精品.久久久| 久9热在线精品视频| 丰满迷人的少妇在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 免费观看a级毛片全部| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 久久亚洲国产成人精品v| 久久天躁狠狠躁夜夜2o2o| 国产亚洲欧美精品永久| 国产精品免费视频内射| a级片在线免费高清观看视频| 一级片免费观看大全| 国产精品免费大片| 欧美成人午夜精品| 欧美老熟妇乱子伦牲交| 制服诱惑二区| 一级毛片精品| 97在线人人人人妻| 黄频高清免费视频| 亚洲综合色网址| 欧美人与性动交α欧美软件| 国产精品久久久av美女十八| 亚洲av欧美aⅴ国产| 国产男人的电影天堂91| 一级a爱视频在线免费观看| 国产精品香港三级国产av潘金莲| 亚洲精品久久久久久婷婷小说| 男女高潮啪啪啪动态图| 动漫黄色视频在线观看| 国产在线免费精品| bbb黄色大片| 免费一级毛片在线播放高清视频 | 国产精品.久久久| 国产极品粉嫩免费观看在线| 欧美人与性动交α欧美软件| 在线永久观看黄色视频| 中国美女看黄片| svipshipincom国产片| 国产精品免费视频内射| 人妻一区二区av| 免费高清在线观看视频在线观看| 亚洲情色 制服丝袜| 久久久精品区二区三区| 国产一区二区激情短视频 | 丝袜喷水一区| 亚洲欧美精品自产自拍| 午夜激情久久久久久久| 精品国产超薄肉色丝袜足j| 欧美黄色片欧美黄色片| 18禁黄网站禁片午夜丰满| 久久青草综合色| 另类精品久久| www.av在线官网国产| 久久精品久久久久久噜噜老黄| 国产成人精品久久二区二区免费| 在线观看人妻少妇| 免费观看av网站的网址| 男女高潮啪啪啪动态图| 欧美成人午夜精品| 国产成人精品在线电影| 桃花免费在线播放| www日本在线高清视频| 欧美97在线视频| cao死你这个sao货| 午夜激情久久久久久久| 脱女人内裤的视频| a级毛片黄视频| 欧美 亚洲 国产 日韩一| 精品福利观看| 久久精品国产a三级三级三级| 亚洲精品久久成人aⅴ小说| 成人亚洲精品一区在线观看| 国产黄色免费在线视频| 色婷婷av一区二区三区视频| 亚洲情色 制服丝袜| 女性被躁到高潮视频| 老熟妇仑乱视频hdxx| 伦理电影免费视频| 91九色精品人成在线观看| 一区二区三区激情视频| 久久精品熟女亚洲av麻豆精品| 国产在线视频一区二区| 亚洲精品中文字幕一二三四区 | 一区二区日韩欧美中文字幕| 欧美变态另类bdsm刘玥| 成年动漫av网址| 亚洲精品美女久久av网站| 啪啪无遮挡十八禁网站| 日本撒尿小便嘘嘘汇集6| 久久影院123| 在线 av 中文字幕| 99国产极品粉嫩在线观看| 男女床上黄色一级片免费看| 国产成人精品无人区| 国产一区二区在线观看av| 久久热在线av| 国产精品久久久久久精品电影小说| 十八禁高潮呻吟视频| 一二三四社区在线视频社区8| a在线观看视频网站| 亚洲精品久久午夜乱码| 久久国产精品男人的天堂亚洲| cao死你这个sao货| 日日摸夜夜添夜夜添小说| 国产在线一区二区三区精| 久久人妻福利社区极品人妻图片| 自拍欧美九色日韩亚洲蝌蚪91| 日韩 亚洲 欧美在线| 久久亚洲国产成人精品v| 日韩有码中文字幕| 岛国在线观看网站| 中文字幕人妻丝袜一区二区| 在线av久久热| 九色亚洲精品在线播放| 性高湖久久久久久久久免费观看| 在线av久久热| 国产视频一区二区在线看| 女人高潮潮喷娇喘18禁视频| 男女免费视频国产| 法律面前人人平等表现在哪些方面 | 国产亚洲精品第一综合不卡| 最近最新免费中文字幕在线| 午夜日韩欧美国产| 80岁老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 国产精品国产三级国产专区5o| 捣出白浆h1v1| 欧美一级毛片孕妇| 老司机靠b影院| 久久中文字幕一级| 午夜免费鲁丝| 巨乳人妻的诱惑在线观看| 一级,二级,三级黄色视频| 一级毛片女人18水好多| 久久国产精品男人的天堂亚洲| 一区二区三区精品91| 精品少妇内射三级| 热99久久久久精品小说推荐| 国产区一区二久久| 韩国高清视频一区二区三区| 国产男女超爽视频在线观看| 中国国产av一级| 18禁观看日本| 午夜福利在线观看吧| 看免费av毛片| 精品一品国产午夜福利视频| 午夜老司机福利片| 99热全是精品| 中文字幕人妻丝袜制服| 色视频在线一区二区三区| 国产在线一区二区三区精| av网站免费在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 国产又爽黄色视频| 亚洲天堂av无毛| 欧美日韩国产mv在线观看视频| 一区福利在线观看| 别揉我奶头~嗯~啊~动态视频 | 中亚洲国语对白在线视频| 日本av手机在线免费观看| 97在线人人人人妻| 麻豆国产av国片精品| 美国免费a级毛片| 91麻豆精品激情在线观看国产 | 久久精品aⅴ一区二区三区四区| 亚洲熟女精品中文字幕| 曰老女人黄片| 一个人免费在线观看的高清视频 | 国产亚洲精品第一综合不卡| 亚洲天堂av无毛| 不卡av一区二区三区| 人妻一区二区av| 成人国产av品久久久| 精品人妻一区二区三区麻豆| 成人手机av| 又黄又粗又硬又大视频| 亚洲国产日韩一区二区| 久久ye,这里只有精品| 十八禁高潮呻吟视频| 最新的欧美精品一区二区| 黑人操中国人逼视频| 久久久精品免费免费高清| 99精品久久久久人妻精品| 老司机影院成人| 精品少妇黑人巨大在线播放| 美女扒开内裤让男人捅视频| 日本五十路高清| 亚洲国产欧美一区二区综合| 夜夜夜夜夜久久久久| 美女福利国产在线| 久久中文看片网| 国产区一区二久久| 男人舔女人的私密视频| 日韩大码丰满熟妇| 国产在视频线精品| 啦啦啦 在线观看视频| 成人三级做爰电影| 丁香六月天网| 精品熟女少妇八av免费久了| 99热全是精品| 美女大奶头黄色视频| 一级毛片精品| 国产精品二区激情视频| 国产亚洲午夜精品一区二区久久| 精品亚洲成a人片在线观看| 18在线观看网站| netflix在线观看网站| 乱人伦中国视频| 国内毛片毛片毛片毛片毛片| av又黄又爽大尺度在线免费看| 每晚都被弄得嗷嗷叫到高潮| 亚洲精华国产精华精| 黑人操中国人逼视频| 亚洲,欧美精品.| 十分钟在线观看高清视频www| 婷婷色av中文字幕| 男女边摸边吃奶| 亚洲国产欧美网| 三级毛片av免费| 午夜福利影视在线免费观看| www.999成人在线观看| 亚洲国产欧美在线一区| 国产在线一区二区三区精| 黄片大片在线免费观看| 9热在线视频观看99| 国产男女超爽视频在线观看| 精品第一国产精品| 久久亚洲精品不卡| 亚洲精品乱久久久久久| 精品人妻一区二区三区麻豆| 人人妻人人澡人人看| 国产日韩欧美视频二区| 大型av网站在线播放| 午夜福利视频精品| 十八禁网站免费在线| 亚洲欧洲日产国产| 在线观看一区二区三区激情| 日韩制服骚丝袜av| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 激情视频va一区二区三区| 国产成人精品久久二区二区91| 91精品国产国语对白视频| 久久毛片免费看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 免费在线观看影片大全网站| 亚洲色图 男人天堂 中文字幕| a级毛片黄视频| 黑丝袜美女国产一区| 精品第一国产精品| 国产一卡二卡三卡精品| 国产精品免费大片| 日韩电影二区| 可以免费在线观看a视频的电影网站| 欧美 日韩 精品 国产| 久久久久国内视频| 97精品久久久久久久久久精品| 免费女性裸体啪啪无遮挡网站| 99国产精品99久久久久| 女人久久www免费人成看片| 欧美精品av麻豆av| 久久毛片免费看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 成年av动漫网址| 欧美精品一区二区免费开放| 国产亚洲av高清不卡| 51午夜福利影视在线观看| 色播在线永久视频| 国产成人精品在线电影| 亚洲成人手机| 五月开心婷婷网| 青春草亚洲视频在线观看| 日韩视频在线欧美| 国产男人的电影天堂91| 日韩视频在线欧美| 久久久国产一区二区| 十八禁高潮呻吟视频| 在线观看免费午夜福利视频| 成人av一区二区三区在线看 | 国产在线一区二区三区精| 国产熟女午夜一区二区三区| 999久久久精品免费观看国产| 免费看十八禁软件| 久久久久国产精品人妻一区二区| 欧美精品人与动牲交sv欧美| 水蜜桃什么品种好| 一级,二级,三级黄色视频| 女性被躁到高潮视频| 欧美日韩亚洲综合一区二区三区_| 亚洲色图综合在线观看| 在线精品无人区一区二区三| 高潮久久久久久久久久久不卡| 久久毛片免费看一区二区三区| 熟女少妇亚洲综合色aaa.| 欧美av亚洲av综合av国产av| 中文字幕色久视频| 午夜影院在线不卡| 亚洲成国产人片在线观看| 成人国产一区最新在线观看| 国产极品粉嫩免费观看在线| 丝瓜视频免费看黄片| 波多野结衣一区麻豆| 国产精品一二三区在线看| 国产黄色免费在线视频| 亚洲三区欧美一区| 欧美精品一区二区免费开放| 亚洲精品中文字幕在线视频| 青草久久国产| 另类精品久久| 欧美人与性动交α欧美精品济南到| 动漫黄色视频在线观看| 男人操女人黄网站| 国产一级毛片在线| tocl精华| 飞空精品影院首页| 一进一出抽搐动态| 午夜免费成人在线视频| 老司机午夜十八禁免费视频| 亚洲伊人色综图| 亚洲欧美成人综合另类久久久| 欧美亚洲日本最大视频资源| 成人黄色视频免费在线看| 999久久久精品免费观看国产| 大香蕉久久成人网| 又紧又爽又黄一区二区| 久久久久国内视频| 久久久久久免费高清国产稀缺| 在线观看免费日韩欧美大片| 黄色 视频免费看| 亚洲色图 男人天堂 中文字幕| 啦啦啦啦在线视频资源| tocl精华| 91字幕亚洲| 日韩有码中文字幕| 亚洲精品一区蜜桃| 各种免费的搞黄视频| 午夜免费成人在线视频| 国产成人欧美在线观看 | 飞空精品影院首页| 18禁黄网站禁片午夜丰满| 伊人久久大香线蕉亚洲五| 99香蕉大伊视频| 国产一级毛片在线| 99久久国产精品久久久| 国产亚洲精品第一综合不卡| 777米奇影视久久| 精品国产一区二区三区四区第35| 国产成人啪精品午夜网站| 久久精品aⅴ一区二区三区四区| 亚洲欧洲日产国产| 久久亚洲国产成人精品v| 久久国产精品人妻蜜桃| 91精品三级在线观看| 人人澡人人妻人| 十八禁网站免费在线| 一区二区三区四区激情视频| 国产免费现黄频在线看| 亚洲欧美一区二区三区久久| 国产免费福利视频在线观看| 手机成人av网站| 一级片免费观看大全| 97精品久久久久久久久久精品| 国产黄色免费在线视频| 蜜桃国产av成人99| 别揉我奶头~嗯~啊~动态视频 | 欧美另类亚洲清纯唯美| 久久天堂一区二区三区四区| 日本av手机在线免费观看| 成年人免费黄色播放视频| 久久青草综合色| 成人免费观看视频高清| 亚洲欧美一区二区三区久久| 最近最新中文字幕大全免费视频| 少妇 在线观看| 国产黄色免费在线视频| 悠悠久久av| 午夜精品久久久久久毛片777| 女人被躁到高潮嗷嗷叫费观| 日本vs欧美在线观看视频| 十八禁高潮呻吟视频| 亚洲成国产人片在线观看| 亚洲国产看品久久| av一本久久久久| 18禁国产床啪视频网站| 精品少妇久久久久久888优播| 精品人妻熟女毛片av久久网站| 国产成人免费无遮挡视频| 性高湖久久久久久久久免费观看| 无限看片的www在线观看| 亚洲av日韩在线播放| 水蜜桃什么品种好| 久久九九热精品免费| 婷婷成人精品国产| 视频区图区小说| 久久精品国产a三级三级三级| 首页视频小说图片口味搜索| 两个人免费观看高清视频| 精品第一国产精品| 国产精品.久久久| 欧美乱码精品一区二区三区| 亚洲av欧美aⅴ国产| 日韩一区二区三区影片| 亚洲人成电影免费在线| 91成人精品电影| 精品久久蜜臀av无| 考比视频在线观看| 看免费av毛片| 久久中文字幕一级| 国产精品1区2区在线观看. | 欧美激情极品国产一区二区三区| 人妻人人澡人人爽人人| 日韩人妻精品一区2区三区| 超碰成人久久| 麻豆av在线久日| 韩国高清视频一区二区三区| 热99re8久久精品国产| 欧美av亚洲av综合av国产av| 亚洲精品国产色婷婷电影| 亚洲精品美女久久久久99蜜臀| 久久 成人 亚洲| 香蕉丝袜av| 曰老女人黄片| 后天国语完整版免费观看| 亚洲av成人不卡在线观看播放网 | a级片在线免费高清观看视频| 亚洲色图综合在线观看| 少妇裸体淫交视频免费看高清 | 国产免费福利视频在线观看| 国产精品国产三级国产专区5o| 操出白浆在线播放| 免费黄频网站在线观看国产| 伦理电影免费视频| 免费久久久久久久精品成人欧美视频| 午夜福利一区二区在线看| 久久国产精品人妻蜜桃| 91成年电影在线观看| 免费日韩欧美在线观看| 丝袜人妻中文字幕| 免费在线观看影片大全网站| 成人国语在线视频| 久久毛片免费看一区二区三区| 久久99热这里只频精品6学生| 成在线人永久免费视频| 国产精品免费视频内射| 国产欧美日韩综合在线一区二区| 巨乳人妻的诱惑在线观看| 久久影院123| 亚洲av日韩精品久久久久久密| 欧美性长视频在线观看| 久久九九热精品免费| 精品人妻1区二区| 婷婷丁香在线五月| 男女床上黄色一级片免费看| 午夜福利影视在线免费观看| 丝袜人妻中文字幕| 乱人伦中国视频| 午夜久久久在线观看| 国产欧美日韩精品亚洲av| netflix在线观看网站| 老鸭窝网址在线观看| 妹子高潮喷水视频| 首页视频小说图片口味搜索| 久久中文看片网| 大片免费播放器 马上看| 狠狠狠狠99中文字幕| 国产视频一区二区在线看| 国产国语露脸激情在线看| 精品一区二区三卡| 免费在线观看日本一区| 久久人妻福利社区极品人妻图片| 麻豆乱淫一区二区| 日本wwww免费看| 久久狼人影院| 日日夜夜操网爽| 男女免费视频国产| 国产成人欧美| 爱豆传媒免费全集在线观看| 人妻一区二区av| av电影中文网址| 最新的欧美精品一区二区| 亚洲av成人不卡在线观看播放网 | 亚洲国产日韩一区二区| 欧美国产精品va在线观看不卡| 十八禁人妻一区二区| av线在线观看网站| 男女国产视频网站| 国产成人精品在线电影| 久久久久国产精品人妻一区二区| 国产成人一区二区三区免费视频网站| 久久久精品免费免费高清| 久久国产亚洲av麻豆专区| 人成视频在线观看免费观看| 悠悠久久av| 老司机福利观看| 国产91精品成人一区二区三区 | 久久久国产欧美日韩av| 欧美久久黑人一区二区| 免费观看av网站的网址| 欧美日韩黄片免| 中文字幕色久视频| 精品人妻熟女毛片av久久网站| 亚洲va日本ⅴa欧美va伊人久久 | 国产亚洲av高清不卡| 精品一区二区三区四区五区乱码| 一区二区日韩欧美中文字幕| 亚洲成人手机| 久久久久国内视频| 国产亚洲精品第一综合不卡| 青青草视频在线视频观看| 美女脱内裤让男人舔精品视频| 亚洲成人免费电影在线观看| 一本色道久久久久久精品综合| 高清视频免费观看一区二区| 久久精品亚洲熟妇少妇任你| 欧美人与性动交α欧美精品济南到| 精品国产一区二区三区四区第35| 中文字幕av电影在线播放| 美女大奶头黄色视频| 自线自在国产av| 伦理电影免费视频| 欧美日韩亚洲综合一区二区三区_| 亚洲成人免费电影在线观看| 亚洲成国产人片在线观看| 在线精品无人区一区二区三| 欧美激情久久久久久爽电影 | 大片免费播放器 马上看| 麻豆av在线久日| 女人高潮潮喷娇喘18禁视频| 久久综合国产亚洲精品| 久久精品国产亚洲av高清一级| 成人av一区二区三区在线看 | 欧美激情极品国产一区二区三区| 黄色视频在线播放观看不卡| 日本一区二区免费在线视频| 热99久久久久精品小说推荐| 日韩免费高清中文字幕av| 在线观看免费日韩欧美大片| 免费少妇av软件| 国精品久久久久久国模美| 久久免费观看电影| 伊人久久大香线蕉亚洲五| 正在播放国产对白刺激| 肉色欧美久久久久久久蜜桃| 啦啦啦啦在线视频资源| 大片电影免费在线观看免费| 亚洲精品粉嫩美女一区| 久久国产精品影院| 一本色道久久久久久精品综合| 国产在线视频一区二区| 国产精品99久久99久久久不卡| 午夜精品久久久久久毛片777| 久热这里只有精品99| 黄色毛片三级朝国网站| 叶爱在线成人免费视频播放| 97人妻天天添夜夜摸| 免费人妻精品一区二区三区视频| 国产高清视频在线播放一区 | 亚洲av美国av| 色老头精品视频在线观看| 国产精品秋霞免费鲁丝片| 黄片小视频在线播放| 岛国在线观看网站| 亚洲国产av新网站| 欧美老熟妇乱子伦牲交| 五月天丁香电影| 国产精品秋霞免费鲁丝片| 一本一本久久a久久精品综合妖精| 国产老妇伦熟女老妇高清| 久久精品久久久久久噜噜老黄| kizo精华| 中文字幕精品免费在线观看视频| 麻豆国产av国片精品| 考比视频在线观看| 一本大道久久a久久精品| 久久久国产成人免费| 另类亚洲欧美激情| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 自线自在国产av| 久久国产精品人妻蜜桃| cao死你这个sao货| 极品少妇高潮喷水抽搐| av在线播放精品| 国产成人影院久久av| 精品一区二区三卡| 欧美日韩国产mv在线观看视频|