劉道新 柏峻峰 胡航海 劉 虎 蔣 蕾 張文晉
(1.國家電網(wǎng)公司 北京 100031)(2.國網(wǎng)遼寧省電力有限公司 沈陽 110006)(3.國網(wǎng)信通億力科技有限責任公司 福州 350003)
線損率作為一種綜合反映電力系統(tǒng)中規(guī)劃設計、生產(chǎn)運行、經(jīng)營管理水平的經(jīng)濟技術指標,是電力部門日常管理工作中所關注的重要內(nèi)容。隨著智能電表等電力采集設備的廣泛推廣,線損管理中的供售電不同期問題已得到基本解決,但是由于智能設備覆蓋率不足、人為或設備故障等原因,造成售電量統(tǒng)計數(shù)據(jù)存在偏差,從而導致線損率計算不準確,影響了線損率的應用價值,因此,通過對售電量預測以提高線損率的可信度已經(jīng)成為當前電力行業(yè)的研究重點。
目前,已經(jīng)有很多文獻對售電量預測模型進行了研究,文獻[1]考慮了氣象、日類型和時間對負荷的影響,提出了基于相似日負荷修正算法的預測模型;文獻[2]先將用電行業(yè)分類,再進行分級預測,根據(jù)各行業(yè)用電情況歷史數(shù)據(jù)找尋電量規(guī)律;文獻[3]研究了灰色預測GM(1,1)模型及其幾種改進模型在城市年用電量預測中的應用,并對幾種模型的預測結(jié)果進行比較;文獻[4]將模糊劃分聚類理論應用于中長期用電量預測,建立類別變量特征值與預測對象之間的相關關系,利用此相關關系進行負荷預測;文獻[5]通過灰色關聯(lián)分析法確定影響用電量的主因素變量,然后采用多變量灰色模型進行用電量預測。
由于售電量具有不確定性、復雜性、條件性和多方案性的特點,若要從本質(zhì)上提高售電量預測的精度,則需綜合考慮多種影響因素[6]?,F(xiàn)有研究有的從歷史售電量數(shù)據(jù)的自身規(guī)律進行預測和分析,忽略了其他因素對售電量的影響;有的對影響因素的選取較為主觀且復雜,可操作性和實用性不高[7]。針對上述問題,本文提出了改進的極限學習機算法對售電量進行預測,應用時間序列典型分解法提取樣本售電量序列中的趨勢成分和周期性成分,并將影響售電量主要因素作為改進極限學習機的輸入,根據(jù)預測售電量計算線損率,實現(xiàn)了對異常線損的修正。
2006年,Huang等提出了一種新型神經(jīng)網(wǎng)絡算法——極限學習機(Extreme Learning Machine,ELM),它屬于單隱層前饋神經(jīng)網(wǎng)絡(SLFNs)。ELM已經(jīng)成為一個很熱門的研究領域[8],廣泛應用于故障診斷、圖像分割、數(shù)據(jù)挖掘自動控制等領域[9~12]。
ELM的數(shù)學模型,如圖1所示。
圖1 極限學習機的數(shù)學模型圖
ELM的學習方法如下:
給定訓練集 {(xi,ti)}?Rn×Rm,隱層節(jié)點激勵函數(shù) g(?)是非線性函數(shù),可為Hardlim函數(shù),Sigmoid函數(shù),Gaussian函數(shù)等,隱層神經(jīng)元數(shù)目L個[13]。
1)隨機選取隱層節(jié)點參數(shù) (ai,bi),i=1,…,L ,ai為第i個隱層神經(jīng)元輸入權值,bi為第i個隱層神經(jīng)元閾值。
2)計算隱層節(jié)點輸出矩陣H=g(ai, bi, xi) ,
其中,(ai,bi)分別為隱層節(jié)點輸入權值、閾值,Tj是第 j組數(shù)據(jù)的輸出實際值,Oj是第 j組數(shù)據(jù)輸出預測值。蟻群優(yōu)化極限學習機(ACO-ELM)的目標是使誤差E(ai,bi)最小,該方法的主要思想是:把ELM的初始輸入權值和閾值作為ACO算法的螞蟻,每只螞蟻遍歷所有節(jié)點,選擇出最適應染色體作為ELM預測數(shù)據(jù)的輸入權值和閾值。
步驟1:初始化參數(shù);
確定蟻群規(guī)模M,生成M只螞蟻作為初始種群Y(0);進化代數(shù)maxgen;節(jié)點數(shù)n;第i條路徑的適應度fiti;ηij是啟發(fā)式因子,反應螞蟻由節(jié)點i轉(zhuǎn)移到節(jié)點j的啟發(fā)程度;τij是邊(i,j)上的信息素量,初始時每條邊的信息素量都相等。Δ第k只螞蟻在本次迭代中留在邊(i,j)上的信息素量;ρ信息素蒸發(fā)系數(shù);(t)時刻t螞蟻k由節(jié)點i轉(zhuǎn)移到節(jié)點j的概率;t為時刻[14~15]。
步驟2:計算適應度;
根據(jù)適應度函數(shù),評價螞蟻適應度fi(ty):
其中,m為輸入數(shù)據(jù)總數(shù),Oj為第j個預測輸出值,Tj為第j個實際輸出值。
步驟3:根據(jù)適應度,釋放信息素;
當所有螞蟻完成一次周游后,各路徑上的信息素為
其中,Q是正常數(shù),fitk螞蟻k走過路徑的適應度。初始 τij(0)=C ,Δτij(0)=C 。
其中α是信息素相對重要程度,β是啟發(fā)式因子相對重要程度,Jk(i)是螞蟻k下一步選擇的節(jié)點集合。
啟發(fā)式因子計算公式:ηij=1/dij。
步驟5:記錄本次迭代的路徑,更新當前的最優(yōu)路徑,清空禁忌表;
步驟6:判斷。
判斷是否達到預定的迭代步數(shù),或者是否出現(xiàn)停滯現(xiàn)象。若是,算法結(jié)束,輸出當前最優(yōu)路徑,否則,轉(zhuǎn)2進行下一次迭代。
步驟1:初始化L個元素的信息素Pj,然后從蟻巢出發(fā)M只螞蟻,每只都執(zhí)行步驟2。
步驟2:從第一個元素開始,根據(jù)路徑選擇規(guī)則,每次在區(qū)間[-1,1]中選擇一個元素,同時對它的信息素增加I(I表示信息素增加量)。螞蟻根據(jù)概率選擇路徑:
步驟3:計算每只螞蟻走過路徑的適應度,并選出適應度最大值及其路徑。
其中,n是樣本數(shù)目,Oi是樣本的預測輸出,Tj是樣本實際輸出。
步驟4:根據(jù)樣本適應度,調(diào)整螞蟻的路徑,對適應度小的螞蟻路徑實行高斯變異,更新爬行速度。然后更新信息素。
其中,proxj是更新后的信息素,proj是更新前的信息素,Q是信息素增強系數(shù),每代中適應度最大值fitmax,適應度最小值 fitmin。
步驟5:循環(huán)執(zhí)行到遺傳代數(shù)N,從每代的最大適應值,選出最大的適應值,并找出相應的路徑。
選出最優(yōu)路徑后,對應的即為優(yōu)化過后的權值和閾值。
表1 UCI數(shù)據(jù)集回歸數(shù)據(jù)屬性
為了驗證本算法的有效性,選用UCI(University of California Irvine)數(shù)據(jù)庫進行仿真驗證。
表1給出了這些數(shù)據(jù)集的屬性,表2為仿真結(jié)果,每種算法運行100次,取均值。
表2 不同算法的測試誤差比較
設置隱層節(jié)點數(shù)目由1按步長為1增長到100,回歸數(shù)據(jù)和分類數(shù)據(jù)的誤差和精度曲線仿真結(jié)果,對比如圖2、圖3所示。
圖2 airfoil數(shù)據(jù)預測誤差比較圖
圖3 yacht數(shù)據(jù)預測誤差比較圖
從上述實驗結(jié)果可以看到,經(jīng)過蟻群算法改進的極限學習機,其精度得到了很大提升。
根據(jù)電力公司規(guī)定,每月1日0時統(tǒng)計月供電量數(shù)據(jù)[13]。供、售電量關系如式(16)所示:
其中,Pl為線損電量,PSu為供電量,PSa為售電量。
由公式(1)可知,當日供電量已知時,通過預測日售電量,則可計算日線損電量,進而計算線損率。本文采用時間序列算法和BP神經(jīng)網(wǎng)絡算法相結(jié)合預測日售電量,不僅分析了售電量數(shù)據(jù)的變化趨勢,而且考慮了氣象、節(jié)假日類型和日期等影響因素,能夠提高售電量的預測精度,增大線損預測結(jié)果的可信度。
圖4 改進極限學習機預測同期線損流程圖
通過改進的極限學習機模型預測售電量后,根據(jù)式(1)得到線損電量P1,結(jié)合線損率計算式(9):
即可得到該區(qū)域該日線損率Lr。
本文的實驗樣本包括電量數(shù)據(jù)、氣候數(shù)據(jù)、節(jié)假日類型三種數(shù)據(jù),其中電量數(shù)據(jù)來自山西省陽泉市,數(shù)據(jù)時間跨度是2015年7月至2016年7月,采集頻率為1日∕次;氣候數(shù)據(jù),即日最高氣溫與日最低氣溫,來自陽泉市天氣網(wǎng),時間跨度和采集頻率與電量數(shù)據(jù)一致;節(jié)假日類型即是說明某一天是否為節(jié)假日,數(shù)據(jù)根據(jù)實際情況自行記錄,時間跨度和采集頻率也和電量數(shù)據(jù)一致。
圖5 售電量預測比較圖
預測售電量的樣本數(shù)據(jù)如表3所示。
表3 原始數(shù)據(jù)集
首先,對表3的數(shù)據(jù)根據(jù)式(18)進行歸一化處理:
式中,xi是預測模型輸入數(shù)據(jù),∈[c,d],c和d是[-1,1]之間的常數(shù),且c<d,xmax、xmin為輸入樣本的最大、最小值。
選取陽泉市2016年8月1日至14日兩個星期的天氣數(shù)據(jù)、節(jié)假日類型作為改進極限學習機的輸入數(shù)據(jù),使用該模型預測2016年8月的售電量,并且計算預測售電量和實際售電量的誤差,預測結(jié)果及預測誤差如表5所示。
表4 誤差比較結(jié)果
表5 陽泉市2016年8月售電量預測及誤差
針對如何提高同期線損預測的問題,本文提出了一種改進的極限學習機模型,實現(xiàn)了對同期線損的準確預測,對于同期線損異常數(shù)據(jù)的修正具有重要意義。通過比較實際數(shù)據(jù)和預測數(shù)據(jù)的誤差,檢測實際線損是否存在異常,如果存在異常,則可對該區(qū)域進行重點排查,查找異常線損產(chǎn)生的原因,如電力設備是否掛載異常等,對于電網(wǎng)安全穩(wěn)定運行具有重要意義。同時,隨著同期線損數(shù)據(jù)量的增加,可以考慮該模型與大數(shù)據(jù)平臺相結(jié)合,以保證數(shù)據(jù)的存儲空間和運算效率。