• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Models for amplitude fluctuation of underwater acousticnarrow band signal based on modified modal scintillation index

    2013-09-17 06:00:24AnLiangFangShiliangChenLijun

    An Liang Fang Shiliang Chen Lijun

    (Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China)

    T he amplitude fluctuations of underwater narrow band signals have been studied for nearly 50 years.Researchers[1-4]summarized the most important causes of fluctuations in the power amplitudes of signals and noise propagating in the undersea acoustic environment.In recent years,it is still a focus in underwater signal processing.Katsnelson et al.[5-6]studied the frequency dependence and intensity fluctuations due to shallow water internal waves.Temporal variations of intensity fluctuations were found in experimental data.Comparisons of experimental results with theoretical estimates demonstrated good consistency.Colosi et al.[7-8]examined the second-and fourth-moment mode-amplitude statistics for lowfrequency ocean sound propagation through random soundspeed perturbations in deep and shallow-water environments.Nair et al.[9]evaluated the fluctuation observed in theReceivedsignal with relevance to underwater systems.They defined the fluctuation index k as the standard deviation of theReceivedsignal with noise normalized by the standard deviation of noise.Stojanovic et al.[10]studied the random signal variations in underwater communication systems introduced by surface waves, internal turbulence,fluctuations in the sound speed,and other small-scale phenomena.

    Among the above causes leading to sound fluctuations,the source and receiver depth instability may be the most obvious one.According to the normal mode theory, the amplitude of the normal modes are related to the source and receiver depths as well as the sea depth,sound speed profiles, surface and bottom conditions, and the signal frequency.The scintillation of modal energies has often been used to characterize and understand acoustic wave propagation in a randomly fluctuating ocean waveguide.Premus[11]introduced the modal scintillation index(MSI)for the purpose of surface and submerged source discrimination in a shallow water waveguide.The MSI is defined as the variance of the modulus of modal excitation normalized by its expected value over some observation intervals.The MSI of different normal modes exhibits different distributions when theReceivedsignal contains sea noise and it directly casts the source classification problem as a binary hypothesis test.

    The MSI definition has its evident deficiency.It depends on the source level and the source range intensively.In this paper,a modified modal scintillation index(MMSI)is defined as the variance of the modulus of modal excitation normalized by the square of its expected value over some observation intervals.It is proved in an analytical form that the MMSI is only depth dependent.The modal excitations obtained from simulations are used to calculate the MMSI-depth curve of sources with different sound levels and ranges under a noise-free condition.Then the pseudo-inverse mode filter is used to estimate the probability density functions(PDFs)of the MMSI with Gaussian noise in the sinusoidal signal.The simulation results of the normal mode propagation model show that sources at differ-ent depths have different distribution parameters with the same depth fluctuation variations.

    1 Theory of Modified Modal Scintillation Index

    1.1 Definition of modal scintillation index

    According to the normal mode theory,the complex pressure field can be expressed in terms of a superposition of normal modes in the far field of an acoustic source[12],

    where z is the depth of the receiver;zsis the depth of the acoustic source;Φm(z)represents the eigenfunction of the m-th mode;A is the amplitude of the source signal;M is the number of the normal modes;and rsis the range between the source and the receiver.Suppose that the receiver is a vertical array with N hydrophones,and the depth of the i-th hydrophone is zi, i=1,2,…,N.The signal pReceivedby the hydrophone array can be written in a matrix form as

    where Φ is the N × M matrix of normal mode functions;H is the M×1 vector of temporally varying modal excitations and depends on the depth of the acoustic source;and krmis the horizontal wavenumber.Premus[11]defined the modal scintillation index of the m-th mode as

    For an acoustic source whose depth is fluctuating in response to wave interaction,the mode amplitude variance has a component which is a sensitive indicator of its mean depth.Mode amplitude fluctuations will exhibit high variance when the source is near the depth of a modal zero-crossing,where the derivative of the mode function is the maximum.Similarly,mode amplitudes fluctuate with a low variance for a source near a modal extremum,where the derivative of the mode function is zero.The critical property of the shallow waveguide which motivates the use of the modal scintillation index for binary depth classification is the fact that the normal modes are nearly sinusoidal and share a common zero-crossing at the surface as shown in Fig.1.Thus, a surface source with a given vertical motion variance will exhibit a high mode scintillation across all the modes.A submerged source with the same vertical motion variance will exhibit a low mode scintillation for at least one mode,due to its expected proximity to at least one modal extremum.

    Fig.1 Conceptual description of physics-based depth discrimination using MSI

    Although the physical mechanism of utilizing the MSI to discriminate surface source and submerged source is reasonable, the definition in Eq.(5)is not a self-normalized statistic.The value of the MSI depends remarkably on the source level and source range.And this will be analytically proved in the following section.

    1.2 Performance analysis of modal scintillation index

    Consider the isovelocity waveguide as shown in Fig.2.The sound speed is a constant value c at all depths.D is the waveguide depth and ρ is the density of water.

    and the corresponding eigenfunctions are given by

    where kzmis the vertical wavenumber and it is given by

    Fig.2 Schematic of the isovelocity waveguide

    The horizontal wavenumber can be calculated as[12]

    Suppose that the vertical motion of acoustic source Δz is random and that it follows the Gaussian distribution N(0,σ2), and the mean acoustic source depth is zs0.The eigenfunctions in Eq.(7)can be modified as

    where C=(2ρ/D) .Since the approximation condition

    is satisfied in most low frequency narrow band signals in the far field situations(low order normal modes are dominant), Eq.(9)can be simplified as

    Evidently, the eigenfunctions Φm(zs)follows the Gaussian distribution N(μΦ,σ2Φ), where

    where K=A/(krmrs)1/2.Using the properties of the Gaussian random variable,hm(zs)follows the Gaussian distribution N(μKΦ,σ2KΦ), where

    And hm(zs) follows the folded Gaussian distribution[13].Its mathematical expectation and variance are given by

    Substituting Eqs.(12), (15)and(16)into Eq.(5),the modal scintillation index can be expressed as

    where erf(·)is the error function and has the maximum value of 1.When KC?1,further simplification can be made as

    Since K is the function of source level A and source range rs,SImis a source level and source range dependent statistic.

    1.3 Definition of modified modal scintillation index

    In section 1.2, it is analytically proved that the values of the MSI depend not only on the source depth,but also on the source level and source range.It means that a near submerged source may also exhibit high mode scintillation,and the binary discrimination method using the MSI is only valid when the surface source and submerged source have the same K value.Since this condition cannot always be satisfied,another statistic independent of K must be defined to work robustly.Define the MMSI as

    Using a similar simplifying method,S'Imare given in an approximative form as

    Eq.(20)shows that S'Imis a source depth dependent statistic only and independent of the source level and the source range.

    In practice,the MMSI must be estimated from theReceivedsignal with noise.The model with additive noise in signalsReceivedby the array is

    where n is the additive ambient noise vector{n1,n2,…nN}Tand ni(i=1,2,…N)is the noise at the i-th hydrophone.The modal excitation vector can be computed from samples of theReceivedpressure field via the pseudo-inverse calculation given by

    where Φ+=(ΦHΦ)-1ΦHrepresents the pseudo-inverse of Φ and the superscript H denotes conjugate transpose.Suppose that the additive noise n is the zero mean Gaussian random process,and^H is the unbiased estimation of H.Substituting Eq.(22)into Eq.(19), the MMSI can be estimated from theReceivedsignal.

    2 Simulation results and discussion

    To illustrate the utility of the modified modal scintillation index,a simulation experiment is performed for the Pekeris waveguide[12].The simulation geometry is depicted in Fig.3.The waveguide depth D is 100 m;the sound speed in the water c is 1 500 m/s;the density of the water ρ is 1 000 kg/m3;the sound speed in the bottom cbis 2 000 m/s;and the density of the bottom ρbis 1 000 kg/m3.The source is a narrow band source and its frequency is 70 Hz.The receiver is a fully spanning ver-tical array consisting of 41 hydrophones equally spaced at 2.5 m.There are six modes that can propagate in the Pekeris waveguide at the frequency of 70 Hz.The mode shapes are depicted in Fig.4.The vertical motion of source follows the Gaussian distribution N(0,1).

    Fig.3 Schematic of the Pekeris waveguide

    Fig.4 Normal modes in Pekeris waveguide

    The simulation experiment consists of three parts.First,the MSI and the MMSI are calculated by using the analytical form for sources of different sound levels with the source depth varying from 5 to 90 m.Secondly, the MSI and the MMSI are calculated by using the analytical form for sources of different ranges with the source depth varying from 5 to 90 m.The first two parts are under the condition free of noise.In the third part, the MMSI distribution is simulated with noise in theReceivedsignal for surface and submerged sources.

    2.1 MSI and MMSI of sources with different sound levels

    The Kraken normal mode model[14]is used to calculate the eigenfunctions Φm, the horizontal wavenumber krmand the vertical wavenumber kzm.Then Φm, krmand kzmare inserted into Eq.(4), Eq.(5)and Eq.(19)to calculate the modal excitations H analytically for acoustic source with the source levels of 160 and 130 dB.The source level is in units of dB re:1 μPa ·m.The source range is 5 km.The MSI-depth and MMSI-depth curves are depicted in Fig.5.

    The results in Fig.5 show that both the MSI and the MMSI exhibit high mode amplitude fluctuation variances at the depth of modal zero-crossing.In Figs.5(a), (c)and(e),there is a great disparity between the two curves of sources with different source levels.In Figs.5(b),(d)and(f),the two curves of sources with different source levels match well.This means that the MSI is a source level sensitive statistic while the MMSI is not.

    Fig.5 MSI-depth and MMSI-depth curves for different source levels.(a)MSI-depth curve of Mode 1;(b)MMSI-depth curve of Mode 1;(c)MSI-depth curve of Mode 3;(d)MMSI-depth curve of Mode 3;(e)MSI-depth curve of Mode 5;(f)MMSI-depth curve of Mode 5

    2.2 MSI and MMSI of sources with different ranges

    The same algorithm as in Section 2.1 is used to calculate the modal excitations H for acoustic source with the source ranges of 5 and 10 km.The source level is 160 dB.The results are depicted in Fig.6.

    Fig.6 MSI-depth and MMSI-depth curves for different source ranges.(a)MSI-depth curve of Mode 1;(b)MMSI-depth curve of Mode 1;(c)MSI-depth curve of Mode 3;(d)MMSI-depth curve of Mode 3;(e)MSI-depth curve of Mode 5;(f)MMSI-depth curve of Mode 5

    The results in Fig.6 show that both the MSI and the MMSI exhibit high mode amplitude fluctuation variances at the depth of modal zero-crossing.In Figs.6(a), (c)and(e),there is a small disparity between the two curves of sources with different source levels.In Figs.6(b), (d)and(f),the two curves of sources with different source levels match well.This means that the range variation does not affect the MSI as greatly as the source level variation does.The MMSI is a self-normalized statistic and independent of source range.

    2.3 MMSI probability density functions estimation

    In Section 2.1 and Section 2.2, both the MSI and the MMSI are analytically calculated without noise.But in real applications, the ambient noise cannot be ignored.The hydrophone array receives the signal from the acoustic source as well as the ambient noise.The noise field in this simulation experiment is modeled as the spatial white Gaussian noise with a noise spectrum level of 65 dB re:1 μPa·m.The Kraken normal mode model is also used to calculate Φm, krmand kzm.Considering the effect of the ambient noise,only the estimation of the modal excitations H can be obtained from Eq.(22)by using the pseudo-inverse mode filter.In this case, the statistic MMSI is modeled as a distribution depending on the vertical motion and ambient noise.

    A submerged source and a surface source are considered in the simulation experiment.Fig.7 shows the estimated PDFs of six modified modal scintillation indices obtained from Monte Carlo simulations using 1 000 trials under each hypothesis.The submerged source PDF is denoted as p (MMSI| Hsub)and the surface source PDF is denoted as p (MMSI| Hsurf).The source range is 5 km and the source level is 160 dB in each case.

    Fig.7 shows that the PDFs of the modified modal scintillation indices of the submerged source separates to the left of that of the surface source in the direction of small values of the MMSI in most cases except for mode 4.The positions of the PDFs of surface sources are relatively fixed on the axis of log(MMSI),while the positions of the PDFs of submerged sources shifted along the axis of log(MMSI).This phenomenon shows that the surface source is near the depth of modal zero-crossing for all the modes and exhibits a high variance of mode amplitudes.The submerged source is near the depth of mode zerocrossing for some modes(mode 3 and mode 4)and near the depth of mode extremums for other modes(mode 1,mode 2, mode 5 and mode 6).This attribute can be used to discriminate the submerged and surface sources.

    Fig.7 Estimated PDF for MMSI.(a)Mode 1;(b)Mode 2;(c)Mode 3;(d)Mode 4;(e)Mode 5;(f)Mode 6

    3 Conclusion

    A modified modal scin tillation index is proposed in this paper.It is analytically proved that the MMSI is a depth dependent signature and independent of the source level and range under the condition of the ideal waveguide,while the MSI is both source level and range dependent.A simulation experiment which consists of three parts is performed for the Pekeris waveguide to illustrate the utility of the modified modal scintillation index.The simulation results show that the MMSI is a self-normalized statistic while the MSI is not.The MMSI probability density functions of submerged and surface sources separate from each other in most modes with the same vertical motion variance.And this attribute can be regarded as the signature to discriminate underwater acoustic sources.

    [1]Scrimger J A.Signal amplitude and phase fluctuations induced by surface waves in ducted sound propagation [J].J Acoust Soc Am,1961,33(2):239-247.

    [2]Nichols R H, Young H J.Fluctuations in low-frequency acoustic propagation in the ocean [J].J Acoust Soc Am,1968, 43(4):716-722.

    [3]Urick R J.Models of the amplitude fluctuations of narrow-band signals in the sea[J].J Acoust Soc Am,1977,62(4):878-887.

    [4]Clay G S,Wang Y Y, Shang E C.Sound field fluctuations in a shallow water wave guide [J].J Acoust Soc Am,1985,77(2):424-428.

    [5]Katsnelson B,Grigorev V,Lynch J F.Intensity fluctuations of midfrequency sound signals passing through moving nonlinear internal waves [J].J Acoust Soc Am,2008, 124(4):EL78-EL84.

    [6]Katsnelson B, Grigorev V, Badiey M, et al.Temporal sound field fluctuations in the presence of internal solitary waves in shallow water[J].J Acoust Soc Am, 2009,126(1):EL41-EL48.

    [7]Colosi J A,Morozov A K.Statistics of normal mode amplitudes in an ocean with random sound-speed perturbations:cross-mode coherence and mean intensity [J].J Acoust Soc Am,2009,126(3):1026-1035.

    [8]Colosi J A,Duda T F,Morozov A K.Statistics of lowfrequency normal-mode amplitudes in an ocean with random sound-speed perturbations:shallow-water environments[J].J Acoust Soc Am,2012,131(2):1749-1761.

    [9]Nair N R, Jacob R, Ajaikumar M P.Acoustic fluctuations in shallow water[C]//Proceedings of the2011International Symposium on Ocean Electronics.Kochi, India, 2011:174-177.

    [10]Stojanovic M, Preisig J.Underwater acoustic communication channels:propagation models and statistical characterization [J].IEEE Communications Magazine, 2009,47(1):84-89.

    [11]Premus V.Modal scintillation index:a physics-based statistic for acoustic source depth discrimination [J].J Acoust Soc Am,1999,105(4):2170-2180.

    [12]Jensen F B,Kuperman W A,Porter M B,et al.Computational ocean acoustics[M ].2nd ed.New York:Springer, 2011:345-356.

    [13]Meyer S L.Data analysis for scientists and engineers[M].New York:John Wiley & Sons Inc, 1975:286-287.

    [14]Etter P C.Underwater acoustic modeling and simulation[M].4th ed.Boca Raton:CRC Press, 2013:145-162.

    国产高清不卡午夜福利| 国产精品女同一区二区软件| 国产亚洲精品久久久com| 如何舔出高潮| 国产伦在线观看视频一区| 国产免费一级a男人的天堂| 一区福利在线观看| 天天躁日日操中文字幕| 国产久久久一区二区三区| 日日摸夜夜添夜夜添av毛片| 日韩av不卡免费在线播放| 99热只有精品国产| 欧美色视频一区免费| 国产 一区 欧美 日韩| 欧美不卡视频在线免费观看| 午夜a级毛片| 欧美日韩乱码在线| 在线免费观看不下载黄p国产| 淫妇啪啪啪对白视频| 日本成人三级电影网站| 高清日韩中文字幕在线| 亚洲欧美清纯卡通| 国内精品久久久久精免费| 国产老妇女一区| 久久精品久久久久久噜噜老黄 | 老熟妇仑乱视频hdxx| 日韩欧美三级三区| 精品一区二区三区视频在线| 亚洲丝袜综合中文字幕| 人人妻,人人澡人人爽秒播| 成年女人永久免费观看视频| 非洲黑人性xxxx精品又粗又长| 亚洲丝袜综合中文字幕| 欧美一区二区精品小视频在线| 日本精品一区二区三区蜜桃| 俺也久久电影网| 亚洲美女搞黄在线观看 | 一本久久中文字幕| 国产色婷婷99| ponron亚洲| 亚洲熟妇熟女久久| 国产麻豆成人av免费视频| 青春草视频在线免费观看| 精品一区二区三区视频在线观看免费| 国产av不卡久久| 一本一本综合久久| 成人美女网站在线观看视频| 1000部很黄的大片| a级毛片免费高清观看在线播放| 能在线免费观看的黄片| 在线播放无遮挡| 久久欧美精品欧美久久欧美| 天美传媒精品一区二区| 中文字幕免费在线视频6| 久久精品国产亚洲av涩爱 | 美女xxoo啪啪120秒动态图| 精品无人区乱码1区二区| 波多野结衣巨乳人妻| 日韩一本色道免费dvd| 男女边吃奶边做爰视频| 欧美色欧美亚洲另类二区| 国产精品人妻久久久久久| 日韩人妻高清精品专区| 亚洲最大成人av| 99热6这里只有精品| 国产激情偷乱视频一区二区| 国产男靠女视频免费网站| 亚洲最大成人av| a级毛色黄片| 中文资源天堂在线| 色噜噜av男人的天堂激情| 岛国在线免费视频观看| 精品人妻一区二区三区麻豆 | 观看美女的网站| 亚洲国产精品成人久久小说 | 国产单亲对白刺激| 亚洲18禁久久av| 国内少妇人妻偷人精品xxx网站| 又粗又爽又猛毛片免费看| 国产不卡一卡二| 麻豆国产97在线/欧美| 国产成人影院久久av| 国产成人aa在线观看| 又爽又黄无遮挡网站| 国产精品野战在线观看| 国产精品一区二区三区四区免费观看 | 人人妻人人看人人澡| 亚洲欧美成人精品一区二区| 夜夜看夜夜爽夜夜摸| 国产一区二区三区av在线 | 久久久久久久久大av| 中文字幕熟女人妻在线| 性色avwww在线观看| aaaaa片日本免费| 男女那种视频在线观看| 欧美人与善性xxx| 色哟哟哟哟哟哟| 国产一区二区在线观看日韩| 麻豆国产97在线/欧美| 18禁在线无遮挡免费观看视频 | av在线观看视频网站免费| 日韩三级伦理在线观看| 一级毛片我不卡| 日本一本二区三区精品| 中文字幕av成人在线电影| or卡值多少钱| 夜夜夜夜夜久久久久| 国产免费男女视频| 免费电影在线观看免费观看| 欧美xxxx性猛交bbbb| 在线国产一区二区在线| 亚洲欧美日韩无卡精品| 欧美在线一区亚洲| 午夜精品一区二区三区免费看| 12—13女人毛片做爰片一| 久久久久久国产a免费观看| 亚洲成a人片在线一区二区| 亚洲国产精品合色在线| 天堂动漫精品| 蜜桃亚洲精品一区二区三区| 中文亚洲av片在线观看爽| 亚洲自偷自拍三级| 三级毛片av免费| 国产成人一区二区在线| 亚洲av免费在线观看| 国产真实乱freesex| 赤兔流量卡办理| 国产精品福利在线免费观看| 午夜福利在线观看吧| 国产在线精品亚洲第一网站| 人人妻人人澡欧美一区二区| 一本久久中文字幕| 国产精品亚洲美女久久久| 久久精品国产自在天天线| 在线观看午夜福利视频| 国产精品人妻久久久久久| 五月伊人婷婷丁香| 欧美色视频一区免费| 日韩在线高清观看一区二区三区| 久久这里只有精品中国| 精品人妻熟女av久视频| 精品福利观看| 欧美性猛交黑人性爽| 成人二区视频| 三级国产精品欧美在线观看| 精品免费久久久久久久清纯| 欧美一级a爱片免费观看看| 大型黄色视频在线免费观看| 国产成人a∨麻豆精品| 天堂网av新在线| 此物有八面人人有两片| 午夜福利在线观看吧| 大又大粗又爽又黄少妇毛片口| 人人妻人人澡欧美一区二区| 欧美成人一区二区免费高清观看| 人人妻人人看人人澡| 国产一区二区在线观看日韩| 熟女人妻精品中文字幕| 亚洲经典国产精华液单| 丰满乱子伦码专区| 又爽又黄a免费视频| 免费在线观看影片大全网站| 少妇人妻一区二区三区视频| 国产一区二区在线观看日韩| 亚洲国产高清在线一区二区三| 国产乱人视频| 国产成人91sexporn| 久久6这里有精品| 欧美成人一区二区免费高清观看| 韩国av在线不卡| 国内精品久久久久精免费| 亚洲精品一区av在线观看| 嫩草影院入口| 国产伦在线观看视频一区| www.色视频.com| 成人av在线播放网站| 搞女人的毛片| 变态另类丝袜制服| 亚洲国产精品久久男人天堂| 2021天堂中文幕一二区在线观| 日日摸夜夜添夜夜爱| 精品久久久久久久久久免费视频| 精华霜和精华液先用哪个| 日韩高清综合在线| 伊人久久精品亚洲午夜| 国产一区二区激情短视频| 国产精品久久久久久久久免| 久久久久久九九精品二区国产| 久久97久久精品| 欧美一级a爱片免费观看看| 国产精品成人在线| 亚洲精品日本国产第一区| 亚洲欧美日韩东京热| 亚洲精品乱久久久久久| 自线自在国产av| 美女大奶头黄色视频| 亚洲,一卡二卡三卡| 中文字幕久久专区| 日韩制服骚丝袜av| 热re99久久精品国产66热6| 美女脱内裤让男人舔精品视频| 噜噜噜噜噜久久久久久91| 成年av动漫网址| 在线观看av片永久免费下载| 精品久久久精品久久久| 岛国毛片在线播放| 噜噜噜噜噜久久久久久91| 97在线人人人人妻| 少妇人妻一区二区三区视频| 少妇 在线观看| 看十八女毛片水多多多| 国国产精品蜜臀av免费| 国产深夜福利视频在线观看| 91午夜精品亚洲一区二区三区| 久久国产亚洲av麻豆专区| 男人添女人高潮全过程视频| 成人18禁高潮啪啪吃奶动态图 | 青春草国产在线视频| 精品国产一区二区三区久久久樱花| 国产亚洲最大av| 亚洲精品乱码久久久v下载方式| 91久久精品电影网| 男男h啪啪无遮挡| 久久久精品免费免费高清| 一区在线观看完整版| 中文乱码字字幕精品一区二区三区| www.av在线官网国产| 夫妻午夜视频| 日本欧美视频一区| 七月丁香在线播放| 99热这里只有是精品在线观看| 熟女电影av网| 精品少妇内射三级| 高清视频免费观看一区二区| 色哟哟·www| 九九爱精品视频在线观看| 91午夜精品亚洲一区二区三区| 好男人视频免费观看在线| 97超碰精品成人国产| 最近最新中文字幕免费大全7| 免费看av在线观看网站| 亚洲一区二区三区欧美精品| 麻豆成人午夜福利视频| 欧美三级亚洲精品| 王馨瑶露胸无遮挡在线观看| 免费看光身美女| 一级a做视频免费观看| 亚洲av在线观看美女高潮| 亚洲真实伦在线观看| 高清欧美精品videossex| 日韩成人伦理影院| 欧美另类一区| 男人添女人高潮全过程视频| 最近最新中文字幕免费大全7| 亚洲精品456在线播放app| 欧美精品一区二区大全| 一区二区三区免费毛片| 伦理电影大哥的女人| 在线观看国产h片| 免费黄频网站在线观看国产| 亚洲国产av新网站| 香蕉精品网在线| 美女大奶头黄色视频| 插阴视频在线观看视频| 久久久国产精品麻豆| 国产精品一区二区在线不卡| 在线观看免费视频网站a站| 草草在线视频免费看| 三级国产精品片| 三级国产精品欧美在线观看| 亚洲高清免费不卡视频| 大香蕉久久网| 黄色怎么调成土黄色| 午夜视频国产福利| 国产国拍精品亚洲av在线观看| 亚洲国产精品国产精品| 成人黄色视频免费在线看| 人妻少妇偷人精品九色| 国产女主播在线喷水免费视频网站| 国产精品久久久久久av不卡| 国产精品一区二区三区四区免费观看| 国产黄片视频在线免费观看| 99re6热这里在线精品视频| 欧美国产精品一级二级三级 | 国产高清国产精品国产三级| h视频一区二区三区| 99久久中文字幕三级久久日本| 香蕉精品网在线| 汤姆久久久久久久影院中文字幕| 水蜜桃什么品种好| 国产成人精品无人区| 精品卡一卡二卡四卡免费| 欧美+日韩+精品| 一级毛片电影观看| 欧美变态另类bdsm刘玥| 中文精品一卡2卡3卡4更新| 国产91av在线免费观看| 26uuu在线亚洲综合色| 国产亚洲一区二区精品| 自拍偷自拍亚洲精品老妇| 国产淫片久久久久久久久| 大陆偷拍与自拍| 久久 成人 亚洲| 日日摸夜夜添夜夜添av毛片| 亚洲av电影在线观看一区二区三区| 欧美一级a爱片免费观看看| 极品人妻少妇av视频| 男人狂女人下面高潮的视频| 国产精品福利在线免费观看| 久久精品久久久久久久性| 男女啪啪激烈高潮av片| 狂野欧美激情性bbbbbb| 一级,二级,三级黄色视频| 女性被躁到高潮视频| 老司机影院毛片| 免费观看性生交大片5| 亚洲国产精品999| 一级毛片电影观看| 亚洲人成网站在线观看播放| 国产亚洲最大av| 国产欧美日韩精品一区二区| 亚洲自偷自拍三级| 久久国产精品男人的天堂亚洲 | 搡女人真爽免费视频火全软件| 国产成人freesex在线| 搡女人真爽免费视频火全软件| 欧美日韩视频精品一区| 日韩av免费高清视频| 久久久久久久久久久丰满| 国产精品无大码| 一本久久精品| 高清视频免费观看一区二区| 久久久久视频综合| 自线自在国产av| 午夜日本视频在线| 嫩草影院入口| 国产精品人妻久久久久久| 日本vs欧美在线观看视频 | 熟女电影av网| 免费观看性生交大片5| 人妻 亚洲 视频| www.色视频.com| 一级黄片播放器| 国产免费一级a男人的天堂| 99久久综合免费| 亚洲精品一二三| 免费不卡的大黄色大毛片视频在线观看| 如何舔出高潮| 亚洲国产精品一区二区三区在线| 啦啦啦视频在线资源免费观看| 国产又色又爽无遮挡免| 最近最新中文字幕免费大全7| 天堂俺去俺来也www色官网| 高清黄色对白视频在线免费看 | 欧美日韩综合久久久久久| 在线观看国产h片| 新久久久久国产一级毛片| 国产精品国产三级专区第一集| 大片免费播放器 马上看| 91精品一卡2卡3卡4卡| 在线观看三级黄色| 免费黄网站久久成人精品| 亚洲av中文av极速乱| 午夜福利视频精品| 赤兔流量卡办理| 亚洲美女视频黄频| 水蜜桃什么品种好| a级毛片在线看网站| 水蜜桃什么品种好| 亚洲精品久久久久久婷婷小说| 国产中年淑女户外野战色| 久久久久久久久久久久大奶| 久久人人爽人人片av| 最新的欧美精品一区二区| 国产日韩欧美视频二区| 男人舔奶头视频| 少妇 在线观看| 日日啪夜夜撸| 91精品国产九色| 五月伊人婷婷丁香| 免费黄网站久久成人精品| 免费播放大片免费观看视频在线观看| 日日啪夜夜爽| 亚洲国产欧美在线一区| 午夜视频国产福利| 欧美激情国产日韩精品一区| 久久影院123| 91精品一卡2卡3卡4卡| 9色porny在线观看| 久久鲁丝午夜福利片| 免费观看性生交大片5| 岛国毛片在线播放| 最后的刺客免费高清国语| 人体艺术视频欧美日本| 在现免费观看毛片| 久久热精品热| 欧美3d第一页| 久久久久精品久久久久真实原创| 精品亚洲乱码少妇综合久久| 日日撸夜夜添| 成人美女网站在线观看视频| 国产男女内射视频| 午夜视频国产福利| 午夜免费鲁丝| 欧美最新免费一区二区三区| 免费观看的影片在线观看| 精品国产一区二区三区久久久樱花| 亚洲va在线va天堂va国产| 欧美日韩一区二区视频在线观看视频在线| 在现免费观看毛片| 国产黄色免费在线视频| 香蕉精品网在线| 人人妻人人澡人人看| 又爽又黄a免费视频| 爱豆传媒免费全集在线观看| 久久婷婷青草| 久久影院123| 日本黄色日本黄色录像| 王馨瑶露胸无遮挡在线观看| 日本黄大片高清| 国产精品熟女久久久久浪| 夜夜看夜夜爽夜夜摸| 男人爽女人下面视频在线观看| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影小说| 色94色欧美一区二区| 美女xxoo啪啪120秒动态图| 不卡视频在线观看欧美| 日韩成人av中文字幕在线观看| 99久久精品一区二区三区| 国产亚洲91精品色在线| 久久久精品免费免费高清| 成人18禁高潮啪啪吃奶动态图 | 高清午夜精品一区二区三区| 丝袜脚勾引网站| 国产极品天堂在线| 中文字幕免费在线视频6| 亚洲av.av天堂| 大又大粗又爽又黄少妇毛片口| 男女国产视频网站| 看免费成人av毛片| 成人无遮挡网站| 欧美xxⅹ黑人| 三级国产精品片| 3wmmmm亚洲av在线观看| av在线app专区| 久久久国产一区二区| 亚洲精华国产精华液的使用体验| av国产精品久久久久影院| 亚洲成色77777| 亚洲av免费高清在线观看| 免费高清在线观看视频在线观看| 色婷婷久久久亚洲欧美| 久久99蜜桃精品久久| 欧美日韩亚洲高清精品| 久久久久视频综合| 在线播放无遮挡| 久久6这里有精品| 全区人妻精品视频| 国产淫片久久久久久久久| 亚洲真实伦在线观看| 亚洲人成网站在线播| 爱豆传媒免费全集在线观看| 在线播放无遮挡| 91精品国产国语对白视频| 插逼视频在线观看| 日韩 亚洲 欧美在线| 街头女战士在线观看网站| 亚洲精品国产av蜜桃| 一级毛片 在线播放| 日韩精品免费视频一区二区三区 | 一区二区三区精品91| 免费黄网站久久成人精品| av又黄又爽大尺度在线免费看| 日韩欧美一区视频在线观看 | 肉色欧美久久久久久久蜜桃| 99热全是精品| 国产精品秋霞免费鲁丝片| 日韩视频在线欧美| 国产精品女同一区二区软件| 欧美日韩综合久久久久久| 乱系列少妇在线播放| 一区在线观看完整版| 乱码一卡2卡4卡精品| 欧美少妇被猛烈插入视频| 日本黄色日本黄色录像| 日本欧美国产在线视频| 国产精品无大码| 精品人妻一区二区三区麻豆| 男女国产视频网站| 亚洲经典国产精华液单| 欧美精品亚洲一区二区| 国产极品粉嫩免费观看在线 | 国产探花极品一区二区| 一区二区三区乱码不卡18| 亚洲激情五月婷婷啪啪| 九九爱精品视频在线观看| 一边亲一边摸免费视频| 成年人免费黄色播放视频 | 免费av不卡在线播放| 亚洲欧美中文字幕日韩二区| 精华霜和精华液先用哪个| 亚洲国产毛片av蜜桃av| 久久人人爽av亚洲精品天堂| 九九在线视频观看精品| a级毛色黄片| 日本vs欧美在线观看视频 | 在线观看免费高清a一片| 久久99一区二区三区| 天堂俺去俺来也www色官网| 亚洲国产精品专区欧美| kizo精华| 一本久久精品| 日本与韩国留学比较| 精品人妻一区二区三区麻豆| 国产亚洲最大av| 国产精品一区二区在线观看99| 国产 精品1| 国产极品粉嫩免费观看在线 | 亚洲国产日韩一区二区| 在线 av 中文字幕| 免费观看a级毛片全部| 免费少妇av软件| 在线观看美女被高潮喷水网站| 在线天堂最新版资源| 建设人人有责人人尽责人人享有的| 日本vs欧美在线观看视频 | 亚洲高清免费不卡视频| 亚洲激情五月婷婷啪啪| 国产乱人偷精品视频| a级毛片免费高清观看在线播放| 成人免费观看视频高清| 亚洲人与动物交配视频| 69精品国产乱码久久久| 精品视频人人做人人爽| 在线观看免费高清a一片| 在线观看av片永久免费下载| 国产深夜福利视频在线观看| 国产视频首页在线观看| 欧美最新免费一区二区三区| 国产日韩欧美视频二区| 亚洲一级一片aⅴ在线观看| 中国美白少妇内射xxxbb| 精品卡一卡二卡四卡免费| 这个男人来自地球电影免费观看 | 成年美女黄网站色视频大全免费 | av有码第一页| 狂野欧美激情性bbbbbb| www.色视频.com| 久久亚洲国产成人精品v| 亚洲精品国产av成人精品| 亚洲美女黄色视频免费看| 在线观看一区二区三区激情| 校园人妻丝袜中文字幕| 制服丝袜香蕉在线| 中文字幕亚洲精品专区| 有码 亚洲区| 色94色欧美一区二区| 99热全是精品| 亚洲精品乱久久久久久| 成年人免费黄色播放视频 | 亚洲电影在线观看av| 亚洲精品456在线播放app| 少妇的逼好多水| 成人亚洲精品一区在线观看| 51国产日韩欧美| 国产一区二区在线观看av| 亚洲欧美成人精品一区二区| 一本大道久久a久久精品| 亚洲天堂av无毛| 成年女人在线观看亚洲视频| 亚洲高清免费不卡视频| 亚洲精品,欧美精品| 国产日韩欧美在线精品| 黄色毛片三级朝国网站 | 高清毛片免费看| 亚洲精品国产色婷婷电影| 高清午夜精品一区二区三区| 丝袜在线中文字幕| 国国产精品蜜臀av免费| 九九在线视频观看精品| 久热久热在线精品观看| 欧美另类一区| 国产精品久久久久久久电影| 久热久热在线精品观看| 黑人猛操日本美女一级片| 女性生殖器流出的白浆| 三级国产精品片| 777米奇影视久久| 亚洲在久久综合| 日韩亚洲欧美综合| 最新中文字幕久久久久| 在线播放无遮挡| 日韩亚洲欧美综合| 国产伦精品一区二区三区视频9| 久久av网站| 亚洲欧美中文字幕日韩二区| 精品一区二区免费观看| 亚洲国产精品999| 国产淫片久久久久久久久| 国产一区二区在线观看av| 久久久久久久久久成人| 国产精品99久久99久久久不卡 | 国产片特级美女逼逼视频| 最新中文字幕久久久久| 成年女人在线观看亚洲视频| 丰满少妇做爰视频| 国产熟女午夜一区二区三区 | 国产精品偷伦视频观看了| 精品久久久噜噜| 大片免费播放器 马上看| 欧美日韩在线观看h| 日韩欧美一区视频在线观看 | 一区二区三区精品91| 久久婷婷青草|