• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Decoupling Control Method and Its Application to a Ball Mill Coal-pulverizing System

    2018-12-24 01:33:48YueFuChengwenHongandJingyiLi
    IEEE/CAA Journal of Automatica Sinica 2018年6期

    Yue Fu,Chengwen Hong,and Jingyi Li

    Abstract—The conventional optimal tracking control method cannot realize decoupling control of linear systems with a strong coupling property.To solve this problem,in this paper,an optimal decoupling control method is proposed,which can simultaneously provide optimal performance.The optimal decoupling controller is composed of an inner-loop decoupling controller and an outer-loop optimal tracking controller.First,by introducing one virtual control variable,the original differential equation on state is converted to a generalized system on output.Then,by introducing the other virtual control variable,and viewing the coupling terms as the measurable disturbances,the generalized system is open-loop decoupled.Finally,for the decoupled system,the optimal tracking control method is used.It is proved that the decoupling control is optimal for a certain performance index.Simulations on a ball mill coal-pulverizing system are conducted.The results show the effectiveness and superiority of the proposed method as compared with the conventional optimal quadratic tracking(LQT)control method.

    I.INTRODUCTION

    THE controlled objects of actual industrial processes are mostly multivariable.One of their important characteristics is the existence of couplings among the variables.That is to say,when one of the input variables of the object changes,many output variables or even all the output variables may change.Due to the existence of couplings among the variables,when the output variable of one control loop is changed by adjusting the controller parameters in the control loop,the output variables of the other control loops are also changed.This results in a degraded control effect,or even invalidity of the whole control system.Decoupling control system is one of the five advanced control systems in multivariable process control[1],whose research is very important.

    Decoupling control methods are divided into open-loop decoupling control and closed-loop decoupling control.The open-loop decoupling control is realized in two steps.First,a decoupling compensator is designed,which transforms a multivariable system to multiple single-variable systems.Then,a controller is designed,which makes these single-variable control systems achieve the desired performance.By combining a decoupling compensator with a controller,the closedloop decoupling control is realized in one step.The coupling effect among the loops is reduced,and simultaneously the performance requirements are also achieved.

    The earliest decoupling control method can be traced back to 1950s,where it was proposed for multivariable linear systems described by an input-output model.The decoupling control problem of multivariable linear systems described by a state space model was first proposed by Morgan in 1964.The sufficient and necessary conditions that a square system described by a state space model could be decoupled were given in[2].The decoupling control problem of nonsquare systems was solved in[3].For multivariable linear systems with unmeasurable states,the output feedback based decoupling control method was proposed in[4].There also exist other classical linear decoupling control methods,such as the inverse Nyquist matrix method[5],the Bristol-Shinskey method[6]and the related analysis method[7].

    By the 1980s,linear multivariable adaptive decoupling control had become an important research field.Linear multivariable adaptive decoupling control methods are divided into open-loop adaptive decoupling control and closed-loop adaptive decoupling control.On the basis of identification,both of them use the conventional decoupling control method to decouple the system[8]-[10].

    Since the 1990s,with the introduction of intelligent methods,nonlinear multivariable adaptive decoupling control has attracted the attention of control scholars and engineers.For a class of discrete-time multivariable systems with strong coupling,strong nonlinearity and uncertainty,the sufficient and necessary conditions that a system could be decoupled in a compact set were given in[11].In[12],the controlled system was linearized at an equilibrium point by using Taylor expansion,and then it was equivalently expressed as a combination of a linear model and a nonlinear higher order term.Based on the equivalent model,an adaptive decoupling control method was proposed by combining one step-ahead optimal weighting decoupling control with neural network feedforward compensation.In[13]and[14],the controlled system was transformed into a linear model with diagonal parameter matrices and a nonlinear term.By combining neural network feedforward compensation respectively with one stepahead optimal weighting adaptive control and generalized predictive adaptive control,two adaptive decoupling control methods were proposed.In the above literatures,the effectiveness of the proposed decoupling control methods are demonstrated only by numerical simulations.The stability and convergence of the closed-loop systems are not provided.To solve this problem,in[15]-[18],four adaptive decoupling control methods based on multiple models and neural networks were proposed by combining multiple model switching respectively with one step-ahead adaptive decoupling control,one step-ahead weighting adaptive decoupling control,adaptive generalized predictive decoupling control,and adaptive proportion integration differentiation(PID)decoupling control.The stability and convergence of the closed-loop systems were proved.In[19],the adaptive decoupling control method combining an open-loop decoupling compensator with neural network approximate compensation was proposed,which can also ensure the stability and convergence of the closed-loop system.For complex industrial processes with multivariable,strong coupling,strong nonlinearity and especially variable dynamic characteristics,two intelligent decoupling control methods were proposed by combining multiple model switching respectively with one step-ahead optimal weighting decoupling control based on neural network feedforward compensation and approximate dynamic decoupling control based on neural network feedforward compensation[20],[21].For nonlinear multivariable systems with unknown structures,an adaptive switching control method driven by virtual unmolded dynamics was proposed in[22].With the development of intelligent control methods,in recent years,by combining intelligent control with inverse systems,the inverse decoupling control methods were proposed in[23]-[27].

    The above methods are designed without considering the performance requirements on the systems.Although they can realize decoupling control of complex industrial processes,they cannot meet the rising performance index.Therefore,if the above decoupling control methods are used,the integrated optimization control of complex industrial processes aimed at saving energy and reducing consumption will be influenced.With the rapid development of science and technology,the performance requirements on many control systems(such as spacecraft,modern industrial equipment,and production process,etc.)become higher and higher.For a control system,it is always hoped that a certain performance index is optimal in some sense.Optimal control is a subject that studies and solves the optimal solution among all possible control schemes,which provides a feasible scheme to realize the optimal performance of a control system.

    This paper proposes an optimal decoupling control method for a class of continuous time linear multivariable systems,by combining open-loop feedforward decoupling control with optimal tracking control.First,by introducing one virtual input vector,the differential equation on state is converted into the differential equation on output,and then the system matrix and input matrix are decomposed into a diagonal matrix and the matrix with zero diagonal elements,such that the coupling terms are separated.Second,by introducing the other virtual input vector,the system is open-loop decoupled by using feedforward and output feedback method.Finally,for the decoupled system,the conventional optimal tracking control method is adopted to realize the tracking of the system to any reference input.By choosing appropriate weighting matrices,the optimal decoupling control method is equivalent to the closed-loop optimal decoupling control method.Simulation results show the effectiveness of the proposed method and the superiority as compared with conventional optimal quadratic tracking(LQT)control method.

    II.PROBLEMDESCRIPTIONS

    Consider a continuous-time linear multivariable timeinvariant system

    where x(t)∈Rnis the system state,u(t)∈Rmis the control input,y(t)∈ Rmis the system output;A ∈ Rn×n,B ∈Rn×m,C ∈Rm×nare constant matrices with CB invertable,{A,B}controllable,{A,C}andobservable,where Q is defined in the sequel.

    The conventional optimal tracking control problem is tofind the optimal control policy u?(t)so as to make the system(1)track a desired reference trajectory yr(t)∈Rnin an optimal manner by minimizing a predefined performance index,especially,

    where e(t)=yr(t)-y(t)is the tracking error,Q=QT≥0 is a nonnegative matrix,and R=RT≥0 is a positive matrix.The standard optimal tracking controller is given as[28]

    where P is obtained by solving the Riccati equation

    and the limiting function gssis given by gss=limT→∞g,with the auxiliary time signal g satisfying

    The optimal output trajectories can be then obtained by computing

    From(5)and(6),the transfer function matrix from yr(t)to y(t)may be non-diagonal,and the change of one reference input yr,i(t),i=1,...,m must lead to the changes of other outputs yj(t),i/=j.In fact,many industrial processes have the coupling characteristics.For industrial processes with weak coupling,distributed control and model predictive control are generally used.However,if an industrial process is strongly coupled,an effective decoupling control method is necessary.

    The purpose of this paper is to derive an optimal decoupling control law,so that the system output y(t)of the closedloop system can track the reference input yr(t)as much as possible,and the influence of the couples among control loops is suppressed to be as small as possible,while the closed-loop system achieves a certain optimal performance.

    III.OPTIMALDECOUPLINGCONTROL

    A.Differential Equation on Output

    To realize input-output decoupling control,we should first convert the differential equation on state into the equation on output.

    From(1),we know

    Define

    where K0∈ Rm×m,G0∈ Rm×n,L0∈ Rm×mare constant matrices,and w(t)∈Rmis the first virtual input vector.By substituting(8)into(7),we have

    Select

    (9)can then be converted into the following equation:

    Equation(11)can be viewed as a generalized system.In the sequel,it will be considered directly,and an optimal decoupling control w?(t)will be designed.

    B.Decoupling Control Scheme

    Since the coupling effect of the ith channel’s input wi(t)on the jth channel’s output yj(t),i/=j can be regarded as measurable disturbance,in the design,it will be eliminated by a feedforward method.The effect of the ith output variable on the jth output variable in the autonomous system w(t)=0 will be eliminated by applying a feedback method.Therefore,we rewrite(11)as

    By introducing the second virtual input vector v(t)∈Rm,we design the following decoupling controller:

    where S1,L are diagonal matrices with corresponding dimensions where S1is invertible,and S2,K are matrices whose diagonal elements are zeros.By left-multiplying(12)using S1and left-multiplying(13)usingwe have

    From(14),to achieve decoupling,S1,S2,K should be chosen to satisfy the following equations:

    Then,(11)is converted to

    C.Optimal Tracking Control

    In the following,for(17),we will design the virtual input v(t)by using the conventional optimal tracking control method.The performance index is

    where e(t)=yr(t)-y(t)is the tracking error,Q=QT≥0 is a nonnegative matrix,and R=RT≥0 is a positive matrix.

    where P is the symmetric positive definite constant matrix which satisfies the following Riccati algebraic equation:

    and gssis given by gss=limT→∞g with the auxiliary time signal g satisfying

    Then,from(13)and(19),the optimal decoupling control law is finally obtained as follows:

    The structure of the optimal decoupling control system is shown in Fig.1.

    where the symmetric positive definite constant matrix P satisfies the following Riccati algebraic equation:

    and gssis given by gss=limT→∞g with the auxiliary time signal g satisfying

    Fig.1.Structure of the optimal decoupling control system.

    D.Performance of the Optimal Decoupling Controller

    The optimal decoupling controller(23)is realized by first decoupling the generalized system(11)and then designing the optimal tracking controller.Therefore,it is actually an openloop decoupling controller.In the following,we will show that the open-loop decoupling controller equals a closed-loop optimal decoupling controller in a sense.

    Theorem 1:For the generalized system(11),the optimal decoupling controller(23),with P satisfying(24)and g(t)satisfying(25),makes the following performance index minimized.

    Proof:The optimal control minimizing the performance index(26)must satisfy the minimum principle;thus,the Hamiltonian function is introduced.

    From the extreme value condition

    the optimal control is obtained as

    Let

    then,we have

    From(31),we know

    By comparing(34)and(35),and making them to hold for any y(t)and yr(t),the matrix P and g(t)must satisfy the following equations:

    Substituting(32)into(29),the optimal control can be obtained as

    Remark 1:Since the optimal decoupling controller(23)minimizing the performance index(26)is derived by using one step,it is also a closed-loop decoupling scheme.

    IV.SIMULATIONS

    To illustrate the effectiveness of the proposed method,in this section,we will apply it to a ball mill coal-pulverizing system.

    As described in[21],ball mill coal-pulverizing systems are important heat-power equipment in power plants.They are used to pulverize raw coal into fine powder of desired temperature and fineness.There are plenty of coal mines in China,but the quality of raw coals varies greatly.Therefore,ball mill coal-pulverizing systems are widely used to grind various raw coal.The flowchart of ball mill coal-pulverizing system is shown in Fig.2,which consists of a hopper,a feeder,a strap transmission system,a ball mill,a coarse powder separator,a fine powder separator and a blast system[21].The raw coal is leaked from the hopper to the feeder,sent into the dryness pipeline by the strap transmission system,and then blended with dryer air.The quantity of dryer air and heat can be regulated by the flow rates of hot air and warm air in the blast system.The mixture of raw coal and dryer air are sent into the ball mill through the dryness pipeline,where it is pulverized to fine powder by knocking and grinding of iron balls when the ball mill rotates.At the same time,the coal powder is dried and brought out of the ball mill by dryer air.Then,it is transferred into the coarse separator,where the coarse powder and fine powder are separated.The unqualified coarse powder is returned into the ball mill for re-grinding,while qualified fine powder is sent into the bunker and then to boiler for burning.

    Fig.2.Flowchart of the ball mill coal-pulverizing system.

    According to the energy and mass equilibriums of ball mill entrances and the mass equilibrium of liquid in the blast pipes,a dynamic model of the ball mill coal-pulverizing system is established as follows[21]:

    where x1=y1is the outlet temperature of the ball mill,which is related to the grinding quality of the coal-pulverizing system;x2=y2is the inlet pressure of the ball mill,which is related to system security;x3=y3is the import and export differential pressure of ball mill,which is connected with the production of ball mill;u1,u2,and u3are respectively the coal feeding rate,the hot air flow and the warm air flow.The meanings and values of other variables and parameters can be found in[29],and they are respectively listed in Table I and Table II.

    From(42),the ball mill coal-pulverizing system is a nonlinear process with strong couplings between each loop.Variations of each control input will cause the changes of all the system outputs.According to the observation on site,the strong coupling property is mainly reflected in following cases:

    1)When the coal feeding rate,u1,increases,more heat of the desiccant will be absorbed into the ball mill.Therefore the outlet temperature of the ball mill,y1,will decrease.Simultaneously,the increase of the coal feeding rate,u1,can also increase the ventilation friction inside of the ball mill,resulting in a decrease in ventilation volume.Consequently,the inlet pressure of the ball mill,y2,decreases.The increase of the coal feeding rate,u1,also makes the mill load inside the ball mill increase,and then leads to the increasing of the differential pressure of the ball mill,y3.

    2)When the hot air flow,u2,increases,the corresponding hot air volume will increase.Then,the outlet temperature of the ball mill,y1,will increase and the inlet pressure and the differential pressure of the ball mill,y2and y3,will decrease.

    3)When the warm air flow,u3,increases,the corresponding warm air volume will increase.Then,the outlet temperature and the inlet pressure of the ball mill,y1and y2,decrease,and the differential pressure of the ball mill,y3,increases.

    Therefore,it is very important to decouple the control of the ball mill coal-pulverizing system.

    TABLE I DEFINITIONS OFPARAMETERS ANDVARIABLES IN COAL-PULVERIZINGSYSTEMMODEL

    TABLE II DATA OFPARAMETERS ANDVARIABLES INCOAL-PULVERIZING SYSTEMMODEL

    According to the requirements of the practical process,the outputs y1(t),y2(t)and y3(t)should be controlled respectively between 60?C-85?C,-0.2kpa--0.6kpa and 0.5kpa-2.0kpa[29].In the simulations,we choose(y1,y2,y3)=(78?C,-0.4kpa,1.2kpa)and(82?C,-0.5kpa,1.7kpa),which lie in the ranges of the outputs,as the equilibrium/operational points.First,the initial values,i.e.,the raw coal temperature tc=15,the warm air temperature tlk=30,and the hot air temperature tr=340 are selected.Then,we linearize(42)respectively at the above two equilibrium/operational points.

    For(y1,y2,y3)=(78?C,-0.4kpa,1.2kpa),we have

    The relative gain matrix is as follows:

    From the RGA matrix,we know that it is reasonable to select the coal feeding rate u1(t)to control the outlet temperature of the ball mill,y1(t),the hot air flow u2(t)to control the inlet pressure of the ball mill,y2(t)and the warm air flow u3(t)to control the differential pressure of the ball mill,y3(t).Since the relative gains of the three channels are 0.6417,2.0054 and 2.6433,respectively,according to the Bristol-Shinskey metrics,there exists serious coupling in the loops.Select the weighting matrices as

    and the reference input as

    Fig.3 is the output tracking curves by using the proposed optimal decoupling control method,and Fig.4 is the corresponding control input curves.From Fig.3,the three output variables can all track their reference curves well.In order to compare with the proposed method,the conventional LQT control method is also used.Fig.5 is the corresponding output tracking curves,and Fig.6 is the control input curves.From Fig.5,we can see that due to the existence of the couplings,the output y1cannot track its reference input at all.

    For(y1,y2,y3)=(82?C,-0.5kpa,1.7kpa),we have

    The relative gain matrix is as follows:

    Fig.3.Tracking results by using the proposed controller.

    Fig.4.Input signals by using the proposed controller.

    Fig.5.Tracking results by using the LQT controller.

    Fig.6.Input signals by using the LQT controller.

    From the RGA matrix,we know that there still exists serious coupling in the loops.Select the same weighting matrices as in the above example and the reference input as below

    Fig.7 is the output tracking curves by using the proposed control method,Fig.8 is the corresponding control input curves,Fig.9 is the output tracking curves by using the conventional LQT control method,and Fig.10 is the corresponding control input curves.From Figs.7 and 9,we can see that the tracking effect produced by using the proposed method is better than that produced by the LQT method.

    Fig.7.Tracking results by using the proposed controller.

    Fig.8.Input signals by using the proposed controller.

    To verify the effectiveness of the proposed method for the ball mill coal-pulverizing system,in the following,we will conduct simulations on the ball mill coal-pulverizing system(42)around a small neighbourhood of the point(y1,y2,y3)=(82?C,-0.5kpa,1.7kpa).

    The weighting matrices are selected as in the above two examples,and the reference input is as

    Fig.9.Tracking results by using the LQT controller.

    Fig.10.Input signals by using the LQT controller.

    Since the nonlinearity is weak around the small neighbourhood of the equilibrium/operational point,the linear decoupling control method can be used to control the nonlinear system.Fig.11 shows the output tracking curves by using the proposed optimal decoupling control method,from which we can see the three output variables can all track their reference curves well.In order to compare with the proposed method,the nonlinear decoupling control method[21]is also used.The sampling time T=0.01 is selected.The parameters of the controller are chosen same as that in[21].Fig.12 is the output tracking curves.From Figs.11 and 12,we can see that the effect produced by the proposed method is not worse than that produced by the nonlinear decoupling control method.

    V.CONCLUSIONS

    In this paper,for a class of linear multivariable systems with strong couplings,an optimal decoupling control method is proposed by combining an open-loop decoupling compensator and an optimal tracking controller.From the design method point of view,this method belongs to the open-loop decoupling domain.However,it is also proved to be equivalent to the closed-loop decoupling control in a sense.Therefore,the method can not only eliminate the coupling effects in the loops,but also can improve the closed-loop performance index,and can realize the tracking of any reference input of the system.Two linear models are obtained by linearizing a ball mill coal-pulverizing system at two equilibium/operational points.Simulations are conducted respectively for the two models.The results show the effectiveness and superiority of the proposed method as compared with the conventional LQT control method.Simulations are also conducted on the ball mill coal-pulverizing system.The results show that around a small neighbourhood of the equilibium/operational point,the effect produced by the proposed linear decoupling control method is not worse than that produced by the nonlinear decoupling control method[21].

    Fig.11. Tracking results by using the optimal decoupling control in the ball mill.

    Fig.12. Tracking results by using the nonlinear decoupling control[21]in the ball mill.

    The proposed optimal decoupling control method is designed for linear systems with completely known dynamics.Although it is also effective for nonlinear systems with weak nonlinearity,it cannot be directly applied to a nonlinear system with strong nonlinearity.In the future,we will study adaptive optimal decoupling control methods for nonlinear systems with strong nonlinearity and unknown dynamics.

    色综合欧美亚洲国产小说| 午夜福利一区二区在线看| 欧美大码av| aaaaa片日本免费| 桃红色精品国产亚洲av| 露出奶头的视频| kizo精华| 啦啦啦免费观看视频1| 亚洲av成人不卡在线观看播放网| 蜜桃国产av成人99| 国产精品99久久99久久久不卡| 岛国在线观看网站| 真人做人爱边吃奶动态| √禁漫天堂资源中文www| 亚洲第一欧美日韩一区二区三区 | 久久av网站| 黄网站色视频无遮挡免费观看| 女人精品久久久久毛片| 肉色欧美久久久久久久蜜桃| 国产免费av片在线观看野外av| 午夜精品国产一区二区电影| 亚洲专区字幕在线| 91老司机精品| 精品午夜福利视频在线观看一区 | 可以免费在线观看a视频的电影网站| 欧美亚洲 丝袜 人妻 在线| 精品人妻熟女毛片av久久网站| 精品人妻1区二区| 亚洲欧美日韩另类电影网站| 亚洲综合色网址| 亚洲av第一区精品v没综合| 久久精品aⅴ一区二区三区四区| 国产又爽黄色视频| 一区二区日韩欧美中文字幕| 午夜福利一区二区在线看| 久热这里只有精品99| 亚洲欧美色中文字幕在线| 久久狼人影院| 国产男靠女视频免费网站| 欧美人与性动交α欧美软件| 成人18禁在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩福利视频一区二区| 欧美成狂野欧美在线观看| 国产在线视频一区二区| 欧美午夜高清在线| 精品亚洲成国产av| 激情视频va一区二区三区| 天天躁日日躁夜夜躁夜夜| 搡老乐熟女国产| 精品国产乱子伦一区二区三区| 啦啦啦视频在线资源免费观看| 中文字幕av电影在线播放| 热re99久久国产66热| 丝袜美足系列| 一本久久精品| 日本wwww免费看| 欧美精品一区二区免费开放| 国产精品九九99| 久久精品国产a三级三级三级| 动漫黄色视频在线观看| 黄色毛片三级朝国网站| 黄色片一级片一级黄色片| 久久久久久久久久久久大奶| 天堂中文最新版在线下载| 久久国产精品大桥未久av| 国产精品九九99| 欧美日韩亚洲综合一区二区三区_| 一个人免费在线观看的高清视频| 欧美乱码精品一区二区三区| 国产在视频线精品| 欧美日韩av久久| 精品少妇一区二区三区视频日本电影| 国产亚洲一区二区精品| 日韩免费av在线播放| 国产深夜福利视频在线观看| 亚洲av成人不卡在线观看播放网| 美女视频免费永久观看网站| 国产成人系列免费观看| 国产不卡一卡二| 国产一区有黄有色的免费视频| 一区二区三区乱码不卡18| 国产亚洲欧美精品永久| 午夜精品久久久久久毛片777| 又大又爽又粗| 男女下面插进去视频免费观看| 国内毛片毛片毛片毛片毛片| 午夜福利免费观看在线| 天堂动漫精品| 国产伦理片在线播放av一区| 欧美在线黄色| videos熟女内射| 好男人电影高清在线观看| 美女视频免费永久观看网站| 天堂俺去俺来也www色官网| 久久久久久人人人人人| 丝瓜视频免费看黄片| 一个人免费看片子| 两个人免费观看高清视频| 国产伦理片在线播放av一区| 国产精品久久久av美女十八| 国产成人欧美| 国产精品久久久久久精品电影小说| av免费在线观看网站| 国产精品亚洲一级av第二区| 老汉色∧v一级毛片| 999久久久精品免费观看国产| 亚洲专区国产一区二区| 不卡一级毛片| 免费看a级黄色片| 国产淫语在线视频| 99国产精品免费福利视频| 大香蕉久久网| 性色av乱码一区二区三区2| 免费人妻精品一区二区三区视频| 成人黄色视频免费在线看| 久久久久久亚洲精品国产蜜桃av| 法律面前人人平等表现在哪些方面| 久久国产精品人妻蜜桃| 电影成人av| 久久精品91无色码中文字幕| 久久久水蜜桃国产精品网| 露出奶头的视频| 国产精品香港三级国产av潘金莲| 成人av一区二区三区在线看| 亚洲精品在线观看二区| 水蜜桃什么品种好| 黄网站色视频无遮挡免费观看| 一边摸一边抽搐一进一出视频| av电影中文网址| 欧美日韩av久久| 成人av一区二区三区在线看| 国产又色又爽无遮挡免费看| 久久精品国产亚洲av香蕉五月 | 丝袜在线中文字幕| 色在线成人网| av欧美777| 高清视频免费观看一区二区| 国产精品免费一区二区三区在线 | 一区二区三区激情视频| 一区二区三区乱码不卡18| 欧美精品av麻豆av| 久久久久视频综合| 少妇的丰满在线观看| 中文字幕色久视频| 国产精品亚洲av一区麻豆| 久久久精品国产亚洲av高清涩受| 国产极品粉嫩免费观看在线| 热99re8久久精品国产| 国产一区二区在线观看av| 亚洲免费av在线视频| 久久这里只有精品19| 日韩有码中文字幕| 成年女人毛片免费观看观看9 | 在线观看一区二区三区激情| 欧美黑人精品巨大| 国产不卡一卡二| 久久久水蜜桃国产精品网| cao死你这个sao货| 69精品国产乱码久久久| av网站在线播放免费| 黄色毛片三级朝国网站| 国产精品99久久99久久久不卡| 99久久人妻综合| av线在线观看网站| 黄色 视频免费看| 国产成人免费无遮挡视频| 欧美成人免费av一区二区三区 | 99re6热这里在线精品视频| 女人久久www免费人成看片| 又大又爽又粗| 一本—道久久a久久精品蜜桃钙片| 亚洲情色 制服丝袜| 久久精品亚洲熟妇少妇任你| 999精品在线视频| 欧美变态另类bdsm刘玥| 叶爱在线成人免费视频播放| 嫁个100分男人电影在线观看| 在线av久久热| 怎么达到女性高潮| a级毛片黄视频| 亚洲伊人色综图| 国产真人三级小视频在线观看| 亚洲国产欧美日韩在线播放| 男女午夜视频在线观看| 久久久久久久大尺度免费视频| 日韩中文字幕欧美一区二区| 国产精品影院久久| 999精品在线视频| 蜜桃在线观看..| 丁香欧美五月| 一区二区日韩欧美中文字幕| 国产伦理片在线播放av一区| 久久久水蜜桃国产精品网| 十八禁网站免费在线| 免费女性裸体啪啪无遮挡网站| 国产精品成人在线| 首页视频小说图片口味搜索| 我的亚洲天堂| 国产精品98久久久久久宅男小说| 久久精品国产a三级三级三级| 国产一卡二卡三卡精品| 欧美日韩亚洲综合一区二区三区_| 中文字幕人妻丝袜制服| 十分钟在线观看高清视频www| 国产成人精品久久二区二区免费| 一边摸一边做爽爽视频免费| 亚洲第一av免费看| 一进一出好大好爽视频| 另类亚洲欧美激情| 日韩精品免费视频一区二区三区| 欧美老熟妇乱子伦牲交| 90打野战视频偷拍视频| 大型av网站在线播放| 亚洲一区二区三区欧美精品| 久久午夜亚洲精品久久| 十分钟在线观看高清视频www| 国产高清国产精品国产三级| 久久国产亚洲av麻豆专区| 国产在视频线精品| 亚洲三区欧美一区| 蜜桃国产av成人99| 亚洲美女黄片视频| 18禁国产床啪视频网站| 免费观看av网站的网址| 久9热在线精品视频| 日韩中文字幕视频在线看片| 日日爽夜夜爽网站| 国产视频一区二区在线看| 成年动漫av网址| 51午夜福利影视在线观看| 精品久久久久久电影网| 精品国内亚洲2022精品成人 | 桃花免费在线播放| 成人18禁高潮啪啪吃奶动态图| 黄片播放在线免费| 一本综合久久免费| 日韩一区二区三区影片| 国产又色又爽无遮挡免费看| 久久久国产精品麻豆| 18在线观看网站| 99热网站在线观看| 日日爽夜夜爽网站| 在线观看www视频免费| 亚洲精品久久成人aⅴ小说| 少妇裸体淫交视频免费看高清 | 精品福利永久在线观看| 亚洲免费av在线视频| 亚洲成人手机| 另类精品久久| 久久精品国产亚洲av香蕉五月 | 亚洲熟妇熟女久久| 99在线人妻在线中文字幕 | 欧美老熟妇乱子伦牲交| 亚洲精华国产精华精| 最近最新免费中文字幕在线| 欧美精品av麻豆av| 久久热在线av| 又紧又爽又黄一区二区| 精品国产亚洲在线| 国产高清激情床上av| 丝袜美腿诱惑在线| 国产成人av教育| 亚洲色图综合在线观看| 亚洲精品在线美女| kizo精华| 又大又爽又粗| √禁漫天堂资源中文www| www日本在线高清视频| 极品少妇高潮喷水抽搐| 亚洲av日韩精品久久久久久密| 黄片大片在线免费观看| 国产淫语在线视频| 免费看十八禁软件| 天堂8中文在线网| 一级黄色大片毛片| 久久婷婷成人综合色麻豆| 极品少妇高潮喷水抽搐| 考比视频在线观看| 91av网站免费观看| 两性夫妻黄色片| 国产精品亚洲av一区麻豆| 亚洲 欧美一区二区三区| 777久久人妻少妇嫩草av网站| 亚洲av成人不卡在线观看播放网| 人人妻人人爽人人添夜夜欢视频| 人成视频在线观看免费观看| 99热网站在线观看| 国产精品电影一区二区三区 | 欧美人与性动交α欧美软件| 成人国产一区最新在线观看| 18禁国产床啪视频网站| 久久99一区二区三区| aaaaa片日本免费| 久久 成人 亚洲| 国产日韩欧美视频二区| 国产xxxxx性猛交| 99国产综合亚洲精品| 女人精品久久久久毛片| 亚洲欧美一区二区三区久久| 国产深夜福利视频在线观看| 国产一区二区三区在线臀色熟女 | 少妇精品久久久久久久| 亚洲av电影在线进入| 夜夜夜夜夜久久久久| 搡老乐熟女国产| 国产精品熟女久久久久浪| 久久久久久久大尺度免费视频| 两个人免费观看高清视频| 亚洲黑人精品在线| 夫妻午夜视频| 黄色视频在线播放观看不卡| 亚洲伊人色综图| 丝袜美腿诱惑在线| 精品欧美一区二区三区在线| 一边摸一边抽搐一进一出视频| 欧美av亚洲av综合av国产av| 免费观看人在逋| 亚洲免费av在线视频| 高清欧美精品videossex| 天天影视国产精品| 国产成人精品无人区| 熟女少妇亚洲综合色aaa.| 变态另类成人亚洲欧美熟女 | 国产精品香港三级国产av潘金莲| 男女免费视频国产| 黄色怎么调成土黄色| 色婷婷久久久亚洲欧美| 在线亚洲精品国产二区图片欧美| 免费在线观看完整版高清| 成在线人永久免费视频| 国产精品亚洲av一区麻豆| 久久影院123| 大型黄色视频在线免费观看| 午夜福利乱码中文字幕| 亚洲精品中文字幕一二三四区 | 美女国产高潮福利片在线看| 好男人电影高清在线观看| 久久久久精品人妻al黑| 成人黄色视频免费在线看| av国产精品久久久久影院| 久久婷婷成人综合色麻豆| 99re6热这里在线精品视频| 欧美日韩福利视频一区二区| 丁香六月欧美| 十八禁高潮呻吟视频| 露出奶头的视频| 老司机福利观看| 国产精品亚洲一级av第二区| 99国产精品免费福利视频| 视频区图区小说| 黑人操中国人逼视频| 亚洲国产看品久久| 操出白浆在线播放| 老司机亚洲免费影院| 一区二区日韩欧美中文字幕| 高清毛片免费观看视频网站 | 一本综合久久免费| 大型黄色视频在线免费观看| 国产精品.久久久| 女警被强在线播放| 国产单亲对白刺激| 色播在线永久视频| 建设人人有责人人尽责人人享有的| 日本五十路高清| 免费女性裸体啪啪无遮挡网站| 亚洲成国产人片在线观看| 在线 av 中文字幕| 精品视频人人做人人爽| 91av网站免费观看| av网站在线播放免费| 久久国产精品影院| www.999成人在线观看| 久久香蕉激情| 丁香六月欧美| 99久久人妻综合| 色94色欧美一区二区| 91麻豆av在线| 精品国产亚洲在线| 一个人免费在线观看的高清视频| 成年女人毛片免费观看观看9 | 国产男女内射视频| 久久婷婷成人综合色麻豆| 免费高清在线观看日韩| 99热国产这里只有精品6| 99久久99久久久精品蜜桃| 欧美日韩黄片免| 黄片小视频在线播放| 香蕉国产在线看| 精品国产国语对白av| av欧美777| 午夜福利在线观看吧| 老熟女久久久| 99国产综合亚洲精品| 国产激情久久老熟女| 另类精品久久| 中文字幕另类日韩欧美亚洲嫩草| www.熟女人妻精品国产| 国产深夜福利视频在线观看| 人成视频在线观看免费观看| 91老司机精品| 国产野战对白在线观看| 一级,二级,三级黄色视频| 国产99久久九九免费精品| 男女午夜视频在线观看| 又大又爽又粗| 一区二区三区国产精品乱码| 国产av一区二区精品久久| 大型av网站在线播放| 国产精品亚洲av一区麻豆| 中文字幕精品免费在线观看视频| 18禁观看日本| 俄罗斯特黄特色一大片| 亚洲国产av新网站| 欧美日韩精品网址| avwww免费| 日韩大码丰满熟妇| av天堂久久9| 女同久久另类99精品国产91| kizo精华| 操出白浆在线播放| 国产在视频线精品| avwww免费| 如日韩欧美国产精品一区二区三区| 精品国产乱子伦一区二区三区| 新久久久久国产一级毛片| 最新的欧美精品一区二区| 在线观看免费高清a一片| 考比视频在线观看| 国产精品秋霞免费鲁丝片| 美女国产高潮福利片在线看| 大香蕉久久网| √禁漫天堂资源中文www| 久久久久久久国产电影| 欧美激情高清一区二区三区| 可以免费在线观看a视频的电影网站| 久热爱精品视频在线9| 国产有黄有色有爽视频| 久久久久精品国产欧美久久久| 黄色 视频免费看| 国产不卡av网站在线观看| 久久精品亚洲av国产电影网| 精品国产亚洲在线| 日本欧美视频一区| 后天国语完整版免费观看| 亚洲一区中文字幕在线| 十八禁网站网址无遮挡| 色婷婷av一区二区三区视频| 欧美成人午夜精品| 亚洲国产精品一区二区三区在线| 精品第一国产精品| 欧美在线黄色| 精品一区二区三区四区五区乱码| 欧美精品亚洲一区二区| 精品久久久久久久毛片微露脸| 制服人妻中文乱码| 韩国精品一区二区三区| 男女边摸边吃奶| 香蕉久久夜色| 天堂动漫精品| 久久久精品94久久精品| 亚洲精品在线观看二区| 免费女性裸体啪啪无遮挡网站| 中文字幕色久视频| 欧美 亚洲 国产 日韩一| 国产一卡二卡三卡精品| 多毛熟女@视频| 国产一区有黄有色的免费视频| 亚洲人成电影免费在线| 老司机在亚洲福利影院| 免费高清在线观看日韩| 精品午夜福利视频在线观看一区 | 久久人人97超碰香蕉20202| 亚洲人成电影观看| 色老头精品视频在线观看| 国产一区二区激情短视频| av天堂久久9| 精品一区二区三卡| 国产国语露脸激情在线看| 亚洲成人免费电影在线观看| 在线看a的网站| 黑人操中国人逼视频| 日韩三级视频一区二区三区| 黑人猛操日本美女一级片| 亚洲美女黄片视频| 一进一出抽搐动态| 精品一区二区三区视频在线观看免费 | 伊人久久大香线蕉亚洲五| 免费观看人在逋| 亚洲av片天天在线观看| 久久狼人影院| 亚洲色图 男人天堂 中文字幕| 亚洲欧美激情在线| 色94色欧美一区二区| 人妻久久中文字幕网| 好男人电影高清在线观看| 亚洲国产精品一区二区三区在线| 中文字幕av电影在线播放| 久久狼人影院| 麻豆国产av国片精品| 在线观看www视频免费| 少妇裸体淫交视频免费看高清 | 99久久精品国产亚洲精品| 久久久久久久大尺度免费视频| 久久九九热精品免费| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区黑人| 热re99久久国产66热| 99在线人妻在线中文字幕 | 国产精品欧美亚洲77777| 日本欧美视频一区| 99久久精品国产亚洲精品| 午夜视频精品福利| 成人手机av| 国产视频一区二区在线看| 1024视频免费在线观看| 又紧又爽又黄一区二区| 汤姆久久久久久久影院中文字幕| 一级a爱视频在线免费观看| 交换朋友夫妻互换小说| 天堂动漫精品| 国产成人欧美在线观看 | 久久精品亚洲熟妇少妇任你| 啦啦啦免费观看视频1| 亚洲精华国产精华精| 老司机深夜福利视频在线观看| 亚洲精品美女久久av网站| 国产精品 欧美亚洲| 色在线成人网| 菩萨蛮人人尽说江南好唐韦庄| 黄色 视频免费看| 免费人妻精品一区二区三区视频| 亚洲色图av天堂| 男女之事视频高清在线观看| 国产成人精品久久二区二区免费| 亚洲精品美女久久久久99蜜臀| 国产高清国产精品国产三级| 日韩精品免费视频一区二区三区| 一本色道久久久久久精品综合| 三上悠亚av全集在线观看| 99riav亚洲国产免费| 下体分泌物呈黄色| 51午夜福利影视在线观看| 精品少妇内射三级| 亚洲精品美女久久久久99蜜臀| 50天的宝宝边吃奶边哭怎么回事| 在线观看免费视频网站a站| 成年女人毛片免费观看观看9 | 免费一级毛片在线播放高清视频 | 免费观看人在逋| 亚洲专区字幕在线| 精品免费久久久久久久清纯 | 亚洲va日本ⅴa欧美va伊人久久| 狠狠婷婷综合久久久久久88av| 成人永久免费在线观看视频 | 久久精品亚洲精品国产色婷小说| 色94色欧美一区二区| 国精品久久久久久国模美| 十八禁网站网址无遮挡| 欧美久久黑人一区二区| 日韩精品免费视频一区二区三区| 欧美另类亚洲清纯唯美| 在线观看免费视频网站a站| 午夜久久久在线观看| 久久亚洲精品不卡| √禁漫天堂资源中文www| 久热这里只有精品99| 国产精品 欧美亚洲| 一区福利在线观看| 免费久久久久久久精品成人欧美视频| 精品视频人人做人人爽| 亚洲avbb在线观看| 久久精品国产亚洲av香蕉五月 | 国产亚洲欧美精品永久| 一区二区日韩欧美中文字幕| 中文字幕最新亚洲高清| 91精品三级在线观看| 亚洲精品av麻豆狂野| 国产亚洲欧美在线一区二区| 亚洲成人手机| 国产精品自产拍在线观看55亚洲 | 王馨瑶露胸无遮挡在线观看| 亚洲人成77777在线视频| 亚洲欧美一区二区三区久久| 大陆偷拍与自拍| 又黄又粗又硬又大视频| 狠狠狠狠99中文字幕| 9热在线视频观看99| 电影成人av| 国产日韩欧美视频二区| 欧美日韩福利视频一区二区| 伊人久久大香线蕉亚洲五| 最黄视频免费看| 蜜桃国产av成人99| 国产成人一区二区三区免费视频网站| 亚洲第一av免费看| 久久精品国产99精品国产亚洲性色 | 欧美日韩一级在线毛片| 亚洲精品中文字幕在线视频| 91国产中文字幕| 12—13女人毛片做爰片一| 99久久国产精品久久久| 91字幕亚洲| 国产成人av教育| 国产一区有黄有色的免费视频| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| 欧美成人免费av一区二区三区 | 国产老妇伦熟女老妇高清| 老鸭窝网址在线观看| 日韩一区二区三区影片| 欧美日韩一级在线毛片| 精品亚洲乱码少妇综合久久| 一本色道久久久久久精品综合| 在线观看免费视频网站a站|