• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Majorana fermions induced fast-and slow-light in a hybrid semiconducting nanowire/superconductor device

    2022-02-24 08:59:16HuaJunChen陳華俊PengJieZhu朱鵬杰YongLeiChen陳詠雷andBaoChengHou侯寶成232001
    Chinese Physics B 2022年2期

    Hua-Jun Chen(陳華俊), Peng-Jie Zhu(朱鵬杰), Yong-Lei Chen(陳詠雷), and Bao-Cheng Hou(侯寶成) 232001

    We investigate theoretically Rabi-like splitting and Fano resonance in absorption spectra of quantum dots (QDs)based on a hybrid QD-semiconducting nanowire/superconductor(SNW/SC)device mediated by Majorana fermions(MFs).Under the condition of pump on-resonance and off-resonance, the absorption spectrum experiences the conversion from Fano resonance to Rabi-like splitting in different parametric regimes. In addition,the Fano resonances are accompanied by the rapid normal phase dispersion,which will indicate the coherent optical propagation. The results indicate that the group velocity index is tunable with controlling the interaction between the QD and MFs,which can reach the conversion between the fast-and slow-light. Fano resonance will be another method to detect MFs and our research may indicate prospective applications in quantum information processing based on the hybrid QD-SNW/SC devices.

    Keywords: majorana fermions, Fano resonance, slow and fast light, hybrid semiconducting/superconductor device

    1. Introduction

    Majorana fermions (MFs) have witnessed significant progress over the past decade in solid state systems for their potential applications in topological quantum computation and quantum information processing[1—7]due to the fact that they obey non-Abelian statistics. Although MFs were proposed originally as a model for neutrinos,the analogous Majorana zero modes have been observed in condensed matter systems,[8]such as hybrid semiconducting nanowire/superconductor (SNW/SC) structures,[9—12]ferromagnetic atomic chains on a superconductor,[13]ironbased superconductor device,[14]topological superconductor devices,[15,16]and topological insulator structure.[17]In order to observe Majorana-like signatures, several significant experimental schemes have been proposed, including the zerobias peaks(ZBPs)in tunneling spectroscopy,[9—13]the Josephson effect,[18]the Coulomb blockade spectroscopy,[15]and the spin-resolved measurements.[19]

    On the other hand, due to the significant progress in modern nanoscience and nanotechnology, artificial atoms,i.e., quantum dots (QDs),[20—25]manifest the attractive intermediary for probing MFs both theoretically[26—30]and experimentally.[31]However, in the detection of MFs with QDs in the electrical domain, QDs are always considered as only a resonant level.[26—30]Different from the previous schemes for probing MFs, we have presented an optical scheme for probing MFs with a QD considered as a twolevel system (TLS) and driven by the optical pump-probe technology,[32—35]which may provide a potential supplement for probing MFs. However,Rabi splitting and Fano resonance induced by MFs in optical domain based on a hybrid QDSNW/SC device have not yet been explored to the best of our knowledge,needless to say reaching the coherent optical propagation,such as the fast-and slow-light effects.

    In this paper,firstly we demonstrate that the probe absorption spectra of the QD show the switch from Rabi-like splitting to Fano resonance induced by MFs for different detuning regimes in the hybrid QD-SNW/SC device, which can be illustrated using the interference effect with the dressed state theory. Under the condition of pump on-resonance,the probe absorption spectra present a distinct Rabi splitting behavior with increasing the QD-MFs coupling strengthβ,which manifests a strong interaction of the QD and MFs,and the width of the splitting is 2β, which indicates an approach to determine the QD-MFs coupling strength. In the pump off-resonance,the probe absorption spectra can show a series of asymmetric Fano line shapes,and the Fano resonances are tunable under different parametric regimes, such as the Majorana-pump field detuningΔMand the exciton-pump field detuningΔc. As Fano resonances are characterized by a rapid steeper dispersion, the light pulses can be accelerated and decreased significantly, which correspond to the negative and positive dispersions, respectively, and then reach the fast and slow light effect. Secondly, we investigate the coherent optical propagation properties, i.e., the fast and slow light effect via the group delay of the probe field around the transparency window accompanied by the steep phase dispersion. The results show that a controllable fast-to-slow light propagation can be reached with manipulating the parametric regimes.

    2. Model and method

    The system under consideration is sketched in Fig. 1,where a QD coupled to a near by MFs appearing in the hybrid SNW/SC device,[9—12]and the Hamiltonian is given by[26—30,32—35]

    where the first term indicates the Hamiltonian of the QD with the exciton frequencyωex. In the previous works for probing MFs, the QD is consider as a single resonant level with spinsinglet state,[26—30]here we consider that the QD is a TLS with the ground state|0〉and the single exciton state|1〉, which is described by the pseudospin operatorsSzandS±with the commutation relations[Sz,S±]=±S±and[S+,S?]=2Sz.

    Fig. 1. The schematic of the hybrid QD-SNW/SC device, in which a QD driven by a pump field and a probe field coupled to a nearby MF in the end of SNW.

    The second term is the interaction of the two MFs in the end of SNW in the hybrid SNW/SC device. To describe MFs,we introduce the Majorana operatorsγ1andγ2with the relationγ?=γandγ2=1 as they are their own antiparticles.Here,εM=ωM~e?l/ξis the coupling energy withlbeing the length of the SNW andξthe superconducting coherent length with Majorana frequencyωM. If the lengthlof the SNW is large enough, we can find the coupling energyεM~e?l/ξ ~0. Thus,we need to discuss the two cases,i.e.,εM/=0 in terms of coupled Majorana edge states,andεM=0 in terms of uncoupled Majorana edge states.

    The third gives the nearby MFsγ1coupled to the QD with the coupling strengthβ, and the coupling strength is related to the distance of the QD and SNW/SC device. For simplicity, we introduce the regular fermion creation and annihilation operatorsf?andfwith the anti-commutative relation=1,thus,according to the relation ofγ1=f?+fandγ2= i(f??f), Majorana operatorγcan be transformed into the regular fermion operatorf. Then the third term reduces to i(S?f??S+f) with neglecting the non-conservation terms of energy i(S?f ?S+f+)based on the rotating wave approximation.[36]

    The last two terms indicate the interactions between the QD and two laser fields including a strong pump field with frequencyωpand a weak probe field with frequencyωssimultaneously irradiating to the QD,whereμis the electric dipole moment of the exciton,εpandεsare the slowly varying envelope of the pump field and probe field,respectively. In a frame rotated to the frequencyωpof the pump field, Eq. (1) can be rewritten as

    whereΔp=ωex?ωpindicates the exciton-pump field detuning,ΔM=ωM?ωpmeans the Majorana-pump field detuning, andδ=ωs?ωpgives the probe-pump detuning. Here,Ωp=μεp/is the Rabi frequency of the pump field. According to the Heisenberg equation of motion i=[ρ,H](ρ=Sz,S?,f),we can obtain the Heisenberg—Langevin equations of the operators with the corresponding noise and damping terms as follows:

    whereΓ1(Γ2)is the exciton relaxation rate(exciton dephasing rate), andκMis the decay rate of the MFs.is theδcorrelated Langevin noise operator with zero mean, andξis Langevin force arising from the interaction between the Majorana modes and the environment.

    Morning came, and the king got up, pale and sulky, and, after learning from the hermit which path to take, was soon mounted and found his way home without much difficulty

    We introduce the perturbation theory:ρ=ρ0+δρ,whereρindicates the operatorsSz,S?, andf, thenρ0(i.e.,,S0,andf0)means the steady parts,andδρ(i.e.,δSz,δS?,andδ f) indicates the fluctuation ones. Substituting the perturbation method into Eqs. (3)—(5) we obtain the steady state solutions of the variables as follows:

    which determine the steady-state population inversion (w0=)of the exciton as follows:

    where, andΞ3=. As all the pump fields are assumed to be sufficiently strong, all the operators can be identified withtheir expectation values under the mean-field approximation〈Qc〉=〈Q〉〈c〉,[37]after being linearized by neglecting nonlinear terms in the fluctuations,the H-LEs for the expectation values are

    In order to solve the equation set of the above H-LEs, we make the ansatz[38]〈δρ〉=ρ+e?iδt+ρ?eiδt. Solving the equation set and working to the lowest order inεsbut to all orders inεp, we obtain the linear optical susceptibility aswithand then the dimensionless linear susceptibilityχ(1)(ωs) is given by

    According to the light group velocity[39,40]υg=c/[n+ωs(dn/dωs)],wheren ≈1+2πχ(1)

    eff,we obtain

    where. One can observe the slow light ifng>0, and the superluminal light whenng<0.[41]The parameter values used in the paper:[9—12,35,42]the QD-MFs coupling strengthβ= 0.1 GHz, the decay rate of the MFsκM= 0.1 MHz,Γ1= 0.3 GHz,Γ2= 0.15 GHz, and=0.005(GHz)2.

    3. Results and discussion

    Firstly, we discuss the case of uncoupled Majorana edge state, i.e.,εM= 0 (orΔM= 0) under the condition of the exciton-pump field detuningΔp=0,and the Hamiltonian describing the coupling between the QD and nearby MFs reduces toHint=i(S?f??S+f). Then the absorption spectra will display the symmetric splitting due to the fact that the coupled Hamiltonian is analogical to the J—C Hamiltonian of the standard model. In Fig. 2, we plot the probe absorption (the imaginary part of the dimensionless susceptibility i.e.,Imχ(1))versus the probe-exciton detuningΔs=ωs?ωexfor several different MF-QD coupling strengthsβ. Obviously,in the case ofβ=0,i.e.,without MF-QD coupling,the absorption spectrum shows a lorentz peak. However, when the MF-QD couplingβis considered,the absorption spectra display an evident splitting behavior, and the splitting is enhanced prominently with increasing the MF-QD couplingβfromβ=0.1 GHz toβ=0.6 GHz. In addition,the splitting in the absorption spectrum is symmetric, which is like the vacuum Rabi splitting,and the width of splitting is 2β, and the peak splitting manifests the strong interaction between MF and QD.The physical origin of the results comes from the coherent interaction of the QD and MFs,and we introduce the dressed state theory to explain this physical phenomena.[35]Because QD is considered as TLS with the ground state|0〉and exciton state|1〉, when QD is coupled to the nearby MFs,QD will be modified by the number states of the MFsnMinducing the Majorana dressed states|0,nM〉,|0,nM+1〉,|1,nM〉,|1,nM+1〉. The left sharp peak of splitting in the absorption spectra indicates the transition from|0〉to|1,nM〉,and the right sharp peak is due to the transition of|0〉to|1,nM+1〉. On the other hand,we find that the absorption dip will reach zero atΔs=0 whenβ /=0,that is to say,the input probe field is transmitted completely without any absorption, which is very similar to electromagnetically induced transparency(EIT)[43]inΛ-type atoms systems.Since EIT can induce slow light,the hybrid QD-SWN/SC system can also reach slow light effect.

    Fig. 2. The probe absorption versus the probe-exciton detuning Δs =ωs ?ωex for several different MF-QD coupling strengths β. The other parameters are Γ1 =0.3 GHz, Γ2 =0.15 GHz, κM =0.1 MHz,=0.005(GHz)2,ΔM=Δp=0.

    In Fig. 3(a), we investigate the dispersion (the real part of the dimensionless susceptibility, i.e., Reχ(1)) as a function ofΔsfor several different MF-QD coupling strengthsβatΔp=0. It is obvious that the dispersion exhibits the negative steep slope atΔs=0 forβ=0(the black curve in Fig.3(a)),which combines the lorentz peak atΔs=0 in Fig. 2, leading to the fast light effect. However, ifβ /=0, the dispersion will exhibit the positive steep slope atΔs=0,which combines the zero absorption atΔs=0 in Fig. 2, resulting in the slow light effect. It is analogous to EIT[43]inΛ-type atoms systems,a transparency window will lead to the slow light effect,in our system the MF-QD coupling also results in the analogous zero absorption transparency window, which is accompanied with the rapid normal phase dispersion, indicating the coherent optical propagation, such as the fast and slow light effect. No matter what regimes result in the zero absorption,when a transparency window is observed, the slow light or fast light will be induced. In our hybrid coupled QD-SNW/SC system,when the transparency appears in the absorption spectrum,the slope around transparency window of the dispersion will experience the conversion between the negative to positive. The positive steep slope of dispersion will induce the positive group velocity index,i.e.,ng>0,then the slow light phenomenon will appear in the system. On the contrary, if the dispersion shows the negative steep slope, the group velocity index will be negative, i.e.,ng<0, as a result the fast light will be achieved. In Fig. 3(b), we plot the group velocity indexngof probe laser versus QD-MF coupling strengthβunder the condition ofΔM=0 andΔp=0. We can find that the group velocity indexngexperiences the positive—negative—positive change,which corresponds to the slow-fast-slow light.In Fig. 3(c), we also give the group velocity indexngas a function of Rabi frequencyin the case ofβ=0. As the dispersion shows a negative steep slope atΔs=0 forβ=0 as shown in the black curve in Fig. 3(a), which combines a lorentz peak in Fig.2 resulting in the fast light effect. Furthermore, the group velocity indexngvaries significantly around=0.1(GHz)2. In Fig.3(d),we consider the case ofβ /=0,due to the fact that the dispersion exhibits the positive steep slope atΔs=0, and then the group velocity indexngis positive with varying the Rabi frequency,therefore,the slow light effect can be obtained.

    Fig.3. (a)The dispersion as a function of Δs for several different MF-QD coupling strengths β at ΔM=Δp=0. (b)The group velocity index ng versus QD-MF coupling strength β under the condition of ΔM=0 and Δp=0. (c)ng as a function of for β =0. (d)ng versus for β =0.1 GHz.

    Secondly, we consider the coupled Majorana edge state,i.e.,εM/=0(orΔM/=0)still in the case ofΔp=0. In Fig.4,we display the probe absorption spectra versusΔsfor differentΔM,which experience the conversion from unsymmetrical splitting(Fano resonance like splitting)to symmetric splitting(EIT like splitting)to Fano resonance. Unlike EIT with symmetric splitting,the Fano resonance-like splitting is an asymmetry shape due to the fact that the scattering of light amplitude under the condition of EIT is not met and a detuning is introduced. Obviously,the absorption spectra show the Fanoresonance-like splitting underΔM/=0 due to the MF-QD interaction,and the Fano-like resonance will change into a symmetric EIT-like splitting atΔM=0.Furthermore,the evolution process of the two sharp unsymmetrical peaks varies significantly for different detuningΔM, and the amplitude intensity of the left peaks is enhanced and the right peaks are reduced with changingΔMfromΔM=?0.3 GHz toΔM=0.3 GHz.In addition,we find that the absorption spectra are asymmetricand a prominent avoided crossing phenomenon occurs in the system,[44]which is very different from the case ofΔM=0 in Fig. 2, where the absorption spectra split into a doublet with symmetrical splitting and each peak has equal strength. This behavior is attributed to the off-resonant coupling between the QD and MF.

    Fig.4. The probe absorption spectra versus Δs for several different ΔM at the parameters of=0.005(GHz)2 and β =0.1 GHz.

    Therefore, in Fig. 5, we further investigate the slow and fast light effect under the condition of the coupled Majorana edge state (ΔM/=0) for the case ofΔp=0. In Fig. 5(a), we plot the absorption and dispersion spectra for the fixed QDMF coupling strengthβ=0.1 GHz and the Rabi frequency=0.005 (GHz)2underΔM=?0.1 GHz, and the absorption shows a Fano resonance and the steep slope aroundΔs=0 in the dispersion changes significantly. Thus,in Fig.5(b),we further display the dispersion versusΔsfor several differentΔM, and the processes of evolutions of the dispersion are related to the coupled Majorana edge state. Here,we only consider the case ofΔM≤0. Figure 5(c)shows the group velocity indexngas a function of QD-MF coupling strengthβunder several differentΔM, and it is obvious thatngcan realize the conversion from fast to slow light. Comparing the condition ofΔM=0 withΔM/=0,we can see that the experience of the group velocity indexnginΔM=0 is salient from the condition ofΔM/=0. Because the parameterβcan be manipulated with controlling the distance between the QD and SNW/SC device,we can obtain fast-to-slow light(or vice versa)by controlling the parameterβin the system. In Fig. 5(d), we also present the group velocity indexngversusfor threeΔM. We obtain thatngexperiences the conversion from slow to fast to slow light atΔM=?0.1 GHz. However, ifΔM

    Fig.5. (a)The absorption and dispersion versus Δs at ΔM =?0.1 GHz. (b)The dispersion versus Δs for several different ΔM at Δp =0. (c)The group velocity index ng versus β for several different ΔM. (d)The group velocity index ng versus for several different ΔM.

    In the above discussions,we only consider the case of the exciton-pump field detuningΔp=0,while under the condition ofΔp/=0, the Fano resonance will be altered tempestuously.In Fig.6(a),we plot the absorption spectra versusΔswith increasingΔpfromΔp=?0.3 GHz toΔp=0.3 GHz under the parameters of=0.005 (GHz)2andβ=0.2 GHz in the uncoupled Majorana edge state (ΔM=0), which experiences the conversion from Fano resonance to Rabi-like splitting to Fano resonance. Furthermore, besidesΔp=0, we find that the peaks in the absorption spectra present mirror symmetry atΔp=±Θ(Θindicates the definite numerical value)in the uncoupled Majorana edge state. Here, we takeΔp=?0.3 GHz andΔp=0.3 GHz as an example. IfΔp=?0.3 GHz, in the absorption spectrum as shown by the red curve in Fig. 6(a),the left peak locates atΔs=?0.4 GHz and the right peak locates atΔs= 0.1 GHz. However, ifΔp= 0.3 GHz, in the absorption spectrum as shown by the purple curve in Fig.6(a),the left peak locates atΔs=?0.1 GHz and the right peak locates atΔs=0.4 GHz. It is obvious that the left peak atΔp=?0.3 GHz is mirror symmetric with the right peak atΔp=0.3 GHz, and the right peak atΔp=?0.3 GHz is mirror symmetric with the left peak atΔp=0.3 GHz in the absorption spectra. When we change the condition ofΔM=0 intoΔM/=0,the Fano resonance manifests evident distinction compared withΔM=0 with varyingΔpfromΔp=?0.3 GHz toΔp=0.3 GHz as shown in Fig.6(b). We find that,with increasingΔpfromΔp=?0.3 GHz toΔp=0,the splitting width of the two peaks in the absorption spectra is reduced,i.e.,the absorption spectra is squeezed. However, with increasingΔpfromΔp=0 toΔp=0.3 GHz, the splitting width of the two peaks in the absorption spectra is enhanced,i.e.,the absorption spectra is stretched. No matter whetherΔM=0 orΔM/=0,we obtain that the full width at half maximum (FWHM) of the left peak is reduced and the FWHM of the right peak is enhanced in the absorption spectra with increasingΔpfromΔp=?0.3 GHz toΔp=0.3 GHz as shown in Figs.6(a)and 6(b).

    Fig. 6. The absorption spectra versus Δs for several different Δp at ΔM =0. (b) The absorption spectra versus Δs for several different Δp at ΔM/=0. The other parameters are =0.005(GHz)2 and β =0.2 GHz.

    Fig.7. (a)and(b)The group velocity index ng versus for several Δp at ΔM=0 and β =0.2 GHz. (c)and(d)The group velocity index ng versus for several Δp at ΔM/=0 and β =0.2 GHz.

    Then,on the other hand,we also demonstrate the coherent optical propagation properties for differentΔp/=0 andΔM/=0.In Fig. 7(a), we investigate the group velocity indexngas a function offorΔp=?0.3 GHz andΔp=0.3 GHz underΔM=0 at fixedβ=0.2 GHz. Figure 7(b)givesngversusforΔp=?0.1 GHz andΔp=0.1 GHz underΔM=0 at fixedβ=0.2 GHz. Compared Fig.7(a)with Fig.7(b)corresponding to Fig.6(a),we find that the group velocity indexngundergoes the conversion from advance to delay which corresponds to fast to slow light,and the conversion is more remarkable atΔp<0 than atΔp>0. In Fig. 7(c), we givengversusatΔM/=0 with increasingΔpfromΔp=0 toΔp=0.3 GHz,and Fig. 7(d) plotsngversusatΔM=?0.1 GHz forΔp<0,which corresponds to Fig. 6(b). We can obtain that the conversion from fast to slow light can reach in the two conditions,and compared with Fig. 7(c), the process of evolution of the conversion from fast to slow light is slightly different from Fig. 7(d). Thus, with controlling different detuning regimes,the fast-to-slow light,or vice versa,can be reached in our system.

    In our system, we only consider the QD coupling to the nearby MFs, i.e., QD only couples to one MF due to the fact that it is confined by the length of the SNW and the superconducting coherent length.If QD is coupled to a pair of MFs,the results are significantly different. We have ever designed a hybrid QD-SNW/SC ring device,where QD is coupled to a pair of MFs,[34,35]and the results indicate that both the absorption spectra and the slow light(fast light)are enhanced observably compared with the results in this paper. In order to enhance the coherent optical properties(such as the linear or nonlinear optical phenomena)of QD induced by MFs,we have ever considered introducing a hybrid QD-nanoresonator system to investigate MFs induced coherent optical phenomena,[32,33]and the results manifest that both the linear or nonlinear optical phenomena induced by MFs are enhanced significantly due to the fact that the nanoresonator behaves as a phononic cavity,which enhances the linear and nonlinear optical effect. Therefore, to reach enhanced fast and slow light effect, the hybrid QD-nanoresonator system can be brought,and we will investigate the issue in the future work.

    4. Conclusions

    In summary, we have demonstrated the coherent optical propagation properties in a hybrid QD-SWN/SC device,which includes a QD driven by a pump field and a probe field coupled to a nearby MF in the hybrid SWN/SC system, and we investigate the absorption spectra of the probe field under both the conditions of the pump on-resonance (Δp= 0) and offresonance (Δp/=0). In the situation of pump on-resonance,the absorption spectra displays a Rabi-like splitting manifesting the strong interaction between the QD and MF. In pump off-resonance, the absorption spectrum experiences the conversion from Fano resonance to Rabi-like splitting in different parametric regimes. Moreover, the narrow transparency window(i.e.,the absorption dip approaches zero)in the absorption spectrum and the corresponding rapid phase dispersion allow for reaching the slow light effect. The results show that the group velocity index can be controlled by the QD-MF coupling,which can reach the conversion from fast to slow light.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11804004 and 11647001),the China Postdoctoral Science Foundation(Grant No. 2020M681973), and Anhui Provincial Natural Science Foundation,China(Grant No.1708085QA11).

    久久精品亚洲精品国产色婷小说| 欧美精品亚洲一区二区| 美女高潮喷水抽搐中文字幕| 成人国产综合亚洲| 精品一区二区三区av网在线观看| 色精品久久人妻99蜜桃| 国产精品,欧美在线| 妹子高潮喷水视频| 99国产精品免费福利视频| 亚洲国产欧美日韩在线播放| 一二三四在线观看免费中文在| 搡老熟女国产l中国老女人| 亚洲成国产人片在线观看| 久久久精品欧美日韩精品| 亚洲成av片中文字幕在线观看| 免费高清视频大片| 天堂影院成人在线观看| 国产区一区二久久| 精品熟女少妇八av免费久了| 日本vs欧美在线观看视频| 人妻久久中文字幕网| 操美女的视频在线观看| 好男人在线观看高清免费视频 | 18禁国产床啪视频网站| 在线观看一区二区三区| 亚洲成人精品中文字幕电影| 男女床上黄色一级片免费看| 亚洲无线在线观看| 日本 欧美在线| 一区二区三区精品91| 成人国语在线视频| 色综合欧美亚洲国产小说| 精品第一国产精品| 久久久久久久久中文| 91精品国产国语对白视频| 91在线观看av| 超碰成人久久| 国产亚洲精品久久久久久毛片| 一边摸一边抽搐一进一出视频| 女同久久另类99精品国产91| 亚洲专区国产一区二区| 日韩中文字幕欧美一区二区| av中文乱码字幕在线| 18禁观看日本| 男女午夜视频在线观看| 久久中文看片网| 国产免费av片在线观看野外av| 午夜福利18| 久久久久久免费高清国产稀缺| 又紧又爽又黄一区二区| 国产成人欧美| 国产三级在线视频| avwww免费| 免费在线观看完整版高清| 欧美激情极品国产一区二区三区| 国产一区二区三区综合在线观看| 美女高潮喷水抽搐中文字幕| 琪琪午夜伦伦电影理论片6080| 男人舔女人下体高潮全视频| 深夜精品福利| 少妇裸体淫交视频免费看高清 | 久久久国产成人精品二区| 老司机福利观看| 国产激情欧美一区二区| 黄色a级毛片大全视频| 日日爽夜夜爽网站| 久久精品亚洲精品国产色婷小说| 又黄又爽又免费观看的视频| 777久久人妻少妇嫩草av网站| 久热爱精品视频在线9| av中文乱码字幕在线| 国产精品一区二区三区四区久久 | 97碰自拍视频| 欧美在线黄色| 久久精品人人爽人人爽视色| 亚洲欧美一区二区三区黑人| 老司机午夜十八禁免费视频| 国产单亲对白刺激| e午夜精品久久久久久久| 国产成人av激情在线播放| 欧美日本视频| 久久精品国产综合久久久| 国语自产精品视频在线第100页| 亚洲全国av大片| 欧美一区二区精品小视频在线| 亚洲少妇的诱惑av| 国产精品免费一区二区三区在线| 男女床上黄色一级片免费看| 久久久国产精品麻豆| 嫁个100分男人电影在线观看| 国产97色在线日韩免费| 国产aⅴ精品一区二区三区波| 天堂影院成人在线观看| 精品一区二区三区av网在线观看| 欧美精品亚洲一区二区| 亚洲伊人色综图| 国产私拍福利视频在线观看| 亚洲精品中文字幕一二三四区| 久久久久国内视频| 中文字幕人妻熟女乱码| 久9热在线精品视频| 欧美成人免费av一区二区三区| 色综合欧美亚洲国产小说| 热re99久久国产66热| 成人国产综合亚洲| 日本免费一区二区三区高清不卡 | 国产97色在线日韩免费| 淫妇啪啪啪对白视频| 超碰成人久久| 男人舔女人的私密视频| 亚洲第一青青草原| 国产一区在线观看成人免费| 91麻豆精品激情在线观看国产| 精品国产乱码久久久久久男人| 成年人黄色毛片网站| 国产亚洲欧美精品永久| 又黄又粗又硬又大视频| 久久精品91蜜桃| 日本欧美视频一区| 19禁男女啪啪无遮挡网站| 亚洲av日韩精品久久久久久密| 一区在线观看完整版| 久久精品国产99精品国产亚洲性色 | 性色av乱码一区二区三区2| 丝袜人妻中文字幕| 亚洲欧美激情综合另类| www.熟女人妻精品国产| 国产成+人综合+亚洲专区| 女同久久另类99精品国产91| 亚洲精品中文字幕在线视频| 国产精品久久久久久亚洲av鲁大| 亚洲视频免费观看视频| 成人亚洲精品一区在线观看| 亚洲国产精品成人综合色| 久99久视频精品免费| 91大片在线观看| 手机成人av网站| 国产精品综合久久久久久久免费 | or卡值多少钱| 国产亚洲av嫩草精品影院| e午夜精品久久久久久久| 成人18禁高潮啪啪吃奶动态图| 99久久99久久久精品蜜桃| 欧美日韩精品网址| 韩国精品一区二区三区| 午夜福利,免费看| 亚洲无线在线观看| 男女下面插进去视频免费观看| 亚洲人成电影免费在线| 国产精品 欧美亚洲| 午夜福利免费观看在线| 51午夜福利影视在线观看| 国产av又大| 性少妇av在线| 高清在线国产一区| 国产精品1区2区在线观看.| 国产精品免费一区二区三区在线| 在线av久久热| 亚洲精品中文字幕在线视频| 大型av网站在线播放| 级片在线观看| 午夜免费成人在线视频| 高清毛片免费观看视频网站| 国产1区2区3区精品| 波多野结衣av一区二区av| 麻豆av在线久日| 亚洲 欧美一区二区三区| 精品久久久久久,| 丝袜人妻中文字幕| 搞女人的毛片| 啦啦啦 在线观看视频| 国产单亲对白刺激| 国产亚洲精品久久久久久毛片| 国产午夜精品久久久久久| 女人被狂操c到高潮| 少妇 在线观看| 日韩三级视频一区二区三区| 精品久久久久久成人av| 久久久久亚洲av毛片大全| 亚洲精品中文字幕一二三四区| 两个人看的免费小视频| 亚洲国产精品sss在线观看| 久久久久国内视频| 两性午夜刺激爽爽歪歪视频在线观看 | 黄片播放在线免费| 久久人人97超碰香蕉20202| 国产高清有码在线观看视频 | 亚洲精品久久国产高清桃花| 国产免费男女视频| 国产一区二区三区综合在线观看| 国内久久婷婷六月综合欲色啪| 日本免费一区二区三区高清不卡 | 丝袜在线中文字幕| 一个人观看的视频www高清免费观看 | 亚洲av五月六月丁香网| 天堂动漫精品| 老司机福利观看| 999精品在线视频| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 黄色 视频免费看| 视频区欧美日本亚洲| 色av中文字幕| 国产高清视频在线播放一区| 99riav亚洲国产免费| 在线国产一区二区在线| 黄片小视频在线播放| 欧美色欧美亚洲另类二区 | 国产成人av教育| 午夜激情av网站| 国产一区二区激情短视频| 精品日产1卡2卡| 国产高清视频在线播放一区| 嫁个100分男人电影在线观看| 91九色精品人成在线观看| 国产免费av片在线观看野外av| 午夜老司机福利片| 亚洲电影在线观看av| 香蕉丝袜av| 最近最新中文字幕大全电影3 | 午夜免费观看网址| 老司机午夜福利在线观看视频| 久久婷婷成人综合色麻豆| а√天堂www在线а√下载| 夜夜躁狠狠躁天天躁| 无遮挡黄片免费观看| 大香蕉久久成人网| 亚洲精品一卡2卡三卡4卡5卡| 成人免费观看视频高清| 日本在线视频免费播放| 无遮挡黄片免费观看| 制服诱惑二区| 色婷婷久久久亚洲欧美| 亚洲人成77777在线视频| 在线播放国产精品三级| 巨乳人妻的诱惑在线观看| 麻豆国产av国片精品| 国产精品国产高清国产av| 黄色视频不卡| 久久影院123| 97人妻精品一区二区三区麻豆 | 精品日产1卡2卡| 亚洲专区中文字幕在线| 在线观看午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇熟女久久| 亚洲男人的天堂狠狠| 日韩免费av在线播放| 亚洲五月天丁香| 精品久久久精品久久久| 琪琪午夜伦伦电影理论片6080| 伦理电影免费视频| 国产又色又爽无遮挡免费看| 国产成人欧美在线观看| 国产精品久久久久久亚洲av鲁大| 午夜精品久久久久久毛片777| 亚洲午夜精品一区,二区,三区| 国产午夜精品久久久久久| 丰满人妻熟妇乱又伦精品不卡| 涩涩av久久男人的天堂| 精品一区二区三区四区五区乱码| 色哟哟哟哟哟哟| 亚洲av熟女| 国产成人免费无遮挡视频| 精品国产一区二区三区四区第35| 97超级碰碰碰精品色视频在线观看| 黄网站色视频无遮挡免费观看| 国产高清有码在线观看视频 | 操美女的视频在线观看| 成人国产一区最新在线观看| 久久香蕉激情| 欧美亚洲日本最大视频资源| 中亚洲国语对白在线视频| 国产成+人综合+亚洲专区| 国产黄a三级三级三级人| 日本在线视频免费播放| 午夜影院日韩av| 99在线视频只有这里精品首页| 一级a爱视频在线免费观看| 大陆偷拍与自拍| 国产99久久九九免费精品| 黄色女人牲交| 国产精品亚洲av一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 久久天躁狠狠躁夜夜2o2o| 欧美绝顶高潮抽搐喷水| 99国产综合亚洲精品| xxx96com| 久久婷婷人人爽人人干人人爱 | 亚洲av美国av| 国产日韩一区二区三区精品不卡| 日本 av在线| 久久精品国产99精品国产亚洲性色 | 亚洲成av片中文字幕在线观看| 欧美中文综合在线视频| 午夜福利欧美成人| 女人被狂操c到高潮| 国产精品久久久久久亚洲av鲁大| 精品免费久久久久久久清纯| xxx96com| 亚洲精品一区av在线观看| 午夜福利在线观看吧| 久久久久久久久中文| 他把我摸到了高潮在线观看| 亚洲人成电影免费在线| 不卡av一区二区三区| 中文字幕人妻丝袜一区二区| 99久久精品国产亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 国产精品日韩av在线免费观看 | 日本 av在线| 可以在线观看的亚洲视频| 曰老女人黄片| 欧美日本中文国产一区发布| 少妇的丰满在线观看| 日本黄色视频三级网站网址| 国产精品爽爽va在线观看网站 | 成人国语在线视频| 国产亚洲av高清不卡| 一个人免费在线观看的高清视频| 国产精品永久免费网站| 午夜免费成人在线视频| 午夜福利在线观看吧| 亚洲午夜理论影院| 一进一出好大好爽视频| 狂野欧美激情性xxxx| 国产男靠女视频免费网站| 黄色片一级片一级黄色片| 999精品在线视频| 在线观看免费日韩欧美大片| 在线观看www视频免费| 一级,二级,三级黄色视频| 欧美日韩瑟瑟在线播放| 人成视频在线观看免费观看| 午夜激情av网站| 黄频高清免费视频| 欧美日本视频| 国产成年人精品一区二区| 91国产中文字幕| www.999成人在线观看| 精品欧美国产一区二区三| 国产成人啪精品午夜网站| 一边摸一边抽搐一进一出视频| 日韩三级视频一区二区三区| 十分钟在线观看高清视频www| 激情在线观看视频在线高清| 免费av毛片视频| 69av精品久久久久久| 国产成人啪精品午夜网站| 国产一级毛片七仙女欲春2 | avwww免费| 一级作爱视频免费观看| 99国产精品一区二区三区| 亚洲激情在线av| 最近最新免费中文字幕在线| 国产精品一区二区免费欧美| 黄色 视频免费看| 国产三级黄色录像| 久久久精品国产亚洲av高清涩受| 久久久久久久久中文| 他把我摸到了高潮在线观看| 三级毛片av免费| 亚洲国产日韩欧美精品在线观看 | www.999成人在线观看| 黑人欧美特级aaaaaa片| 久久精品影院6| 啦啦啦观看免费观看视频高清 | av电影中文网址| 亚洲九九香蕉| 欧美性长视频在线观看| 久久久久久久精品吃奶| 老司机在亚洲福利影院| www.www免费av| 亚洲人成网站在线播放欧美日韩| 久久午夜亚洲精品久久| 999久久久国产精品视频| 欧美日韩一级在线毛片| 亚洲 国产 在线| 国产成人av教育| 久久欧美精品欧美久久欧美| 性欧美人与动物交配| 97人妻精品一区二区三区麻豆 | 最近最新中文字幕大全电影3 | 丝袜美腿诱惑在线| 少妇熟女aⅴ在线视频| 国产成人精品久久二区二区91| www日本在线高清视频| 亚洲欧美一区二区三区黑人| 国产精品98久久久久久宅男小说| 一边摸一边抽搐一进一小说| 久久精品91蜜桃| tocl精华| 999久久久国产精品视频| 无人区码免费观看不卡| 亚洲精品一区av在线观看| 亚洲一区高清亚洲精品| 欧美在线黄色| 亚洲欧洲精品一区二区精品久久久| 午夜免费观看网址| 看免费av毛片| 亚洲av电影在线进入| 在线国产一区二区在线| 精品免费久久久久久久清纯| 黄色成人免费大全| 91国产中文字幕| 丝袜在线中文字幕| 国内精品久久久久久久电影| 91成人精品电影| 99久久综合精品五月天人人| 在线永久观看黄色视频| 日韩大尺度精品在线看网址 | 不卡av一区二区三区| 精品国产乱码久久久久久男人| 日日爽夜夜爽网站| 国产精品久久久久久精品电影 | 黄色片一级片一级黄色片| 国产亚洲精品综合一区在线观看 | 国产精品综合久久久久久久免费 | 色在线成人网| 亚洲七黄色美女视频| 最近最新中文字幕大全电影3 | 国产精品98久久久久久宅男小说| 51午夜福利影视在线观看| 黑人欧美特级aaaaaa片| 亚洲成人精品中文字幕电影| 在线观看免费日韩欧美大片| 女人爽到高潮嗷嗷叫在线视频| 在线免费观看的www视频| 亚洲av电影不卡..在线观看| 97碰自拍视频| 国产极品粉嫩免费观看在线| 亚洲中文字幕一区二区三区有码在线看 | av有码第一页| 国产高清videossex| 无遮挡黄片免费观看| 可以在线观看的亚洲视频| 精品国产超薄肉色丝袜足j| 一个人观看的视频www高清免费观看 | 91国产中文字幕| 丝袜在线中文字幕| 啦啦啦 在线观看视频| 黄片播放在线免费| 欧美午夜高清在线| 熟女少妇亚洲综合色aaa.| 精品人妻1区二区| 亚洲五月婷婷丁香| 色婷婷久久久亚洲欧美| 日韩欧美一区二区三区在线观看| 日韩欧美在线二视频| 自线自在国产av| 99久久国产精品久久久| 久久婷婷成人综合色麻豆| 亚洲国产欧美一区二区综合| 一本大道久久a久久精品| 淫秽高清视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲激情在线av| 欧美中文综合在线视频| 国产av在哪里看| 国产极品粉嫩免费观看在线| 欧美精品亚洲一区二区| 日本免费a在线| 色综合婷婷激情| 女性生殖器流出的白浆| 精品一区二区三区av网在线观看| 日韩欧美一区二区三区在线观看| 国产欧美日韩综合在线一区二区| 男人舔女人的私密视频| 欧美人与性动交α欧美精品济南到| 久久国产精品影院| or卡值多少钱| 黑人操中国人逼视频| 久久久久久久午夜电影| 久久人妻av系列| 男女做爰动态图高潮gif福利片| 精品午夜福利视频在线观看一区| 此物有八面人人有两片| 国产成人aa在线观看| 波野结衣二区三区在线| 我要看日韩黄色一级片| 深夜a级毛片| 成人性生交大片免费视频hd| 国产高清不卡午夜福利| 日韩av在线大香蕉| 欧美日韩国产亚洲二区| 久久久久久大精品| 亚洲三级黄色毛片| www.色视频.com| 国产免费男女视频| 一区二区三区四区激情视频 | 国产成人a区在线观看| 精品久久国产蜜桃| 久久久久国产精品人妻aⅴ院| 亚洲五月天丁香| 欧美一区二区精品小视频在线| 国产69精品久久久久777片| 午夜a级毛片| 免费在线观看日本一区| 日本爱情动作片www.在线观看 | 天堂动漫精品| 内射极品少妇av片p| 97热精品久久久久久| 日韩一本色道免费dvd| 成人亚洲精品av一区二区| 久久中文看片网| 国产精品人妻久久久久久| 天天躁日日操中文字幕| 日韩一本色道免费dvd| 欧美另类亚洲清纯唯美| 欧美日韩精品成人综合77777| 色视频www国产| 少妇的逼水好多| 国产视频一区二区在线看| 国产精品国产三级国产av玫瑰| 精品一区二区三区av网在线观看| 日韩欧美三级三区| 91麻豆av在线| 午夜影院日韩av| 色视频www国产| 深夜a级毛片| 91精品国产九色| 88av欧美| 亚洲性久久影院| 午夜免费激情av| 2021天堂中文幕一二区在线观| 99久久成人亚洲精品观看| 久久久久久大精品| 一级黄色大片毛片| 99热6这里只有精品| 国产免费av片在线观看野外av| 赤兔流量卡办理| 久久午夜福利片| 日日啪夜夜撸| 国产 一区 欧美 日韩| 欧美一区二区亚洲| 日本-黄色视频高清免费观看| xxxwww97欧美| 99久久中文字幕三级久久日本| 中国美白少妇内射xxxbb| 一本久久中文字幕| 国产精品无大码| 欧美一级a爱片免费观看看| 亚洲av第一区精品v没综合| 国产极品精品免费视频能看的| 成年女人毛片免费观看观看9| 亚洲熟妇中文字幕五十中出| 久久精品国产亚洲av涩爱 | 成年女人永久免费观看视频| 一个人看的www免费观看视频| 午夜激情欧美在线| 久久精品国产清高在天天线| 亚洲性久久影院| 日本欧美国产在线视频| 日韩中字成人| 免费一级毛片在线播放高清视频| 啪啪无遮挡十八禁网站| 神马国产精品三级电影在线观看| 国产 一区 欧美 日韩| 观看美女的网站| 我的老师免费观看完整版| 亚洲四区av| 国产女主播在线喷水免费视频网站 | 国内揄拍国产精品人妻在线| 在线播放国产精品三级| 十八禁网站免费在线| 精品久久久久久久久久免费视频| 国产一区二区亚洲精品在线观看| 在线观看舔阴道视频| 亚洲国产精品成人综合色| 夜夜看夜夜爽夜夜摸| 狂野欧美白嫩少妇大欣赏| 日本色播在线视频| av黄色大香蕉| 国产欧美日韩精品亚洲av| 韩国av一区二区三区四区| 久久久久久久精品吃奶| 日韩中文字幕欧美一区二区| 亚洲成人久久爱视频| 亚洲国产精品sss在线观看| 国产av一区在线观看免费| 少妇的逼好多水| 欧美+日韩+精品| 精品久久久久久久末码| 99久久久亚洲精品蜜臀av| 两人在一起打扑克的视频| 九九久久精品国产亚洲av麻豆| 啦啦啦观看免费观看视频高清| 极品教师在线免费播放| 老熟妇乱子伦视频在线观看| 乱系列少妇在线播放| 99热网站在线观看| 国产伦在线观看视频一区| 日韩亚洲欧美综合| 婷婷六月久久综合丁香| netflix在线观看网站| 禁无遮挡网站| 久久精品夜夜夜夜夜久久蜜豆| 国产精品不卡视频一区二区| 国产精品嫩草影院av在线观看 | 国产69精品久久久久777片| 国产av不卡久久| 又紧又爽又黄一区二区| 蜜桃亚洲精品一区二区三区| 久久久久久久午夜电影| 亚洲国产高清在线一区二区三| 成人亚洲精品av一区二区| 亚洲狠狠婷婷综合久久图片| 久久精品91蜜桃| 内地一区二区视频在线| 国产精品女同一区二区软件 | 精品日产1卡2卡| 亚洲最大成人av| av在线蜜桃| 精品人妻一区二区三区麻豆 | 日韩亚洲欧美综合|