• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Crystal Structure and Photoluminescence of a TADF Cuprous Complex①

    2018-12-13 11:11:38GANXueMinWUXioYunYURongMinLUCnZhong
    結(jié)構(gòu)化學(xué) 2018年11期

    GAN Xue-Min WU Xio-Yun YU Rong-Min LU Cn-Zhong

    ?

    Synthesis, Crystal Structure and Photoluminescence of a TADF Cuprous Complex①

    GAN Xue-Mina, bWU Xiao-YuanaYU Rong-Mina②LU Can-Zhonga②

    a(350002)b(100049)

    A four-coordinate mononuclear cuprous complex oCBP-Cu-Pym (1, oCBP = 1,2-bis(diphenylphosphine)-nido-carborane, Pym = 2-methyl-6-(1H-pyrazol-1-yl)pyridine) was synthe- sized and characterized by elemental analysis,NMR, UV-Vis and X-ray single-crystal structure analysis. It crystallizes in monoclinic space group2/with= 28.4182(8),= 16.2994(4),= 22.2708(5) ?,= 127.219(2)°,= 8214.8(3) ?3,= 8,M= 766.92,ρ= 1.24 g/cm3,(000) = 3160,= 2.30 mm–1,= 1.063, the final= 0.0700 and= 0.1903 for 7158 observed reflections with> 2(). The Cu(I) ion adopts a highly distorted tetrahedral geometry defined by two nitrogen and two phosphorous atoms. Under UV 365 nm at room temperature, this complex exhibits green emission with maximum emission peak at 516 nm, lifetime 32.4 μs and quantum yield (= 0.461) in the solid state. Photophysical investigation suggests that the emission of complex 1at room temperature was attributed to TADF, which is strongly supported by theoretic calculation.

    Cu(I) complex, crystal structure, TADF, DFT calculation;

    1 INTRODUCTION

    Researches on transition luminescent materials have attracted enormous interest due to their attractive photophysical properties, which make them potentially amenable to applications in light-emitting technologies, dye-sensitized photovoltaics, biological imaging microscopy and light-emitting electro- chemical cells (LECs)[1-3]. Copper-based lumino- phores usually exhibit metal-to-ligand charge transfer (MLCT) state and small singlet-triplet energy gap, which allow fast reverse intersystem crossing (RISC) from the singlet state to triplet state, leading to highly efficient thermally activated delayed fluorescence (TADF) emission[4-6]. Theoretically, we can obtain luminescent materials with 100% internal quantum efficiency compared with those of the noble-metal phosphorescent materials[7]. Therefore, the Cu(I) emissive materials are promising candidates for highly efficient OLEDs[8-11]. In this work, a novel mono-nuclear neutral cuprous complex, oCBP-Cu- Pym, was designed and synthesized from the reactionof [Cu(CNCH3)4BF4], diimine ligand 2-methyl-6-(1H-pyrazol-1-yl)pyridine (Pym) and a new phosphine ligand 1,2-bis(diphenylphosphine)- nido-carborane (oCBP) in methanol. Herein, we report the synthesis, structure, spectroscopic charac- terization and theoretical calculation of the title compound.

    2 EXPERIMENTAL

    2.1 Materials and instruments

    All the chemicals were used as commercially obtained without purification. NMR spectra were recorded on a Bruker Avance III 400MHz NMR spectrometer. Elemental analyses (C, H, N) were carried out with an Elemental Vario EL III elemental analyzer. Photo-luminescence spectra were recorded on a HORIBA Jobin-Yvon FluoroMax-4 spectro- photometer. The UV-vis absorption spectra were recorded using a Perkin-Elmer Lambda-365 UV/vis spectrophotometer. The lifetimes of powder samples at different temperature (77~298 K) were carried out by a HORIBA Jobin-Yvon FluoroMax-4 in- strument with a Multi-channel scaling (MCS) peripheral equipment and a spectra LED (373 nm). The PL quantum yields, which were defined as the number of photons emitted per photon absorbed by the system, were measured by FluoroMax-4- equipped with an integrating sphere.

    2. 2. 1 Synthesis of 2-methyl-6-(1H-pyrazol-1-yl)pyridine)[12](Pym)

    To a Schlenk tube with a magnetic bar was added 2-bromo-6-methylpyridine (1.72 g, 10 mmol), potassium tert-butoxide (1.35 g, 12 mmol) and 1H- pyrazole (0.82 g, 12 mmol) in 1,4-dioxane (9.2 mL, 100 mmol, 10 equiv). The reaction mixture was stirred and heated under reflux in nitrogen for 48 h with an oil bath. Then the mixture was cooled to room temperature and poured into water (90 mL). The solution was neutralized by ammonia aqueous solution, and then extracted with dichloromethane. The organic phase was washed with brine, dried over sodium sulfate, and evaporated to dryness under vacuum. Finally, the crude product was purified by column chromatography on silica gel to a?ord a white solid (1.40 g, 88%).1H NMR (400 MHz, CDCl3)8.65~8.67 (m, 1H), 7.82 (d,= 8.2 Hz, 1H), 7.74~7.65 (m, 2H), 7.11 (d,= 7.4 Hz, 1H), 6.43~6.48 (m, 1H), 2.61 (s, 3H).

    2. 2. 2 Synthesis of ligand 1,2-bis(diphenyl-phosphine)-nido-carborane[13](oCBP)

    2.5 M-BuLi solution (22.5 mL, 9 mmol) was added slowly to a solution of 1,2-dicarbadode- caborane (0.43 g, 3 mmol) in distilled THF (15 mL) at 0 ℃. The resultant mixture was stirred at 0 ℃ for 1 h under nitrogen atmosphere. A solution of PPh2Cl (1.46 g, 6.6 mmol) in distilled THF (5 mL) was added slowly to the resultant mixture at 0 ℃. The resultant mixture was stirred at room tem- perature for 1 h and then refluxed for 1 h under nitrogen atmosphere. After cooling to room temperature, H2O (20 mL) was added to the reaction mixture. After stirring at room temperature for 1 h, the precipitate was filtered and washed with H2O (3 × 50 mL) to a?ord a white solid. Yield: 0.74 g (49%).1H NMR (400 MHz, CDCl3):7.92~7.85 (m, 8H), 7.52~7.39 (m, 12H), 2.38 (br, 10H).31P NMR (162 MHz, CDCl3):7.38.

    2. 2. 3 Synthesis of complex oCBP-Cu-Pym (1)

    A mixture of [Cu(CH3CN)4]BF4(31 mg, 0.1 mmol) and ligand oCBP (50 mg, 0.1 mmol) in methanol (5 mL) was stirred at room temperature for 0.5 h. Pym (42 mg, 1 mmol) was added and the mixture was stirred at 80 ℃ for 1 h. After cooling to room temperature, the solution was filtrated, and an air- stable product was recrystallized by slow solvent evaporation of the product in a mixture of CH2Cl2/ hexane.1H NMR (400 MHz, DMSO-d6)9.18(d,= 7.9 Hz, 1H), 8.72 (d,= 8.1 Hz, 1H), 8.02 (m, 3H), 7.74~6.92 (m, 22H), 1.60 (s,3H), 0.60 (s,= 7.0 Hz, 3H), –1.98 (B-H). Anal. Calcd. for C35.5H40B9Cl- CuN3P2: C, 55.5; H, 5.22; N, 4.47%. Found: C, 54.65; H, 5.24; N, 5.23%.

    2.3 Structure determination

    A yellow crystal of complex 1 with dimensions of 0.2mm × 0.15mm × 0.12mm was used for X-ray diffraction analysis. Diffraction data of the complex were collected on a SuperNova, Dual, Cu at zero, Atlas diffractometer equipped with graphite-mono- chromated Curadiation (= 1.54184 ?). A total of 16198 reflections were collected at 100.01(16) K in the range of 6.780≤2≤148.852o by using anscan mode, of which 8146 were unique withint= 0.0350 and 7158 were observed with> 2(). The structure was solved by direct methods with SHELXS-97 and refined by full-matrix least-squares methods with SHELXL-97 program package. All of the non-hydrogen atoms were located with succes- sive difference Fourier synthesis. Hydrogen atoms were added in the idealized positions. The non- hydrogen atoms were refined anisotropically. The final= 0.0786,= 0.1969 (= 1/[2(F2) + (0.0943)2+ 55.1329], where= (F2+ 2F2)/3),= 1.060, (Δ/)max= 0.001, (Δ)max= 1.940 and (Δ)min= – 1.690 e/?3. Selected bond lengths and bond angles from X-ray structure analysis are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    2.4 Computational methodology

    Calculations on the electronic structures of 1 were performed by using density functional theory (DFT) with the hybrid Becke three-parameter Lee-Yang- Parr (B3LYP) functional level[14]. The input data came from X-ray crystal structure. In this calculation, a “double-ζ” quality basis set consisting of Hay and Wadt’s effective core potentials (LANL2DZ)[15]was employed for the Cu atom, and all-electron basis set of 6-31G* was used for P, B, N, C, and H atoms. All calculations were carried out using Gaussian 09[16-18]. Visualization of the optimized structures and Frontier molecular orbitals were performed by GaussView. The partition orbital composition was analyzed by using the Multiwfn 2.4 program[19].

    3 RESULTS AND DISCUSSION

    Complex 1 is a neutral copper(I) complex of the type Cu(PP)(NN). Fig. 1 shows its molecular struc- ture and ORTEP diagram. The X-ray crystallo- graphic study reveals that the metal ion in this complex exhibits highly distorted tetragonal coordination, with N–Cu–N and P–Cu–P angles of 79.50and 91.09?, respectively (Table 1). All Cu–P bond lengths ranging from 2.260 to 2.246 ? are typically within the normal range for a copper(I) center chelated by phosphine heterocycles[20]. The steric hindrance of these two ligands is expected to improve the rigidity of the cuprous complex and minimize the structural rearrangement distortion in its excited states, which can probably reduce the deactivation of excited states and increase the light emission efficiency[21].

    Fig. 1. Molecular structure (left) and ORTEP diagram (right) of complex 1. Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms are not displayed for clarity

    Fig. 2. Absorption spectra (left) of complex 1 as well as free ligands and the emission spectra (right) of the cuprous complexes in degassed CH2Cl2(c ≈ 2 × 10-5M) at room temperature

    Fig. 2 shows the UV-vis absorption spectra of complex 1, oCBP ligand and Pym ligand in CH2Cl2at room temperature. Complex 1 exhibits multiple intense absorption peaks in the region below 305 nm (> 104M-1·cm-1), which can be assigned to spin-allowed-* transition of both Pym and oCBP ligands. And the broad absorption band at 308~439 nm of complex 1, which is weakly observed in the spectrum of ligand, is assigned to(Cu)-*(NN) metal-to-ligand charge-transfer(MLCT) transitions and(PP)-*(NN) ligand-ligand charge transfer (LLCT). It is supported by DFT calculations (Fig. 3). More specifically, the compositions of the involved orbitals are provided in Table 2. Orbital component analysis of Frontier orbitals reveals that the HOMO is composed of the contributions from Pym moiety (96.39%). In contrast, the LUMO localizes on Pym (91.13%), oCBP (5.50%) and Cu (3.37%). The computational results indicate that the lowest lying transitions of 1 mainly consist of LLCT and MLCT characters. Natural transition orbital (NTO) analyses were performed to investigate the origin of luminescence in 1 (Fig. 4). The maps of S1and T1states are similar to each other; the transition from HOMO → LUMO is 100% for S1and 83% for T1. The corrected emission spectrum of complex 1 in degassed CH2Cl2showed a single band, maximized with a peak wavelength at 550 nm.

    Fig. 3. Frontier molecular orbitals (HOMO, HOMO-1, LUMO, and LUMO+1) for complex 1 from DFT calculations

    Table 2. Partition Orbital Composition Analyses for the Frontier Molecular Orbitals of Complex 1

    Fig. 4. Redistribution of electron densities of the lowest singlet excited state and the lowest triplet excited state from TD-DFT calculations

    Fig. 5. Emission spectra of complex 1in the solid state at 77 and 298 K

    Fig. 5 shows the emission spectra of 1 in solid state at 298 and 77 K. Complex 1 exhibits green emission with photo-luminescence quantum yield of 46.1% at 298 K. With the decrease of temperature, the complex displays red-shifted emission with the peak maxima changing from 516 to 530 nm, and lifetime from 32.4 to 972.6 μs. This indicates that the emission of 1 originates from two different excited states (S1andT1) that are convertible and in thermal equilibrium. Fig. 6a displays emission decay curves measured at different temperature. For getting insight into the nature of emission, the lifetimes at varied temperature in the range of 77~298 K were measured and summarized in Fig. 6b. The red curve is fitted according to the following equation[6, 22, 23]: Herein, kB, τ(S1) and τ(T1) are the Boltzmann constant, the decay time of S1state and the decay time of T1state, and ESTdenotes the energy gap between the S1and T1states. The fitted results are present in Fig. 6b,, values of τ(S1) = 304 ns, τ(T1) = 943 μs, and EST= 0.105 eV. Owing to the small EST, the triplet excitons in T1states can convert thermally to the singlet excitons in the S1state. At room temperature, the conversion from T1states to the S1states occurs easily, and complex 1 emits thermally activated delayed fluorescence (TADF). TADF is often found in Cu(I) complexes and the donor- acceptor charge transfer organic compounds with small EST[24, 25].

    Fig. 6. (a) Transient decay curves of complex 1 at different temperature;(b) Temperature dependence of the decay time for complex 1 in the solid state(the solid line represents a fit curve according to Eq. 1)

    In summary, we report a new neutral cuprous complex which exhibits high luminescence quantum yield reaching 46.1%. The luminescent properties of the complex have been studied experimentally and theoretically, indicating that the complex displays TADF at room temperature.

    (1) Zhang, X. Q.; Chi, Z. G.; Zhang, Y.; Liu, S. W.; Xu, J. R. Recent advances in mechanochromic luminescent metal complexes.2013, 1, 3376–3390.

    (2) Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent progress in metal-organic complexes for optoelectronic applications.2014, 43, 3259–3302.

    (3) Liu, Z.; Qi, W.; Xu, G. Recent advances in electrochemiluminescence.2015, 44, 3117–3142.

    (4) Czerwieniec, R.; Leitl, M. J.; Homeier, H. H. H.; Yersin, H. Cu(I) complexes – thermally activated delayed fluorescence. Photophysical approach and material design.2016, 325, 2–28.

    (5) Chen, X. L.; Yu, R.; Zhang, Q. K.; Zhou, L. J.; Wu, X. Y.; Zhang, Q.; Lu, C. Z. Rational design of strongly blue-emitting cuprous complexes with thermally activated delayed fluorescence and application in solution-processed OLEDs.2013, 25, 3910–3920.

    (6) Leitl, M. J.; Kuchle, F. R.; Mayer, H. A.; Wesemann, L.; Yersin, H. Brightly blue and green emitting Cu(I) dimers for singlet harvesting in OLEDs.2013, 117, 11823–11836.

    (7) Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics.2014, 26, 7931–7958.

    (8) Liu, Z.; Qayyum, M. F.; Wu, C.; Whited, M. T.; Djurovich, P. I.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Thompson, M. E. A codeposition route to CuI-pyridine coordination complexes for organic light-emitting diodes.2011, 133, 3700–3703.

    (9) Zink, D. M.; Volz, D.; Baumann, T.; Mydlak, M.; Flügge, H.; Friedrichs, J.; Nieger, M.; Br?se, S. Heteroleptic, dinuclear copper(I) complexes for application in organic light-emitting diodes.2013, 25, 4471–4486.

    (10) Chen, X. L.; Lin, C. S.; Wu, X. Y.; Yu, R.; Teng, T.; Zhang, Q. K.; Zhang, Q.; Yang, W. B.; Lu, C. Z. Highly efficient cuprous complexes with thermally activated delayed fluorescence and simplified solution process OLEDs using the ligand as host.2015, 3, 1187–1195.

    (11) Cheng, G.; So, G. K. M.; To, W. P.; Chen, Y.; Kwok, C. C.; Ma, C.; Guan, X.; Chang, X.; Kwok, W. M.; Che, C. M. Luminescent zinc(II) and copper(I) complexes for high-performance solution-processed monochromic and white organic light-emitting devices.2015, 6, 4623–4635.

    (12) Liu, S.; Zeng, X.; Xu, B. CuII-catalyzed regioselective borylation of alkynes and alkenes.2016, 57, 3706–3710.

    (13) Clark, P. W.; Mulraney, B. J. ChemInform abstract: synthesis and physical properties of chlorodi(O-tolyl)phosphine, lithium di(O-tolyl)phosphide and the diphosphine series (O-tolyl)2P(CH2)NP(O-tolyl)2.1982, 13.

    (14) Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange.1993, 98, 5648–5652.

    (15) Roy, L. E.; Hay, P. J.; Martin, R. L. Revised basis sets for the LANL effective core potentials.2008, 4, 1029–1031.

    (16) Bauernschmitt, R.; Ahlrichs, R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory.1996, 256, 454–464.

    (17) Hay, P. J.; Wadt, W. R.effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg.1985, 82, 270–283.

    (18) Hay, P. J.; Wadt, W. R.effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals.1985, 82, 299–310.

    (19) Lu, T.; Chen, F. Multiwfn: a multifunctional wavefunction analyzer.2012, 33, 580–592.

    (20) Laviecambot, A.; Cantuel, M.; Leydet, Y.; Jonusauskas, G.; Bassani, D.; McClenaghan, N. Improving the photophysical properties of copper(I) bis(phenanthroline) complexes.2008, 252, 2572–2584.

    (21) Armaroli, N.; Accorsi, G.; Cardinali, F.; Listorti, A. Photochemistry and photophysics of coordination compounds: copper.2007, 280, 69–115.

    (22) Czerwieniec, R.; Yu, J.; Yersin, H. Blue-light emission of Cu(I) complexes and singlet harvesting.2011, 50, 8293–8301.

    (23) Leitl, M. J.; Zink, D. M.; Schinabeck, A.; Baumann, T.; Volz, D.; Yersin, H. Copper(I) complexes for thermally activated delayed fluorescence: from photophysical to device properties.2016, 374, 25.

    (24) Yersin, H.; Rausch, A. F.; Czerwieniec, R.; Hofbeck, T.; Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs.2011, 255, 2622–2652.

    (25) Hirata, S.; Sakai, Y.; Masui, K.; Tanaka, H.; Lee, S. Y.; Nomura, H.; Nakamura, N.; Yasumatsu, M.; Nakanotani, H.; Zhang, Q.; Shizu, K.; Miyazaki, H.; Adachi, C. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence.2015, 14, 330–336.

    14 November 2017;

    21 May 2018 (CCDC 1822329)

    ① This project was supported by the National Natural Science Foundation of China (21373221, 21521061, 51672271, 21671190, 21403236) and the Natural Science Foundation of Fujian Province (2006L2005)

    Lu Can-Zhong, professor in chemistry. E-mail: czlu@fjirsm.ac.cn;Yu Rong-Min, professor in chemistry. E-mail: rongminyu@fjirsm.ac.cn

    10.14102/j.cnki.0254-5861.2011-1989

    熟女少妇亚洲综合色aaa.| 99热全是精品| 下体分泌物呈黄色| 久久国产精品大桥未久av| 亚洲av综合色区一区| 午夜免费鲁丝| 日本午夜av视频| 大香蕉久久网| 少妇 在线观看| 中国三级夫妇交换| 日本黄色日本黄色录像| 亚洲精品国产av蜜桃| 我的亚洲天堂| 成年美女黄网站色视频大全免费| 波多野结衣av一区二区av| 欧美日韩精品网址| 免费av中文字幕在线| 久久久久视频综合| 只有这里有精品99| 精品少妇黑人巨大在线播放| 蜜桃国产av成人99| 丰满少妇做爰视频| 久久久久久久久免费视频了| 亚洲一卡2卡3卡4卡5卡精品中文| 久久99一区二区三区| 午夜福利一区二区在线看| 如何舔出高潮| 纯流量卡能插随身wifi吗| 少妇猛男粗大的猛烈进出视频| 精品国产乱码久久久久久小说| 亚洲第一区二区三区不卡| 日韩熟女老妇一区二区性免费视频| 捣出白浆h1v1| 国产日韩欧美在线精品| 国产精品久久久久久精品电影小说| 精品第一国产精品| 亚洲欧美成人综合另类久久久| 成人亚洲欧美一区二区av| 久久久久久人妻| 亚洲一区中文字幕在线| 亚洲情色 制服丝袜| 菩萨蛮人人尽说江南好唐韦庄| 久久国产精品大桥未久av| 久久婷婷青草| 国产又爽黄色视频| 亚洲av成人不卡在线观看播放网 | 大香蕉久久网| 国产成人av激情在线播放| 90打野战视频偷拍视频| 国产精品久久久久久久久免| 中文精品一卡2卡3卡4更新| 香蕉国产在线看| 最近中文字幕2019免费版| 男人添女人高潮全过程视频| 激情视频va一区二区三区| 国产av国产精品国产| 久久综合国产亚洲精品| 男的添女的下面高潮视频| 国产精品久久久久成人av| 国产高清国产精品国产三级| 在线观看免费午夜福利视频| 黄片无遮挡物在线观看| 黄色视频不卡| 韩国高清视频一区二区三区| 国产黄色免费在线视频| 国产又色又爽无遮挡免| 婷婷色av中文字幕| 9热在线视频观看99| 国产亚洲av高清不卡| 蜜桃国产av成人99| 99久久人妻综合| 国产又爽黄色视频| 亚洲,欧美,日韩| 日日爽夜夜爽网站| a级毛片在线看网站| 新久久久久国产一级毛片| 电影成人av| 欧美成人午夜精品| 久久精品人人爽人人爽视色| 欧美精品一区二区免费开放| 9热在线视频观看99| 亚洲中文av在线| 国精品久久久久久国模美| 一区福利在线观看| 秋霞在线观看毛片| 亚洲,一卡二卡三卡| 国产免费一区二区三区四区乱码| 亚洲国产精品成人久久小说| 欧美亚洲日本最大视频资源| 啦啦啦在线免费观看视频4| 国产成人一区二区在线| 国产成人a∨麻豆精品| 如日韩欧美国产精品一区二区三区| 国产伦人伦偷精品视频| 不卡视频在线观看欧美| 中文字幕人妻丝袜一区二区 | 一区二区三区激情视频| 又黄又粗又硬又大视频| 午夜激情av网站| 麻豆精品久久久久久蜜桃| 不卡av一区二区三区| 日韩成人av中文字幕在线观看| 久久人人爽av亚洲精品天堂| 亚洲av男天堂| 观看av在线不卡| 亚洲激情五月婷婷啪啪| 最新的欧美精品一区二区| 成人影院久久| 欧美xxⅹ黑人| 亚洲熟女毛片儿| 国产精品久久久久久人妻精品电影 | 久久久久精品国产欧美久久久 | 精品酒店卫生间| 亚洲熟女毛片儿| 亚洲综合精品二区| 亚洲av电影在线观看一区二区三区| 国产极品粉嫩免费观看在线| 极品人妻少妇av视频| 国产成人精品无人区| 成人免费观看视频高清| avwww免费| 久久久久久人妻| 国产欧美日韩一区二区三区在线| 欧美日韩av久久| 日韩人妻精品一区2区三区| 看免费成人av毛片| 国产熟女欧美一区二区| 亚洲精品,欧美精品| 免费人妻精品一区二区三区视频| 大香蕉久久成人网| 又大又爽又粗| 久久99精品国语久久久| 丝袜美腿诱惑在线| 国产不卡av网站在线观看| 90打野战视频偷拍视频| 久热这里只有精品99| 欧美97在线视频| 日本欧美视频一区| 亚洲第一青青草原| 黄色视频不卡| 一个人免费看片子| 男男h啪啪无遮挡| 欧美人与性动交α欧美精品济南到| 亚洲久久久国产精品| 久久久久精品性色| 国产精品 欧美亚洲| 99热网站在线观看| 免费女性裸体啪啪无遮挡网站| 国产淫语在线视频| 亚洲精品国产区一区二| 欧美久久黑人一区二区| 欧美日韩视频精品一区| 日韩,欧美,国产一区二区三区| 男人舔女人的私密视频| 久久青草综合色| 国产精品秋霞免费鲁丝片| 男女边摸边吃奶| 欧美人与善性xxx| 亚洲国产欧美日韩在线播放| 一边摸一边抽搐一进一出视频| 啦啦啦中文免费视频观看日本| 一二三四中文在线观看免费高清| 久久精品亚洲熟妇少妇任你| 晚上一个人看的免费电影| 久久 成人 亚洲| 性少妇av在线| 日本wwww免费看| 美女大奶头黄色视频| av有码第一页| 亚洲av成人不卡在线观看播放网 | 免费看不卡的av| 黄网站色视频无遮挡免费观看| 桃花免费在线播放| 久久性视频一级片| 欧美日韩亚洲综合一区二区三区_| 国产av一区二区精品久久| 人妻 亚洲 视频| 国产男女内射视频| 亚洲av国产av综合av卡| 国产欧美亚洲国产| 久久久久久人人人人人| 一边摸一边做爽爽视频免费| 精品少妇久久久久久888优播| 美女大奶头黄色视频| 国产精品麻豆人妻色哟哟久久| 五月天丁香电影| 这个男人来自地球电影免费观看 | 天天躁日日躁夜夜躁夜夜| 99热网站在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品一二三| 精品国产一区二区三区四区第35| 狠狠精品人妻久久久久久综合| 99久久综合免费| 桃花免费在线播放| 人人妻人人澡人人看| 精品一区二区免费观看| 亚洲精品久久午夜乱码| 精品国产国语对白av| 妹子高潮喷水视频| 亚洲精品久久成人aⅴ小说| 宅男免费午夜| 午夜福利,免费看| 久久亚洲国产成人精品v| 黄片小视频在线播放| 国产一区二区三区综合在线观看| 午夜福利免费观看在线| 在线精品无人区一区二区三| 日韩熟女老妇一区二区性免费视频| 99国产综合亚洲精品| 丝袜美腿诱惑在线| 国产探花极品一区二区| 青春草视频在线免费观看| 悠悠久久av| 婷婷色av中文字幕| 亚洲精品国产av成人精品| 九色亚洲精品在线播放| 韩国精品一区二区三区| 青春草视频在线免费观看| 看十八女毛片水多多多| 91国产中文字幕| 亚洲一级一片aⅴ在线观看| 男女边吃奶边做爰视频| 国产97色在线日韩免费| 自拍欧美九色日韩亚洲蝌蚪91| 少妇人妻久久综合中文| 国产一区亚洲一区在线观看| 成人影院久久| 久久精品亚洲熟妇少妇任你| a 毛片基地| 久久久久久人妻| 熟女av电影| 一级毛片黄色毛片免费观看视频| 国产一区二区三区av在线| 一级毛片电影观看| 亚洲自偷自拍图片 自拍| 国产欧美日韩一区二区三区在线| 精品少妇黑人巨大在线播放| 街头女战士在线观看网站| 久久久久视频综合| 久久97久久精品| 亚洲精品国产区一区二| 在线天堂中文资源库| 黄片无遮挡物在线观看| 两个人看的免费小视频| 国产精品久久久久成人av| 亚洲自偷自拍图片 自拍| 亚洲av综合色区一区| 国产精品国产av在线观看| 99国产综合亚洲精品| 日韩大片免费观看网站| av电影中文网址| 亚洲专区中文字幕在线 | 国产毛片在线视频| 欧美精品人与动牲交sv欧美| 菩萨蛮人人尽说江南好唐韦庄| 又粗又硬又长又爽又黄的视频| 天天躁日日躁夜夜躁夜夜| 黑人巨大精品欧美一区二区蜜桃| 人人妻,人人澡人人爽秒播 | 久久人人爽人人片av| 日本91视频免费播放| 91精品三级在线观看| 汤姆久久久久久久影院中文字幕| 日本午夜av视频| 青春草亚洲视频在线观看| 97精品久久久久久久久久精品| 精品一区二区三卡| 美女午夜性视频免费| 国产熟女欧美一区二区| 男的添女的下面高潮视频| 七月丁香在线播放| 久久国产亚洲av麻豆专区| 国产乱来视频区| 欧美黑人精品巨大| 捣出白浆h1v1| 看非洲黑人一级黄片| 观看美女的网站| 三上悠亚av全集在线观看| 亚洲中文av在线| 亚洲国产av影院在线观看| 少妇猛男粗大的猛烈进出视频| 精品亚洲乱码少妇综合久久| 岛国毛片在线播放| 99久久精品国产亚洲精品| 丝袜美足系列| 精品人妻一区二区三区麻豆| 看十八女毛片水多多多| 日日撸夜夜添| 精品久久久精品久久久| 三上悠亚av全集在线观看| 亚洲av电影在线进入| 91aial.com中文字幕在线观看| 夫妻午夜视频| 亚洲一区中文字幕在线| 一级a爱视频在线免费观看| 亚洲少妇的诱惑av| 黄片小视频在线播放| 亚洲精品久久久久久婷婷小说| 一边亲一边摸免费视频| netflix在线观看网站| 悠悠久久av| 国产精品久久久人人做人人爽| 国产精品久久久久久久久免| 国产精品久久久人人做人人爽| 国产av精品麻豆| 菩萨蛮人人尽说江南好唐韦庄| 最近中文字幕高清免费大全6| 国产精品一二三区在线看| 精品亚洲成国产av| av.在线天堂| 十分钟在线观看高清视频www| 免费av中文字幕在线| 亚洲欧美清纯卡通| 极品少妇高潮喷水抽搐| 国产又爽黄色视频| 亚洲七黄色美女视频| e午夜精品久久久久久久| 亚洲精品国产色婷婷电影| av女优亚洲男人天堂| 亚洲国产毛片av蜜桃av| 精品国产露脸久久av麻豆| 狠狠婷婷综合久久久久久88av| 成人国产av品久久久| 免费看不卡的av| 免费高清在线观看日韩| 狠狠婷婷综合久久久久久88av| 国产免费福利视频在线观看| 国产成人精品福利久久| 成人国产麻豆网| 大片免费播放器 马上看| 十八禁高潮呻吟视频| 黑丝袜美女国产一区| 女人精品久久久久毛片| 亚洲国产最新在线播放| 午夜激情av网站| 久热这里只有精品99| 久久久久久久久久久久大奶| 国产人伦9x9x在线观看| 欧美日韩精品网址| 精品一品国产午夜福利视频| 久久免费观看电影| 精品久久久久久电影网| 国产免费视频播放在线视频| 欧美日韩亚洲高清精品| 看十八女毛片水多多多| 黄色一级大片看看| 黄片无遮挡物在线观看| 两性夫妻黄色片| 一区二区三区四区激情视频| 久久久久久久国产电影| 免费女性裸体啪啪无遮挡网站| 啦啦啦在线观看免费高清www| 老司机亚洲免费影院| avwww免费| 日韩大码丰满熟妇| 青青草视频在线视频观看| 国产精品国产三级国产专区5o| av视频免费观看在线观看| 看十八女毛片水多多多| 男人操女人黄网站| 国产精品无大码| 日本猛色少妇xxxxx猛交久久| 建设人人有责人人尽责人人享有的| 宅男免费午夜| 免费在线观看黄色视频的| av天堂久久9| 999久久久国产精品视频| 亚洲精品久久成人aⅴ小说| 母亲3免费完整高清在线观看| 在线观看免费日韩欧美大片| 欧美精品av麻豆av| 亚洲av综合色区一区| 欧美人与善性xxx| 亚洲欧美成人综合另类久久久| 亚洲国产欧美网| 精品亚洲乱码少妇综合久久| 高清黄色对白视频在线免费看| 两个人看的免费小视频| 亚洲美女搞黄在线观看| 亚洲精品日韩在线中文字幕| 亚洲熟女精品中文字幕| 久久99热这里只频精品6学生| 纯流量卡能插随身wifi吗| 99国产精品免费福利视频| 波多野结衣一区麻豆| 久久久国产一区二区| 下体分泌物呈黄色| 一本一本久久a久久精品综合妖精| 久久精品国产亚洲av高清一级| 午夜激情久久久久久久| 亚洲国产最新在线播放| 久久国产精品男人的天堂亚洲| 欧美黑人欧美精品刺激| 黄片无遮挡物在线观看| 人人澡人人妻人| 飞空精品影院首页| 免费高清在线观看日韩| 久久久久精品久久久久真实原创| 激情五月婷婷亚洲| 婷婷成人精品国产| 一本一本久久a久久精品综合妖精| 满18在线观看网站| 久久久久国产一级毛片高清牌| 免费日韩欧美在线观看| 丝瓜视频免费看黄片| 亚洲第一av免费看| 日韩av在线免费看完整版不卡| 少妇的丰满在线观看| 丰满少妇做爰视频| 日韩精品免费视频一区二区三区| 1024视频免费在线观看| 我的亚洲天堂| 欧美av亚洲av综合av国产av | 久久久国产一区二区| 久热爱精品视频在线9| 熟女av电影| 亚洲天堂av无毛| 亚洲欧美一区二区三区久久| 亚洲国产看品久久| 日韩一本色道免费dvd| 一边亲一边摸免费视频| 成人漫画全彩无遮挡| 日本色播在线视频| 观看美女的网站| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| 欧美精品av麻豆av| 成年av动漫网址| 日韩人妻精品一区2区三区| 国产视频首页在线观看| 国产一区有黄有色的免费视频| 操出白浆在线播放| 精品少妇一区二区三区视频日本电影 | xxx大片免费视频| 黑人巨大精品欧美一区二区蜜桃| 日韩熟女老妇一区二区性免费视频| 午夜激情久久久久久久| 女的被弄到高潮叫床怎么办| 人体艺术视频欧美日本| 男女国产视频网站| 一级a爱视频在线免费观看| 欧美黑人欧美精品刺激| 一边亲一边摸免费视频| 我要看黄色一级片免费的| 深夜精品福利| 日日撸夜夜添| 十八禁网站网址无遮挡| a 毛片基地| 久久精品人人爽人人爽视色| 国产一区二区 视频在线| 国产亚洲精品第一综合不卡| 国产精品一国产av| av天堂久久9| 如何舔出高潮| 黄频高清免费视频| 国产精品欧美亚洲77777| 国产在视频线精品| 一区福利在线观看| 黄片无遮挡物在线观看| 久久 成人 亚洲| 美女午夜性视频免费| 国产精品国产三级专区第一集| 日本爱情动作片www.在线观看| 精品卡一卡二卡四卡免费| 天天影视国产精品| 中文字幕人妻熟女乱码| 大片免费播放器 马上看| videos熟女内射| 精品福利永久在线观看| 亚洲国产精品一区三区| 伊人久久大香线蕉亚洲五| 99国产综合亚洲精品| 欧美日韩综合久久久久久| 最新在线观看一区二区三区 | 精品一品国产午夜福利视频| 在线看a的网站| 丰满迷人的少妇在线观看| av女优亚洲男人天堂| 国产又爽黄色视频| 国产福利在线免费观看视频| 成人18禁高潮啪啪吃奶动态图| 亚洲av成人不卡在线观看播放网 | 欧美日韩一级在线毛片| 咕卡用的链子| 精品视频人人做人人爽| 午夜日本视频在线| 精品少妇内射三级| 国产一卡二卡三卡精品 | 免费高清在线观看视频在线观看| 亚洲精品久久午夜乱码| av在线app专区| 午夜日本视频在线| 嫩草影院入口| 日韩 欧美 亚洲 中文字幕| 操出白浆在线播放| 99久国产av精品国产电影| 国产亚洲av片在线观看秒播厂| 中文欧美无线码| 午夜日韩欧美国产| 秋霞伦理黄片| 日韩不卡一区二区三区视频在线| 曰老女人黄片| 精品人妻熟女毛片av久久网站| 狂野欧美激情性xxxx| 天堂俺去俺来也www色官网| 五月开心婷婷网| 午夜久久久在线观看| 99热全是精品| 精品国产乱码久久久久久男人| 国产亚洲午夜精品一区二区久久| 一区二区三区激情视频| 高清视频免费观看一区二区| 国产极品粉嫩免费观看在线| 我要看黄色一级片免费的| 日韩一区二区视频免费看| 制服诱惑二区| 精品卡一卡二卡四卡免费| 久久久久久久大尺度免费视频| 人人妻人人爽人人添夜夜欢视频| 精品一区二区免费观看| 亚洲综合精品二区| 一区二区三区激情视频| 人人妻人人澡人人爽人人夜夜| 丝袜人妻中文字幕| 丰满乱子伦码专区| 无限看片的www在线观看| 欧美变态另类bdsm刘玥| 婷婷色综合大香蕉| 欧美人与性动交α欧美软件| 丝瓜视频免费看黄片| 51午夜福利影视在线观看| 好男人视频免费观看在线| 飞空精品影院首页| 狠狠婷婷综合久久久久久88av| 午夜日韩欧美国产| 美女高潮到喷水免费观看| 久久青草综合色| 热99久久久久精品小说推荐| 一本色道久久久久久精品综合| 97人妻天天添夜夜摸| 啦啦啦 在线观看视频| 综合色丁香网| 亚洲精品美女久久av网站| 夫妻午夜视频| 久久婷婷青草| 一边亲一边摸免费视频| 免费黄网站久久成人精品| 国产极品粉嫩免费观看在线| 丝袜美足系列| 色94色欧美一区二区| 一级,二级,三级黄色视频| 不卡av一区二区三区| 亚洲成色77777| 精品午夜福利在线看| 日韩 亚洲 欧美在线| 国产有黄有色有爽视频| 久久久久久久久免费视频了| 亚洲国产看品久久| 七月丁香在线播放| 伊人久久大香线蕉亚洲五| 丝袜人妻中文字幕| 亚洲 欧美一区二区三区| 热99久久久久精品小说推荐| 亚洲国产欧美一区二区综合| 美国免费a级毛片| 午夜福利,免费看| 熟女少妇亚洲综合色aaa.| 伊人亚洲综合成人网| 欧美日韩视频高清一区二区三区二| 在线观看免费视频网站a站| 久久久久视频综合| 麻豆乱淫一区二区| 国产精品av久久久久免费| 日韩成人av中文字幕在线观看| 国产亚洲av片在线观看秒播厂| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美人与性动交α欧美软件| 国产欧美亚洲国产| 国产男女内射视频| 亚洲少妇的诱惑av| 午夜福利网站1000一区二区三区| av在线播放精品| 80岁老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 热re99久久精品国产66热6| 满18在线观看网站| 精品卡一卡二卡四卡免费| 黄片小视频在线播放| www.熟女人妻精品国产| 久久婷婷青草| 少妇的丰满在线观看| 国产精品蜜桃在线观看| 满18在线观看网站| 欧美日韩国产mv在线观看视频| 男女床上黄色一级片免费看| av网站在线播放免费| 久久久久久人人人人人| 免费人妻精品一区二区三区视频| 在现免费观看毛片| 国产精品一区二区在线观看99| 激情五月婷婷亚洲| 男人舔女人的私密视频| 男人操女人黄网站| 三上悠亚av全集在线观看| 亚洲美女黄色视频免费看| 97精品久久久久久久久久精品| 电影成人av| 老司机在亚洲福利影院| 中文字幕另类日韩欧美亚洲嫩草| 日韩av免费高清视频| tube8黄色片| 菩萨蛮人人尽说江南好唐韦庄| 婷婷成人精品国产| 天天添夜夜摸|