• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Directed Dominating Set Problem Studied by Cavity Method:Warning Propagation and Population Dynamics?

    2018-12-13 06:33:34YusupjanHabibulla玉素甫艾比布拉
    Communications in Theoretical Physics 2018年12期
    關(guān)鍵詞:艾比布拉

    Yusupjan Habibulla(玉素甫·艾比布拉)

    School of Physics and Technology,Xinjiang University,Sheng-Li Road 14,Urumqi 830046,China

    AbstractThe minimal dominating set for a digraph(directed graph)is a prototypical hard combinatorial optimization problem.In a previous paper,we studied this problem using the cavity method.Although we found a solution for a given graph that gives very good estimate of the minimal dominating size,we further developed the one step replica symmetry breaking theory to determine the ground state energy of the undirected minimal dominating set problem.The solution space for the undirected minimal dominating set problem exhibits both condensation transition and cluster transition on regular random graphs.We also developed the zero temperature survey propagation algorithm on undirected Erd?os-Rényi graphs to find the ground state energy.In this paper we continue to develope the one step replica symmetry breaking theory to find the ground state energy for the directed minimal dominating set problem.We find the following.(i)The warning propagation equation can not converge when the connectivity is greater than the core percolation threshold value of 3.704.Positive edges have two types warning,but the negative edges have one.(ii)We determine the ground state energy and the transition point of the Erd?os-Rényi random graph.(iii)The survey propagation decimation algorithm has good results comparable with the belief propagation decimation algorithm.

    Key words:directed minimal dominating set,replica symmetry breaking,Erd?os-Rényi graph,warning propagation,survey propagation decimation

    1 Introduction

    The minimum dominating set for a general digraph[1?2]is a fundamental nondeterministic polynomialhard(NPhard)combinatorial optimization problem.[3]Any digraph D=V,A contains a set V≡1,2,...,N of N vertices and a set A≡{(i,j):i,j∈V}of M arcs(directed edges),where each arc(i,j)points from a parent vertex(predecessor)i to a child vertex(successor)j.The arc density α is defined by α ≡ M/N.A directed dominating set Γ is a vertex set such that,for any node in the network,either the node itself or one of its predecessors belongs to Γ.A directed minimal dominating set(DMDS)is a smallest directed dominating set.The DMDS problem is very important for monitoring and controlling the directed interaction processes[4?10]in the complex networks.

    The statistical physicists have widely studied this optimization problem using the statistical physics of spin glass systems.[11?19]The cavity method is used to estimate the occupation probability at each node,and a solution for the given problem is constructed using this probabilities.Using statistical physics does not always yield a single solution for a given graph,but if this graph does not contain any small loops,then the cavity equation may converge to a stable point,so we can study the problem using the cavity method.

    Research into spin glass systems can be divided into two levels-the replica symmetry(RS)level and the replica symmetry breaking(RSB)level.For a given optimization problem,RS theory finds the smallest set in the given graph that satisfy this problem,and RSB theory finds the number of solutions and the ground state energy.Previously,we have found the smallest minimal dominating set(MDS)using the cavity method on both directed and undirected networks,[20?21]and have found the ground state energy for undirected networks.[22]The current study is inspired by Ref.[22],where we studied the ground state energy for the DMDS problem also using the cavity method.At a temperature of zero,we used survey propagation to find the ground state energy of the Erd?os-Rényi graph(ER)random graph.

    This paper studies the solution space of the DMDS problem using one step replica symmetry breaking(1RSB)theory from statistical physics.This work is a continuation of our earlier work[22]on the solution space of the undirected MDS problem.We organize the paper as follows.In Sec.2,we recall RS theory for spin glass systems before introducing RSB theory.We present the belief propagation(BP)equation,thermodynamic quantities and warning propagation for the DMDS problem.In Sec.3,we introduce 1RSB theory and the associated thermodynamic quantities.We then derive 1RSB theory and thermodynamic quantities at β = ∞,and survey propagation(SP)for the DMDS problem,before introducing the survey propagation decimation(SPD)process for the DMDS problem in detail.Finally in Sec.4 we conclusion our results.

    2 Replica Symmetry

    2.1 General Replica Symmetry Theory

    To estimate the MDS for a given graph using the way of mean field theory,we must have the partition function for the given problem.The partition function Z is

    We use RS mean field theory,such as the Bethe-Peierls approximation[23]or partition function expansion,[24?25]to solve the above spin glass model.We assign the cavity messageon the every edge,and these messages must satisfy the equation

    known as the BP equation.The Kronecker symbol is defined by=1 if m=n and=0 otherwise.The cavity messagerepresents the joint probability that node i is in state ciand the adjacent node j is in state cjwhen the constraint for node j is not considered.The marginal probabilityfor node i is expressed as

    Finally the free energy can be calculated using mean field theory as

    where

    We use Fito denote the free energy at node i,and F(i,j)to denote the free energy of the edge(i,j).We iterate the BP equation until it converges to a stable point,and then calculate the mean free energy f≡F/N and the energy densityusing Eqs.(3)and(4).The entropy density is calculated as s= β(ω ?f).

    2.2 Warning Propagation

    In this section,we introduce BP at β = ∞,which is called warning propagation.Even though the warning propagation may converge very quickly,it can only converge for C<3.704 on an ER random network,so we must further consider the 1RSB case at β = ∞.To estimate the minimal energy of an MDS,we must consider the limit at β = ∞.There are three cases for a single node:(i)node i appears in every MDS,namely=1,=0;(ii)node i appears in no MDS,namely=0,=1;(iii)node i appears in some but not all MDSs,namely=0.5,=0.5.Thus there are nine cases for the pair of nodes(i,j).However,only four cavity messages are possible:(i)node i appears in every MDS and node j appears in some but not all MDSs,namelynode i appears in no MDS and node j appears in some but not all MDSs,namely(iii)node i appears in no MDS and node j appears in every MDS,namely(iv)node i appears in some but not all MDSs and node j appears in some but not all MDSs,namely

    The other five cases do not satisfy the normalization condition:(i)if node i appears in every MDS and node j appears in every MDS,namely,then from the relationshipwe can deriveso that the total probability is greater than 1,which is not possible;(ii)if node i appears in every MDS and node j appears in no MDS,namely,then in the same way we can derive,so the total probability is again greater than 1;(iii)if node i appears in some but not all MDSs and node j appears in every MDS,namely,then(iv)if node i appears in some but not all MDSs and node j appears in no MDS,namelythenif node i appears in no MDS and node j appears in no MDS,namely,then from Eqs.(2)and(3)we see thatis always smaller thanand does not exceed 0.5.It is good to understand that if a node is not occupied,then it cannot request any of its neighbors to be unoccupied in the MDS problem.On the other hand,if a node is occupied,then it cannot request any of its neighbors to be either occupied or unoccupied.There is one warning message pi→j=0 for a single node,but there are two warning messages for a pair nodes(i,j),that is,andThe warning messageis called a first type warning,and the warning messageis called a second type warning.

    If node i is not covered or observed,so the neighbor node j must be covered,the corresponding case isIf node i is not covered,but it has been observed,so node j can be covered or uncovered,namely.So we can easily understand the upper equation.In the first line,if two or more neighbors(successors exactly)of the node i are not covered or observed,then we must cover the node i to observe them,namelyorIn the second line,if only one neighbor(successor exactly)of the node i is not covered or observed,then we have both opportunity to cover or uncover the node i,namelyor.In the third line,if every successor of the node i is observed,but it is observed predecessors less than k+?1,then we must not cover the node i,the neighbor j can be covered or uncovered,namelyor.In the fourth line,if every successor of the node i is observed,but the every predecessors of the node i are observed except node j,so we must not cover the node i,and the neighbor j must be covered,namelyWe can find that only the successor nodes provide the first type warning,in the same way we can read the following equation

    The above equations are called warning propagation equations.Only the messagecan produce a first type warning when the incoming messages do not include any first type messages and the incoming positive messages have?i+? 1 second type messages.If we find the stable point of the warning propagation,then we can calculate the coarse-grained state of every node as

    and we can calculate the free energy for the DMDS problem in the general case as

    The energy equals the free energy when β = ∞,so from the above questions we can write the free energy and the energy as

    The warning propagation convergence speed is very fast,and gives the same results as BP,but it does not converge when the mean variable degree is greater than 3.704 on the ER random graph.For some single graphs,the convergence degree is greater than 3.704,but it is very close to 3.704 in most single graph networks.

    3 One Step Replica Symmetry Breaking Theory

    In this section,we introduce 1RSB theory for spin glass systems,which is calculated using the graph expansion method.We first introduce the generalized partition function,free energy,SP,grand free energy and complexity in the general case.To obtain the ground state energy,we must consider the limiting behavior of the DMDS problem at β = ∞,so we next derive the simplified equations at β=∞for the DMDS problem,and then introduce the numerical simulation process for population dynamics.

    3.1 General One Step Replica Symmetry Breaking Theory

    The RS theory only finds low energy configurations.To study the subspace structure for a given problem,researchers have been developing 1RSB theory.In 1RSB theory,our order parameter is a free energy function.At higher temperatures,the microscopic thermodynamic state consisting of some higher energy configurations determines the statistical physics properties of the given system,and the subspace of this microscopic state is ergodic.However,at lower temperatures the microscopic state is no longer ergodic but is divided into several subspaces,and the contribution of these subspaces to the equilibrium properties are not the same.We define the generalized partition function Ξ by

    We use α to denote the microscope states that achieve the minimum free energy,and thushas the following form:

    The notation Ii→j[p?ij]is short-hand for messages updating equation(2),and Ii←j[p?ij]is short-hand for messages updating equation(3).The weight free energies fi→jand fi←jare respectively equal to

    The generalized free energy density g0is

    where

    We further have the mean free energy density

    where

    Finally,with mean free energy〉and generalized free energy g,we derive the complexity as

    3.2 Coarse-Grain Survey Propagation

    We next derive the SP for the case β = ∞and estimate the ground state energy,and then predict the energy density using the SPD method.We find that the SP results fit with the SPD results,which are as good as the belief propagation decimation(BPD)results.To obtain the SP,we must know the form of the free energy Fi→jat a temperature of zero.From the general form,we can derive the free energy Fi→jas

    the survey propagation for general case as

    We can obtain the SP at a temperature of zero using Eqs.(28)–(31)as

    and the grand free energy of node i and edge(i,j)for the general case as

    From Eqs.(35)–(38),we can derive the grand free energy of node i and edge(i,j)at a temperature of zero as

    where

    the grand free energy density is

    The free energy of the macroscopic state α when β = ∞ has several different ground state energies Emin,we cannot calculate the ground state energies one at a time.We are only concerned with the average ground state energy,so we focus our discussion on this.We denote the microscopic average minimal energy by 〈Eβ=∞〉,which is calculated using the following equation:

    We can study the ensemble average properties of the DMDS problem using population dynamics and Eqs.(28)–(31),(37)and(38).Figure 1 indicates the results of the ensemble everage 1RSB population dynamics for the DMDS problem on the ER random graph with mean connectivity C=5.The complexity∑=0 at y=0,and the complexity is not a monotonic function of the Parisi parameter y.It increases as the Parisi parameter y increases,and reaches its maximum value when y≈3.7.The complexity then begins to decrease as y increases and becomes negative when y≈8.35.From Fig.1,we can see that there are two parts to the complexity graph when it is a function of energy,but because of only the concave part is decline function of energy,so it has the physical meaning.The grand free energy is not a monotonic function of y either.It reaches a maximum when the complexity becomes negative at y≈8.35,so the corresponding energy density u=0.3212 is the minimum energy density for the DMDS problem at this mean connectivity.

    Fig.1 The 1RSB results for the zero temperature DMDS problem on the ER random graph with mean connectivity c=5 using population dynamics.In the upper two and bottom left graphs,the x-axis denotes the Parisi parameter Y,and the y-axis denotes the thermodynamic quantities.The complexity becomes negative when the Parisi parameter is approximately 8.35.At this point,we select the corresponding energy as the ground state energy,which equals 0.3212.In the bottom right graph,the x-axis denotes the energy density and the y-axis denotes the complexity.

    We can calculate some microscopic statistical quantities using Eqs.(32)–(34)at a temperature of zero.For example,for the probability(statistical total weight of all macrostates)of the variable staying in a coarse grained state,we use pi(0)to denote the probability of the variable staying in a totally uncovered state,pi(1)to denote the probability of the variable staying in a totally covered state,and pi(?)to denote the probability of the variable staying in an unfrozen(some microstates covered)state.We can derive the representation of these three probabilities using 1RSB mean field theory as

    Using the 1RSB population dynamics,we obtain the minimal energy densities for ER random network ensembles with different mean connectivities.In Table 1,we list the theoretical computational results for C≤10.We can see that the ground state energy and transition point depend on the mean connectivity C.From Ref.[22],we know that the transition point does not depend on the mean connectivity C in undirected networks.

    Table 1 The parisi parameter y?transition point and the ground state energy for ER random graphs.

    In these simulations,we update the population MI=1000 times.That is,we update each element in the population 1000 times on average to reach a stable point for the population,and sample MS=5000 times to obtain the transition point of∑(second∑=0 points)and the corresponding ground state energy value Eminon the ER random graph.The cluster transition point is only correct when the Parisi parameter sample distance is▽y≥ 0.1,but the ground state energy is correct in any small enough Parisi parameter sampling distance with a precision of▽E=0.0001.We use two types of population,a positive population and a negative population,and set the population size to N=1 000 000.Increasing the number of updates or the number of samples does not affect the simulation results.However,increasing the population size N used to calculate the thermodynamic quantities improves the results.Within a sampling distance of▽y=0.1,we can also obtain good results with fewer updates.However,with a sampling distance of▽y=0.01,we need an increasing number of updates to obtain good results.The required numbers of updates and samples increases as the variable degree decreases.

    3.3 Survey Propagation Decimation

    We studied undirected networks using SP in Ref.[22].We can also study the statistical properties of microscopic configurations in a single directed network using the SP in Eqs.(32)–(34).The results are similar to those for an undirected network.For example,SP can find a stable point for a given directed network easily when the Parisi parameter y is small enough,and we can then calculate the thermodynamic quantities using Eqs.(35),(36),and(39)–(42).However,SP does not converge when y is too large.For example,SP does not converge when y≥7 for an ER random network when C=10.We have already discussed the reasons for this in undirected network in Ref.[22],namely that the coarse-grained assumption and 1RSB mean field theory are not sufficient to describe microscopic configuration spaces when the energy is close to the ground state energy,so a more detailed coarse-grained assumption and a higher-level expansion of the partition function are required.For further discussion of convergence of coarse-grained SP,see Refs.[26–27].

    We can construct one or more solutions that are close to the optimal DMDS for a given graph W using 1RSB mean field theory.One very efficient algorithm is the SPD algorithm.[22,26?27]The main idea of this algorithm is to first determine the probability of being covered,and then select a small subset of variables that has the highest probability of being covered.We then set the covering probability for this subset of variables to ci=1,and delete all variables for which the covering probability equals 1,along with the adjacent edges,and then simplify the network iteratively.If a node i is unobserved(it is empty and has no adjacent occupied parent node),then the output messages Pi→jand Pi←jare updated according to Eqs.(32)–(34),On the other hand,if node i is empty but observed(it has at least one adjacent occupied parent node),then this node presents no restriction on the occupation states of its unoccupied parent neighbors.For such a node i,the output messages Pi→jand Pi←jare then updated according to the following equations:

    As with Eqs.(47)–(49),the marginal probability distribution Pifor an observed empty node i can be evaluated according to

    We now present the details of this algorithm.

    (i)Read the network W,set the covering probability of every vertex to uncertain,and define four coarsegrained messages,andon each edge of the given graph.Randomly initialize the messages in the interval(0,1],ensuring that for every pair of messagesand,the normalization conditionsandare satisfied.An appropriate setting for the macroscopic inverse temperature y is a value close to the threshold value.For example,if SP does not converge when y≥3.01,then we set y=3.

    (ii)Iterate the coarse-grained SP equations(Eqs.(32)–(34)or Eqs.(47)–(49)),for L0steps,aiming for convergence to a stable point.At each iteration,select one node i and update all messages corresponding to node i.After updating the messages L0times,calculate the coarsegrained probability(Pi(1),Pi(?),Pi(0))using Eqs.(44)–(46)or Eqs.(50)–(52).

    (iii)Sort the variables that are not frozen in descending order according to the value of Pi(1).Select the first r percent to set the covering state as ci=1,and add these variables to the DMDS.

    (iv)Simplify the network by deleting all the edges between the observed nodes and deleting all the occupied variables.If the remaining network still contains one or more leaf nodes,[20]then apply the GLR process[21]until there are no leaf nodes in the network and simplify the network again.This procedure is repeated(simplify-GLR-simplify)until the network contains no leaf nodes.If the network contains no nodes and no edges,then stop the program and output the DMDS.

    (v)If the network still contains some nodes,then iterate Eqs.(32)–(34)or Eqs.(47)–(49)for L1steps.Repeat steps(iii),(iv),and(v).

    Figure 2 shows the numerical results of the SPD algorithm on an ER random graph.We can see that the SPD results are very close to the BPD results,and thus the SPD algorithm finds an almost optimal solution.We perform the BPD algorithm as detailed in Ref.[20].

    Fig.2 The solid line is the result of the SPD algorithm,and the crosses are the results of the BPD algorithm.Our simulation was performed on an ER random graph with 104variables.

    4 Discussion

    In this work,we first derived the warning propagation and proved that the warning propagation equation only converges when the network does not contain a core.[21]There is only one warning in the vertex cover problem,[28]but the MDS problem has two warnings.In the DMDS problem,a positive edge pi←jhas two warnings,but a negative edge pi→jhas one warning.The reason for this is that each nodes only requires the parent nodes,not child nodes,to be occupied to be able to observe itself,so only the psitive edges have first type warnings.Second,we derived the SP equation at a temperature of zero to find the ground state energy and the corresponding transition point of the macroscopic inverse temperature.The change rules of the transition point do not like with undirected MDS problem.It is a monotonic function of the mean variable degree in the DMDS problem,but not in the undirected MDS problem.[22]The corresponding energy of the transition point Parisi parameter Y equals the threshold value xc,namely EY=xc.We then implemented the SPD algorithm at a temperature of zero to estimate the size of a DMDS.The results are as good as the BPD results.

    We have previously studied the MDS problem on undirected networks and directed networks using statistical physics,and more recently we studied the undirected MDS problem using 1RSB mean field theory.We have now studied the DMDS problem using 1RSB theory.We plan to study the MDS and DMDS problems using long range frustration theory in the future.

    Acknowledgement

    Yusupjan Habibulla thanks Prof.Haijun Zhou for helpful discussions and guidance.Yusupjan Habibulla also thanks Prof.Xiaosong Chen for helpful discussions and support.We implemented the numerical simulations on the cluster in the School of Physics and Technology at Xinjiang University.We thank Peter Humphries,PhD,from Edanz Group(www.edanzediting.com/ac)for editing a draft of this manuscript.

    猜你喜歡
    艾比布拉
    戰(zhàn)斗機(jī)、導(dǎo)彈頭和布拉嗝
    吉米問答秀
    安安琪琪的故事16不拉肚就靠“布拉杜”
    媽媽寶寶(2018年9期)2018-12-05 02:19:46
    阿布拉卡達(dá)布拉!
    八歲女孩駕車救母
    艾比救母
    艾比救母
    送禮附發(fā)票的美國(guó)人
    開心皇冠
    奇幻之旅3
    欧美一区二区亚洲| 亚洲av不卡在线观看| 美女黄网站色视频| 久久久亚洲精品成人影院| 国产精品久久久久久av不卡| 国产精品国产三级国产av玫瑰| 亚洲成人中文字幕在线播放| 国产在线男女| 国产在视频线精品| 日韩制服骚丝袜av| 国产极品精品免费视频能看的| 久久人妻av系列| 三级国产精品片| 18禁在线无遮挡免费观看视频| 国产男人的电影天堂91| 国产一级毛片七仙女欲春2| 午夜福利视频1000在线观看| 日日撸夜夜添| 婷婷色麻豆天堂久久 | 久久欧美精品欧美久久欧美| 一夜夜www| 亚洲欧美精品专区久久| 免费人成在线观看视频色| 一个人免费在线观看电影| 日韩精品有码人妻一区| 中文字幕av在线有码专区| 亚洲国产色片| 亚洲最大成人av| 国产伦在线观看视频一区| 三级国产精品片| 99国产精品一区二区蜜桃av| 免费看a级黄色片| 国产精品一区二区三区四区免费观看| 尤物成人国产欧美一区二区三区| 亚洲精品乱码久久久久久按摩| 国内精品宾馆在线| 亚洲av电影在线观看一区二区三区 | 插逼视频在线观看| 国产乱人偷精品视频| 国产成人a∨麻豆精品| 97超视频在线观看视频| 精品国产露脸久久av麻豆 | 干丝袜人妻中文字幕| 久久精品国产99精品国产亚洲性色| 深爱激情五月婷婷| 最近中文字幕2019免费版| 国产日韩欧美在线精品| 国产乱人偷精品视频| 国产极品天堂在线| 一个人看视频在线观看www免费| 特大巨黑吊av在线直播| 午夜亚洲福利在线播放| 中文天堂在线官网| 亚洲欧美日韩东京热| 欧美一级a爱片免费观看看| 国产精品嫩草影院av在线观看| 亚洲熟妇中文字幕五十中出| 国产午夜精品论理片| 精品人妻熟女av久视频| 中文乱码字字幕精品一区二区三区 | 精品午夜福利在线看| 蜜臀久久99精品久久宅男| 成人毛片a级毛片在线播放| 亚洲色图av天堂| 亚洲在久久综合| 麻豆成人av视频| 国产一区有黄有色的免费视频 | 校园人妻丝袜中文字幕| 亚洲欧美精品专区久久| 午夜日本视频在线| 一个人看视频在线观看www免费| 久久久a久久爽久久v久久| 国产精品精品国产色婷婷| 亚洲综合色惰| 精品久久久久久久久亚洲| av福利片在线观看| 久久久欧美国产精品| 99热这里只有是精品50| 蜜桃亚洲精品一区二区三区| 天堂√8在线中文| 国产真实伦视频高清在线观看| 秋霞伦理黄片| 国产又黄又爽又无遮挡在线| 亚洲久久久久久中文字幕| 少妇人妻精品综合一区二区| 免费观看人在逋| 久久久久久伊人网av| 男的添女的下面高潮视频| 国产成人午夜福利电影在线观看| a级毛色黄片| 丰满少妇做爰视频| 国产国拍精品亚洲av在线观看| 亚洲精品日韩在线中文字幕| 国产午夜精品论理片| 久久久精品大字幕| 综合色丁香网| 少妇的逼好多水| 丰满人妻一区二区三区视频av| 国产 一区精品| 日本黄大片高清| 熟妇人妻久久中文字幕3abv| 别揉我奶头 嗯啊视频| 午夜亚洲福利在线播放| 变态另类丝袜制服| 国产成人a区在线观看| 美女xxoo啪啪120秒动态图| 91久久精品电影网| 欧美日韩国产亚洲二区| 欧美日韩国产亚洲二区| 久久精品国产鲁丝片午夜精品| 日本一二三区视频观看| 最近视频中文字幕2019在线8| 亚洲中文字幕日韩| 亚洲欧美成人精品一区二区| 亚洲欧美精品专区久久| 久久久久久久久久久免费av| 欧美日韩国产亚洲二区| 色尼玛亚洲综合影院| 精品无人区乱码1区二区| 亚洲国产精品成人久久小说| 性插视频无遮挡在线免费观看| 久久精品综合一区二区三区| 亚洲精品色激情综合| 日韩中字成人| 自拍偷自拍亚洲精品老妇| 寂寞人妻少妇视频99o| 插逼视频在线观看| 一个人看的www免费观看视频| 如何舔出高潮| 丰满人妻一区二区三区视频av| 欧美又色又爽又黄视频| 国产精品一区二区性色av| 亚洲色图av天堂| 日韩一区二区视频免费看| 中文字幕亚洲精品专区| 久久久国产成人精品二区| 一级毛片电影观看 | 男女下面进入的视频免费午夜| 成人毛片a级毛片在线播放| 国产极品精品免费视频能看的| 国模一区二区三区四区视频| 精品午夜福利在线看| 亚洲精品乱久久久久久| 日韩欧美精品v在线| 亚洲av电影不卡..在线观看| 国产成人aa在线观看| 国产精品久久久久久av不卡| 精品国产三级普通话版| 日本-黄色视频高清免费观看| 三级经典国产精品| 午夜视频国产福利| 超碰97精品在线观看| 久99久视频精品免费| 日韩成人av中文字幕在线观看| АⅤ资源中文在线天堂| 日本色播在线视频| 亚洲最大成人中文| av在线老鸭窝| 国产亚洲精品久久久com| 91久久精品国产一区二区成人| 精品国产三级普通话版| 九九在线视频观看精品| av天堂中文字幕网| 国内精品一区二区在线观看| 日本-黄色视频高清免费观看| 亚洲色图av天堂| 免费av不卡在线播放| 亚洲人成网站在线观看播放| 日韩强制内射视频| 亚洲av一区综合| 国产亚洲精品av在线| 亚洲天堂国产精品一区在线| 99久国产av精品| 免费看日本二区| 国产精品嫩草影院av在线观看| 91精品伊人久久大香线蕉| 噜噜噜噜噜久久久久久91| 日韩大片免费观看网站 | 日韩国内少妇激情av| 午夜视频国产福利| 秋霞伦理黄片| 国产 一区 欧美 日韩| 久久久色成人| 亚洲怡红院男人天堂| 我的老师免费观看完整版| 亚洲国产精品合色在线| 成人美女网站在线观看视频| 久久人人爽人人片av| 日韩成人av中文字幕在线观看| 亚洲av成人av| 国产亚洲91精品色在线| 高清av免费在线| 有码 亚洲区| 爱豆传媒免费全集在线观看| 国产男人的电影天堂91| 国产成人91sexporn| 亚洲av免费在线观看| 99久久中文字幕三级久久日本| 国产伦一二天堂av在线观看| 黄色欧美视频在线观看| 国产久久久一区二区三区| 干丝袜人妻中文字幕| 久久人人爽人人片av| 成人av在线播放网站| 亚洲精品国产av成人精品| 国产免费视频播放在线视频 | 麻豆精品久久久久久蜜桃| 国产亚洲av嫩草精品影院| 男女视频在线观看网站免费| 深爱激情五月婷婷| 听说在线观看完整版免费高清| 欧美性猛交黑人性爽| 亚洲成人精品中文字幕电影| 神马国产精品三级电影在线观看| 国产爱豆传媒在线观看| 白带黄色成豆腐渣| 女人久久www免费人成看片 | 亚洲中文字幕一区二区三区有码在线看| 亚洲色图av天堂| 看免费成人av毛片| 国产精品一区二区三区四区免费观看| 国产免费福利视频在线观看| 国产精品福利在线免费观看| 亚洲怡红院男人天堂| 淫秽高清视频在线观看| 观看美女的网站| 欧美xxxx黑人xx丫x性爽| 久99久视频精品免费| 女的被弄到高潮叫床怎么办| 亚洲人成网站高清观看| 亚洲无线观看免费| .国产精品久久| 亚洲精品自拍成人| 日韩中字成人| 日本猛色少妇xxxxx猛交久久| 国产精品,欧美在线| 色综合亚洲欧美另类图片| 免费av毛片视频| 精品一区二区免费观看| 亚洲美女视频黄频| 少妇丰满av| 久久精品国产自在天天线| 九九在线视频观看精品| 欧美区成人在线视频| 久久久久久九九精品二区国产| 欧美日韩综合久久久久久| av.在线天堂| 亚洲精品乱码久久久久久按摩| 国产熟女欧美一区二区| 中文亚洲av片在线观看爽| 插逼视频在线观看| 国产精品人妻久久久久久| 亚洲不卡免费看| 亚洲人与动物交配视频| 午夜亚洲福利在线播放| 亚洲中文字幕日韩| 亚洲成av人片在线播放无| 中文字幕亚洲精品专区| 99久久精品国产国产毛片| 国产av在哪里看| 日韩国内少妇激情av| 又黄又爽又刺激的免费视频.| 毛片一级片免费看久久久久| 亚州av有码| 国产高清不卡午夜福利| 全区人妻精品视频| 成人毛片a级毛片在线播放| 人人妻人人澡欧美一区二区| 久久这里只有精品中国| 国国产精品蜜臀av免费| av免费在线看不卡| 身体一侧抽搐| 日产精品乱码卡一卡2卡三| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美中文字幕日韩二区| 久久久久九九精品影院| 久久国内精品自在自线图片| 国产成人a∨麻豆精品| 亚洲成人久久爱视频| 麻豆精品久久久久久蜜桃| 老司机福利观看| 国产在线一区二区三区精 | 亚洲五月天丁香| 美女cb高潮喷水在线观看| 禁无遮挡网站| 国产亚洲一区二区精品| 成人亚洲精品av一区二区| 国产男人的电影天堂91| 久久韩国三级中文字幕| 亚洲欧美一区二区三区国产| 久久精品国产亚洲av天美| 国产成人精品一,二区| 国产又黄又爽又无遮挡在线| av专区在线播放| 午夜视频国产福利| 免费av不卡在线播放| 日韩一本色道免费dvd| 搡女人真爽免费视频火全软件| 成人特级av手机在线观看| 91精品伊人久久大香线蕉| 少妇熟女欧美另类| 免费看av在线观看网站| 欧美高清性xxxxhd video| 国产成人午夜福利电影在线观看| 免费无遮挡裸体视频| 欧美激情久久久久久爽电影| 成人毛片60女人毛片免费| 天天躁夜夜躁狠狠久久av| 久久久久精品久久久久真实原创| 日韩一本色道免费dvd| 1000部很黄的大片| 午夜福利高清视频| 97人妻精品一区二区三区麻豆| 日本午夜av视频| 男女下面进入的视频免费午夜| 欧美一区二区国产精品久久精品| 午夜免费激情av| 亚洲一区高清亚洲精品| 日日摸夜夜添夜夜添av毛片| 1000部很黄的大片| 七月丁香在线播放| 久久6这里有精品| 久久精品国产亚洲网站| 天堂网av新在线| 国产精品一区二区在线观看99 | 国产一区有黄有色的免费视频 | 国产精品一区二区三区四区免费观看| 亚洲成色77777| 91av网一区二区| 日韩强制内射视频| 毛片一级片免费看久久久久| 一级黄片播放器| 国产精品麻豆人妻色哟哟久久 | 五月伊人婷婷丁香| 成人国产麻豆网| 最新中文字幕久久久久| 色综合亚洲欧美另类图片| 日本wwww免费看| 大香蕉久久网| 国语自产精品视频在线第100页| 神马国产精品三级电影在线观看| 男女下面进入的视频免费午夜| 欧美一区二区亚洲| 看免费成人av毛片| 免费看a级黄色片| 亚洲成人精品中文字幕电影| 国产高清视频在线观看网站| 日本av手机在线免费观看| 亚洲国产最新在线播放| 麻豆精品久久久久久蜜桃| 秋霞在线观看毛片| 男人和女人高潮做爰伦理| 51国产日韩欧美| 欧美日本视频| 久久婷婷人人爽人人干人人爱| videossex国产| 综合色丁香网| 青春草亚洲视频在线观看| 国产真实乱freesex| 日韩在线高清观看一区二区三区| 国内少妇人妻偷人精品xxx网站| 欧美日本亚洲视频在线播放| 成人无遮挡网站| 亚洲一区高清亚洲精品| 久久亚洲国产成人精品v| 少妇被粗大猛烈的视频| 精品欧美国产一区二区三| av在线亚洲专区| 日韩三级伦理在线观看| 免费在线观看成人毛片| www.av在线官网国产| 国产成年人精品一区二区| 三级国产精品片| 成年版毛片免费区| 欧美精品国产亚洲| 桃色一区二区三区在线观看| 久久久精品大字幕| 我的老师免费观看完整版| 一边亲一边摸免费视频| 能在线免费观看的黄片| 国产午夜精品一二区理论片| 男女下面进入的视频免费午夜| 成人午夜高清在线视频| 日本三级黄在线观看| 插逼视频在线观看| 久久久午夜欧美精品| 国产高清视频在线观看网站| 成年免费大片在线观看| 波野结衣二区三区在线| 久久人人爽人人爽人人片va| 97热精品久久久久久| 国产 一区 欧美 日韩| 寂寞人妻少妇视频99o| 亚洲av成人av| 精品无人区乱码1区二区| 亚洲在久久综合| 少妇被粗大猛烈的视频| 18禁在线无遮挡免费观看视频| 午夜精品国产一区二区电影 | 22中文网久久字幕| 日韩强制内射视频| 久久草成人影院| 国产免费福利视频在线观看| 天美传媒精品一区二区| 日韩一区二区视频免费看| 精品久久久久久电影网 | 麻豆成人av视频| 日韩一本色道免费dvd| 一级毛片久久久久久久久女| 国产精品蜜桃在线观看| 免费av不卡在线播放| 国产成人免费观看mmmm| 99久国产av精品国产电影| 中文字幕久久专区| 婷婷色麻豆天堂久久 | 欧美潮喷喷水| 日韩一本色道免费dvd| 少妇裸体淫交视频免费看高清| 亚洲国产精品久久男人天堂| 在线a可以看的网站| 国产成人精品婷婷| 国产精品国产三级国产专区5o | 一级毛片电影观看 | 美女被艹到高潮喷水动态| 亚洲真实伦在线观看| 色播亚洲综合网| 观看免费一级毛片| 日韩人妻高清精品专区| 激情 狠狠 欧美| 成人亚洲精品av一区二区| 亚洲,欧美,日韩| 成人国产麻豆网| 亚洲欧美一区二区三区国产| 不卡视频在线观看欧美| 国产精品久久久久久精品电影| 国语对白做爰xxxⅹ性视频网站| 秋霞伦理黄片| 91av网一区二区| 久久午夜福利片| 啦啦啦观看免费观看视频高清| 在线免费观看不下载黄p国产| 国产v大片淫在线免费观看| 老司机影院毛片| 日韩三级伦理在线观看| 国产人妻一区二区三区在| 高清视频免费观看一区二区 | 91狼人影院| 99久久精品热视频| 男人狂女人下面高潮的视频| 国产精品综合久久久久久久免费| 免费观看性生交大片5| 精品久久久噜噜| 久久精品国产自在天天线| 好男人在线观看高清免费视频| 特级一级黄色大片| 亚洲av免费在线观看| 人妻少妇偷人精品九色| 特级一级黄色大片| 欧美bdsm另类| 少妇猛男粗大的猛烈进出视频 | av国产免费在线观看| 午夜福利视频1000在线观看| 日日摸夜夜添夜夜添av毛片| 高清日韩中文字幕在线| 久久午夜福利片| 两性午夜刺激爽爽歪歪视频在线观看| 欧美精品国产亚洲| 中文字幕免费在线视频6| 午夜日本视频在线| 亚洲国产最新在线播放| 可以在线观看毛片的网站| 国产 一区精品| 午夜免费激情av| 国产午夜精品论理片| 亚洲一级一片aⅴ在线观看| 麻豆精品久久久久久蜜桃| 国产精品一区二区三区四区免费观看| 亚洲国产欧洲综合997久久,| 超碰97精品在线观看| 三级国产精品欧美在线观看| 丝袜美腿在线中文| 啦啦啦观看免费观看视频高清| av免费在线看不卡| 蜜桃久久精品国产亚洲av| 国产午夜精品久久久久久一区二区三区| 日本欧美国产在线视频| 国产白丝娇喘喷水9色精品| 97超视频在线观看视频| 国产亚洲一区二区精品| 国产精品一区二区性色av| 一区二区三区四区激情视频| 亚洲人成网站在线观看播放| 男人舔女人下体高潮全视频| 久99久视频精品免费| 国产老妇女一区| 偷拍熟女少妇极品色| 中文字幕久久专区| 日韩欧美精品v在线| 国产片特级美女逼逼视频| 精品酒店卫生间| or卡值多少钱| 亚洲人成网站高清观看| 免费观看a级毛片全部| 成人av在线播放网站| 国产黄片美女视频| 深爱激情五月婷婷| 蜜桃亚洲精品一区二区三区| 久久久久久九九精品二区国产| 乱系列少妇在线播放| 免费无遮挡裸体视频| 精品免费久久久久久久清纯| 中国美白少妇内射xxxbb| 亚洲av电影在线观看一区二区三区 | 久久久久久久久久成人| 成人特级av手机在线观看| 大又大粗又爽又黄少妇毛片口| www.色视频.com| 亚洲精品乱码久久久v下载方式| 91aial.com中文字幕在线观看| 韩国av在线不卡| 亚洲精品亚洲一区二区| 水蜜桃什么品种好| 中文天堂在线官网| 久久久国产成人免费| av在线蜜桃| 一本一本综合久久| 午夜福利在线观看免费完整高清在| 18禁裸乳无遮挡免费网站照片| 国产白丝娇喘喷水9色精品| 欧美激情在线99| 国产 一区 欧美 日韩| 少妇丰满av| 免费在线观看成人毛片| 日日啪夜夜撸| 久久人人爽人人片av| 男女啪啪激烈高潮av片| 久久久久网色| 日韩欧美 国产精品| 国产淫片久久久久久久久| 人妻夜夜爽99麻豆av| 久久国内精品自在自线图片| 欧美三级亚洲精品| 亚洲综合精品二区| 小说图片视频综合网站| 性色avwww在线观看| 全区人妻精品视频| 国产亚洲精品久久久com| 人体艺术视频欧美日本| 18禁裸乳无遮挡免费网站照片| 人体艺术视频欧美日本| 嫩草影院新地址| 成人欧美大片| 床上黄色一级片| 精品久久久久久久人妻蜜臀av| 男女国产视频网站| 中国美白少妇内射xxxbb| 综合色丁香网| 久久久久国产网址| 嫩草影院入口| 人体艺术视频欧美日本| 禁无遮挡网站| 国产高潮美女av| 少妇人妻精品综合一区二区| 国产亚洲5aaaaa淫片| 国产单亲对白刺激| 久久久久精品久久久久真实原创| 色尼玛亚洲综合影院| 亚洲一级一片aⅴ在线观看| 国产色婷婷99| 色综合站精品国产| 日韩在线高清观看一区二区三区| 午夜亚洲福利在线播放| 色网站视频免费| 久久久国产成人免费| 婷婷色麻豆天堂久久 | 亚洲精品久久久久久婷婷小说 | 天天一区二区日本电影三级| 99久久无色码亚洲精品果冻| 看十八女毛片水多多多| 丰满少妇做爰视频| 精品一区二区三区人妻视频| 亚洲欧美一区二区三区国产| 久久99蜜桃精品久久| 成人二区视频| 男人舔女人下体高潮全视频| 又爽又黄a免费视频| 免费不卡的大黄色大毛片视频在线观看 | 一二三四中文在线观看免费高清| 日韩视频在线欧美| 国产精品三级大全| 国产伦在线观看视频一区| 69av精品久久久久久| 九九在线视频观看精品| 国产片特级美女逼逼视频| 欧美精品一区二区大全| 99热这里只有是精品在线观看| 国产不卡一卡二| 国产亚洲av片在线观看秒播厂 | 91久久精品电影网| 精品无人区乱码1区二区| 亚洲精品日韩av片在线观看| 色尼玛亚洲综合影院| 色吧在线观看| 成人综合一区亚洲| av在线天堂中文字幕| 免费无遮挡裸体视频| 国产亚洲精品久久久com| ponron亚洲| 超碰97精品在线观看| 亚洲怡红院男人天堂| 国产色婷婷99| or卡值多少钱| 看免费成人av毛片| 最后的刺客免费高清国语| 一区二区三区高清视频在线|