• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation?

    2018-12-13 06:33:28ChaoGao高超andPengZhang張芃
    Communications in Theoretical Physics 2018年12期
    關(guān)鍵詞:高超

    Chao Gao(高超) and Peng Zhang(張芃)

    1Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    2Department of Physics,Renmin University of China,Beijing 100872,China

    3Beijing Computational Science Research Center,Beijing 10084,China

    4Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices,Renmin University of China,Beijing 100872,China

    AbstractThe Skorniakov-Ter-Martirosian(STM)integral equation is widely used for the quantum three-body problems of low-energy particles(e.g.,ultracold atom gases).With this equation these three-body problems can be efficiently solved in the momentum space.In this approach the boundary condition for the case that all the three particles are gathered together is described by the upper limit of the momentum integral,i.e.,the momentum cuto ff.On the other hand,in realistic systems,the three-body recombination(TBR)process can occur when all these three particles are close to each other.In this process two particles form a deep dimer and the other particle can gain high kinetic energy and then escape from the low-energy system.In the presence of the TBR process,the momentum-cuto ffin the STM equation would include a non-zero imaginary part.As a result,the momentum integral in the STM equation should be done in the complex-momentum plane.In this case the result of the integral depends on the choice of the integral path.Obviously,only one integral path can lead to the correct result.In this paper we consider how to correctly choose the integral path for the STM equation.We take the atom-dimer scattering problem in a specific ultracold atom gas as an example,and show the results given by different integral paths.Based on the result for this case we explore the reasonable integral paths for general case.

    Key words:STM equation,integral path,atom-dimer scattering

    1 Introduction

    The three-body problems are important for various directions of quantum physics,e.g.,nuclear physics,[1?3]quantum chemistry,[4?5]condensed matter physics[6]and ultracold gases.[3,7]By solving these problems one can not only calculate the important parameters for the quantum systems,e.g.,the atom-dimer interaction intensity[8]and chemical reaction rate,[4]but also explore many interesting physical effects,e.g.,the E fimov effect,[9?11]which is induced by the scaling symmetry of three particles with resonant s-wave interactions.

    In the previous research of quantum three-body problems,many attentions are paid to the low-energy systems where the de Broglie wavelength of the three particles are much larger than the characteristic length of the interparticle interaction potentials.Two examples are the ultracold atom gases and some low-energy nuclear systems.For these systems the physical properties are determined by a few parameters of the inter-particle interactions,such as the two-body scattering lengths,and are independent of the details of these interactions.[12]In another word,the physical properties of these systems are very universal.

    Technically speaking,in the low-energy three-body problems the two-body interaction can be described by simple zero-range potentials or finite-range separable potentials.As a result,the three-body Schr?dinger equation can be re-expressed as an integral equation in the momentum space,i.e.,the Skorniakov-Ter-Martirosian(STM)equation,[13]which is easy to be solved numerically.The STM equation was initially developed by Skorniakov and Ter-Martirosian in 1957,and has been widely used for the three-body problems in various systems,e.g.,the ultracold gases or nuclear systems.

    On the other hand,in the three-body problem with zero-range inter-particle potentials,there are two types of important boundary conditions.They are

    (i)The “two-body short-range boundary conditions”for the cases that two of the three particles are close to each other,while the third one is far away from them.

    (ii)The“three-body short-range boundary condition”for the case that all the three particles are gathered together.

    In the STM equation,the two-body short-range boundary conditions are described by the parameters of two-body low-energy scattering,e.g.,the scattering length,while the three-body short-range boundary condition is described by the upper limit of the integrals over the three-body momentum,[14?17]i.e.the three-body momentum cuto ff.

    Furthermore,in many realistic cases,e.g.,the ultracold atom gases,when the three particles come together,there occurs an inelastic scattering process,which is called as the three-body recombination(TBR).[18?19]Through this process,two particles can form a deep dimer while the third particle obtains high kinetic energy.As a result,the de Broglie wavelengths of all the three particles becomes pretty small,i.e.,the particles “escape” from the low-energy region.In the ultracold gases,with the help of the kinetic energy obtained from the TBR processes,the ultracold atoms can really loss from the trap.Accordingly,in the presence of TBR the momentum cuto ffin the STM equation becomes a complex number with nonzero imaginary part.As a result,the momentum integral in the STM equation must be done in the complex momentum plane,rather than just along the real axis.In this case,the result of the integral depends on the choice of the integral path.[16]Thus,there is a crucial question:which integration path is correct for the calculation of three-body problem via STM equation?

    In this paper we try to investigate this problem by taking a typical atom-dimer scattering problem as an example.Explicitly,we consider the scattering between an ultracold bosonic atom and a shallow dimer,which is formed by one identical bosonic atom and another distinguishable atom(Fig.1),and compare the results given by different momentum integral paths.With the help of our result,we find the integral path,which may be always reasonable for various cases,i.e.,the path shown in Fig.5 and described in Sec.4 in detail.

    The remainder of this paper is organized as follows.In Sec.2,we describe the physical system we study and show the STM equation.In Sec.3,we compare the results given by different integral paths.In Sec.4,we generalize them to the STM equations for more general cases.There are some summary in Sec.5.

    2 System and STM Equation

    As shown in Fig.1,we consider a three-body system consisted by two ultracold identical bosonic atoms(denoted by B),and another ultracold distinguishable atom(denoted by X),with intra-and inter-species scattering length aBBand aBX,respectively.Here we assume that the scattering length aBXbetween each bosonic atom and the atom X is positive and much larger than the range of the inter-species interaction potential,i.e.,the van der Waals length rvdW.For realistic ultracold atom gases this can be realized via the technique of Feshbach resonance.[20]In this case one bosonic atom and the atom X can form a shallow dimer with energy

    whereμBX=mBmX/(mB+mX)is the reduced mass of one bosonic atom and atom X,with mBand mXbeing their respective masses.In addition,for the convenience of our discussion,we further assume the absolute value of the scattering length between the two bosonic atoms,i.e.,|aBB|,is small enough so that the condition

    is satisfied.

    Fig.1 (Color online)Schematic of the three-body system studied in this work.We consider two bosonic atoms(denoted as B)and one extra atom(denoted as X),and assume the two-body scattering length aBXbetween B and X is positive and much larger than the van der Waals length,so that one bosonic atom and the atom X can form a shallow dimer.We calculate the scattering length between this shallow dimer and the other bosonic atom.

    In this work we study how to calculate the scattering length aadbetween the shallow BX-dimer and the other bosonic atom.As shown above,for this system the inter-atomic interactions can be described by zero-range pseudo-potentials,and aadcan be calculated via the STM-equation approach.In Ref.[21]we derive the following STM equation for this problem from the corresponding Lippmann-Schwinger equation.We show that the STM equation can be expressed as the following equations for the functions{A(K,ε),η(K,ε)}(=mB=1):

    with mad=(mX/mB+1)/(mX/mB+2)being the value of the atom–dimer reduced mass in our natural unit,and the function I(K′,ε)in Eq.(3)being defined as

    Here we take the complex angle Arg[z]of a complex number z to be in the region Arg[z]∈ (?π,+π].As we show in Ref.[21],the atom-dimer scattering length aadis given by

    with A(K,ε)being the solution of Eqs.(3)and(4).

    In the STM equation(3)and(4), Λeiζis the upper limit of the momentum integral,or the momentum cuto ff.Here the norm Λ is real and positive,and the real number ζ is the phase angle. ζ is non-zero in the presence of the TBR process.As shown in Sec.1,this upper limit describes the boundary condition for the case that all the three atoms are gathered together.For a realistic ultra-cold atom system,the exact values of Λ and ζ are determined by the short-range detail of the atom-atom interaction.Usually Λ is of the order of 1/rvdW,with rvdWbeing the van der Waals length,and ζ is small and positive.For instance,for41K-87Rb-87Rb system,ζ is suggested to be about 0.19.[22]

    3 Results Given by Di ff erent Integral Paths

    It is clear that the integraldK′plays a central role for the STM equation(3)and(4).Now we compare the results given by different paths of this integral.To be clear,we separately discuss the following three cases:Case 1 aBB<0,Case 2 0a?,with the parameter a?being defined as

    In the following we will show the reason why we define the three cases as above.

    Here we also emphasis that,as a result of the TBR process,the scattering length aadhas a non-zero imaginary part.Furthermore,using the optical theorem one can prove that the imaginary part of aadmust be negative,i.e.,

    This is essentially due to the unitarity of the S-matrix of the atom-dimer scattering process.Physically speaking,the absolute value of Im(aad)is directly related to the TBR rate or the three-body loss rate K3via the relation

    Equation(8)is the necessary condition for the physicallycorrect solution of the STM equation.

    3.1 Case 1

    For case 1 with aBB<0,there are the following two typical integral paths,as shown in Fig.2(a).Path-I is the straight line from K′=0 to K′= Λeiζ,while path-II consists of two straight lines(in blue color with arrow):from K′=0 to K′=Re[Λeiζ](denoted as path-IIa),and then from K′=Re[Λ eiζ]to K′= Λ eiζ(path-IIb).It is clear that for the integraldK′in the STM equation(3)and(4),the integrands have no pole in the region between these two paths in the limit ε→ 0+.As a result,the solutions of the STM equation with the two integration paths are the same.

    Fig.2 (Color online)(a)Typical integration paths for case 1;(b)and(c):Re[aad]and Im[aad]as functions of aBB,for the systems of case 1.Here we take mB=mX,aBXΛ =100,and ζ=0.1,and show the results given by path-I(red dashed-dotted line)and path-II(blue open circles).The black dashed line in(c)indicates the positions with Im[aad]=0.

    In Figs.2(b)and 2(c)we show the real and imaginary parts of the atom-dimer scattering length aadgiven by the STM equation with the two integral paths,for the cases with three equal-mass atoms with ζ=0.1.It is clearly illustrated that,as analyzed above,the two results are same with each other.In addition,as shown in Fig.2(c),the condition(8)is well satisfied by the results given by the integral path-I and path-II.

    3.2 Case 2

    Now we consider case 2 with 00,in this case the two bosonic atoms can also form a dimer(BB-dimer),whose energycan be expressed as

    in our natural unit. According to our assumption in Eq.(2),we have>|Eb|,i.e.,the BB-dimer is a“deep dimer”whose binding energy is larger than the one of the shallow dimer formed by one bosonic atom and the atom X.

    In this case,the equation I(K′,ε)=0 with the function I(K′,ε)being defined in Eq.(5),has one solution near the positive half of the real axis of the complex K′plane in the limit ε → 0+.Explicitly,we have

    with

    It is clear that K0+iη is a pole of the integrand of the integral∫Λeiζ0dK′in the STM equation(3).In addition,since in this case we have 0

    Therefore,in this case there are three typical integral paths for the momentum integral in the STM equations,as shown in Fig.3(a).Path-I and path-II are defined as in the above case 1.In addition,path-III consists of four straight lines:the line from K′=0 to K′=Re[Λeiζ](path-IIIa,same to path-IIa),then from Re[Λeiζ]to K′=K1(path-IIIb),then from K′=K1to K′=K1+iIm[Λeiζ](path-IIIc),and finally from K′=K1+iIm[Λ eiζ]to K′= Λeiζ(path-IIId).Here K1can be an arbitrary real number larger than K0.

    Since no pole of the integrand of the STM equation appears in the area surrounded by path-I and path-II,and one pole(i.e.,K0+iη)appears in the area surrounded by path-II and path-III,the direct analysis yields that the the solution of the STM equation with momentum integral path-I and path-II would be same with each other,while the path-III would lead to a different solution.So,the question is:which path is reasonable?

    To answer this question,we calculate the atom-dimer scattering length aadwith the STM equation with these three integral paths,and show Re[aad]and Im[aad]in Figs.3(b)and 3(c),respectively.It is clearly shown that the necessary condition in Eq.(8)is well-satisfied by all the results from path-III,but violated by some results from path-I and path-II.Therefore,in this case the path-III is the reasonable integral path for the STM equation.

    Fig.3 (Color online)(a)Typical integration paths for case 2;(b)and(c):Re[aad]and Im[aad]as functions of aBB,for the systems of case 2.The parameters are same as in Fig.2.Here we show the results given by path-I(red dashed-dotted line),path-II(blue open circles),and path-III(magenta solid line).

    3.3 Case 3

    Now we consider case 3 with aBB>a?.Similar as in case 2,in this case the two bosonic atoms can also form a deep dimer with energygiven by Eq.(10).As a result,the pole K0+iη of the integrand of the integraldK′in the STM equation(3)can also appear near the positive half of the real axis of the complex K′plane.

    The only difference between the current case and case 2 is that,since aBB>a?,in the current we have

    Thus,as shown in Fig.4(a),now there are two typical momentum integral paths,i.e.,path-I and path-II,which have the same definitions as in the above cases 1 and 2.Nevertheless,the fact(15)yields that in the current case the pole K0+iη appears in the area surrounded by the two paths.Thus,the results given by these two integral paths would be different,and we should judge,which path is reasonable.

    In Figs.4(b)and 4(c)we show the real and imaginary parts of the atom-dimer scattering length aadgiven by the STM equation with these two integral paths.It is shown that the results given by the path-II can satisfy the necessary condition in Eq.(8),while the ones from path-I can violate this condition.Thus,in the current case path-II is reasonable.

    Fig.4 (Color online)(a)Typical integration paths for case 3;(b)and(c)Re[aad]and Im[aad]as functions of aBB,for the systems of case 3.The parameters are same as in Fig.2.Here we show the results given by path-I(red dashed-dotted line),path-II(blue dotted line).

    4 Generalization to Other Cases

    In the above section we study how to choose the reasonable momentum integral paths for the STM equation for the atom-dimer scattering problem introduced in Sec.2.Now we summarize the results obtained above to some principle,which can be generalized to other threebody problems.

    Our above analysis for the three cases 1,2,and 3 show that,the positions of some poles of the integrands of the integralin the STM equation is very important for the selection of the momentum integral path.Explicitly,the poles localized at the point K′=K?+iη?with K?>0 and η?→ 0+in the limit ε → 0+,with ε being the small positive imaginary part of the energy in the Green’s function,are very important.The reasonable integral path from K′=0 to K′= Λeiζshould go across below all of these poles.The reasonable paths for the above cases 1,2,and 3 all satisfy this condition.

    Thus,there is a special path,which would be always reasonable,i.e.,the path from K′=0 to K′=+∞,and then to K′=+∞ +iIm[Λeiζ]and then to K′= Λeiζ(the path shown in Fig.5(a)).Obviously,all the paths,which can be continuously deformed from this path without crossing any pole are also reasonable.

    In addition,there is an interesting particular case,i.e.,the case with ζ=0 and some poles with K?> Λ.This can be understood as the limit ζ→ 0 of the above cases.Thus,according to our above principle,as shown in Fig.5(b),for this case the reasonable integral path is not the path directly from K′=0 to K′=Λ.It would be the path from K′=0 to K′=+∞,and then to K′=+∞+iΓ,with Γ being any finite positive value,and then to K′= Λ +iΓ,and then to K′=Λ.

    It is clear that,the above principle for the choosing of the momentum integral path can be straightforwardly applied to the STM equations for other three-body problems.

    Fig.5 (Color online)Reasonable integration paths for general cases with ζ>0(a)and ζ=0(b).

    5 Summary and Discussion

    In this work we study how to choose the momentum integral path for the STM equation.By studying a typical atom-dimer scattering problem,we show that different integral path can lead to quite different solutions of the STM equation,especially for the imaginary part of the atom-dimer scattering length or the TBR rate K3.

    More importantly,we find that the necessary condition(8)can always be satisfied by the integral path,which the paths,which can be continuously deformed from the special path shown in Fig.5 without crossing any pole.This principle can be generalized to other three-body problems.Thus,our result is very helpful for the study of low-energy three-body problems in the presence of TBR.

    To our knowledge,so far the quantitative expression for the three-body short-range boundary condition in real space,which is mathematically equivalent to the momentum cuto ff Λeiζand the reasonable integral path shown above,has not been derived.In future we will try to explore this expression,so that the short-range physics can be described more clearly.

    Acknowledgments

    We thank Pascal Naidon,Hui Zhai,and Ren Zhang for helpful discussions and important suggestions.

    猜你喜歡
    高超
    Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose–Einstein condensate
    內(nèi)外兼修
    Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
    我們愛勞動(dòng)
    哲理漫畫
    寶塔山詠懷
    中華魂(2021年10期)2021-10-15 21:42:51
    Single pixel imaging based on semi-continuous wavelet transform*
    Turbulent boundary layer control with a spanwise array of DBD plasma actuators
    巧奪天工
    美蓓亞展示提高汽車性能的高超技術(shù)
    汽車零部件(2015年4期)2015-12-22 05:45:22
    女人爽到高潮嗷嗷叫在线视频| 叶爱在线成人免费视频播放| tocl精华| 黑人欧美特级aaaaaa片| 一级a爱视频在线免费观看| 亚洲伊人色综图| 国产午夜精品久久久久久| a级毛片在线看网站| 性欧美人与动物交配| 精品卡一卡二卡四卡免费| 少妇粗大呻吟视频| 日本精品一区二区三区蜜桃| 亚洲色图 男人天堂 中文字幕| 亚洲欧洲精品一区二区精品久久久| 757午夜福利合集在线观看| 国产av在哪里看| 黄片小视频在线播放| 国产主播在线观看一区二区| 午夜福利影视在线免费观看| 超碰成人久久| 国产熟女xx| 91在线观看av| 色综合婷婷激情| 男男h啪啪无遮挡| 黄色a级毛片大全视频| 制服人妻中文乱码| av天堂久久9| 欧美另类亚洲清纯唯美| 免费在线观看黄色视频的| 首页视频小说图片口味搜索| 精品欧美一区二区三区在线| 熟女少妇亚洲综合色aaa.| 99久久综合精品五月天人人| 国产片内射在线| 热re99久久国产66热| 每晚都被弄得嗷嗷叫到高潮| videosex国产| 女人被狂操c到高潮| 欧美日本视频| 啦啦啦免费观看视频1| 日本免费a在线| 亚洲免费av在线视频| 精品国产国语对白av| 国产精品久久久久久亚洲av鲁大| 午夜亚洲福利在线播放| 性欧美人与动物交配| 亚洲一区二区三区不卡视频| 亚洲国产精品999在线| 久久中文字幕一级| 精品久久蜜臀av无| 欧美精品亚洲一区二区| 欧美黄色片欧美黄色片| 禁无遮挡网站| 久久 成人 亚洲| 99久久久亚洲精品蜜臀av| 人人妻人人爽人人添夜夜欢视频| 日本一区二区免费在线视频| 午夜福利影视在线免费观看| 国产av一区二区精品久久| 国产亚洲精品久久久久5区| 国产精品亚洲av一区麻豆| 美国免费a级毛片| 91成人精品电影| 少妇裸体淫交视频免费看高清 | 国产精品影院久久| 亚洲一码二码三码区别大吗| 精品久久蜜臀av无| 亚洲三区欧美一区| 国产午夜精品久久久久久| 操出白浆在线播放| 国产免费男女视频| 两个人免费观看高清视频| 色播亚洲综合网| 可以免费在线观看a视频的电影网站| 国产免费男女视频| 亚洲视频免费观看视频| 久9热在线精品视频| 精品国内亚洲2022精品成人| 男女午夜视频在线观看| 狠狠狠狠99中文字幕| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩瑟瑟在线播放| 国产私拍福利视频在线观看| 在线观看日韩欧美| 熟妇人妻久久中文字幕3abv| 久热这里只有精品99| 麻豆av在线久日| 精品第一国产精品| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美一区二区三区黑人| 欧美大码av| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸| 亚洲欧美激情综合另类| 国产精品亚洲美女久久久| 亚洲国产精品999在线| 久久久久久久精品吃奶| 黑人欧美特级aaaaaa片| 乱人伦中国视频| 国产av精品麻豆| 99久久精品国产亚洲精品| 国产伦一二天堂av在线观看| 亚洲片人在线观看| 制服诱惑二区| 99久久99久久久精品蜜桃| 亚洲自拍偷在线| 精品免费久久久久久久清纯| 午夜久久久在线观看| 国产视频一区二区在线看| 99热只有精品国产| 国产国语露脸激情在线看| 热re99久久国产66热| 亚洲成人精品中文字幕电影| 18美女黄网站色大片免费观看| 国产在线精品亚洲第一网站| 一进一出抽搐gif免费好疼| 久久久久久国产a免费观看| 日本vs欧美在线观看视频| 欧美乱色亚洲激情| 亚洲视频免费观看视频| 国产亚洲精品av在线| 久久国产乱子伦精品免费另类| 久久精品国产亚洲av高清一级| √禁漫天堂资源中文www| 成人特级黄色片久久久久久久| 欧美日本中文国产一区发布| 国产单亲对白刺激| 亚洲国产高清在线一区二区三 | 香蕉丝袜av| 精品日产1卡2卡| 久热爱精品视频在线9| 国产欧美日韩一区二区三| 久久九九热精品免费| 最近最新中文字幕大全电影3 | 亚洲成人精品中文字幕电影| 在线观看免费日韩欧美大片| 精品国产国语对白av| 亚洲国产看品久久| 两性夫妻黄色片| 久久 成人 亚洲| 亚洲国产毛片av蜜桃av| tocl精华| 757午夜福利合集在线观看| 色综合亚洲欧美另类图片| 麻豆国产av国片精品| 黑人操中国人逼视频| 国产一区在线观看成人免费| 国产精华一区二区三区| 午夜日韩欧美国产| 国产精品香港三级国产av潘金莲| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产精品人妻aⅴ院| 黄色女人牲交| 久久久精品国产亚洲av高清涩受| 成年版毛片免费区| 啦啦啦免费观看视频1| 亚洲 国产 在线| 成人18禁高潮啪啪吃奶动态图| 国产1区2区3区精品| 99久久99久久久精品蜜桃| 亚洲精品国产区一区二| 久久中文看片网| cao死你这个sao货| 亚洲欧美精品综合久久99| 精品一区二区三区av网在线观看| 人人妻人人澡人人看| 精品久久久久久久久久免费视频| 身体一侧抽搐| 国产蜜桃级精品一区二区三区| www.自偷自拍.com| 女生性感内裤真人,穿戴方法视频| 99精品久久久久人妻精品| 午夜免费鲁丝| 亚洲一区中文字幕在线| 精品高清国产在线一区| 韩国精品一区二区三区| 欧美黄色片欧美黄色片| 十八禁人妻一区二区| 亚洲avbb在线观看| 欧美国产精品va在线观看不卡| 精品国产超薄肉色丝袜足j| 中文字幕人成人乱码亚洲影| 一区在线观看完整版| 亚洲专区字幕在线| 天堂√8在线中文| 在线av久久热| 女人被躁到高潮嗷嗷叫费观| 免费看十八禁软件| 欧美性长视频在线观看| 欧美激情极品国产一区二区三区| 午夜成年电影在线免费观看| 国产精品综合久久久久久久免费 | 色av中文字幕| 久久人人97超碰香蕉20202| av视频在线观看入口| 国产精品一区二区免费欧美| 女人高潮潮喷娇喘18禁视频| 给我免费播放毛片高清在线观看| 手机成人av网站| 在线天堂中文资源库| 亚洲成国产人片在线观看| 成人特级黄色片久久久久久久| 黄色视频,在线免费观看| 天堂影院成人在线观看| www.自偷自拍.com| 亚洲色图 男人天堂 中文字幕| 超碰成人久久| 国产精品九九99| 亚洲精品国产一区二区精华液| 免费在线观看影片大全网站| 色精品久久人妻99蜜桃| 国产亚洲精品一区二区www| 精品国产美女av久久久久小说| 精品无人区乱码1区二区| 曰老女人黄片| 99国产综合亚洲精品| 亚洲天堂国产精品一区在线| 巨乳人妻的诱惑在线观看| 国产欧美日韩一区二区精品| 少妇 在线观看| 成在线人永久免费视频| 免费观看精品视频网站| 久久天堂一区二区三区四区| 精品一区二区三区四区五区乱码| 欧美亚洲日本最大视频资源| 18美女黄网站色大片免费观看| 精品国产国语对白av| 18禁国产床啪视频网站| 中文字幕色久视频| 婷婷精品国产亚洲av在线| 99riav亚洲国产免费| 成人精品一区二区免费| 1024香蕉在线观看| 国产激情久久老熟女| ponron亚洲| 免费搜索国产男女视频| 99国产精品一区二区三区| 亚洲成av片中文字幕在线观看| 国产成人欧美在线观看| 亚洲成人久久性| 久久久久久久精品吃奶| 无限看片的www在线观看| 国产精品一区二区三区四区久久 | 国产成人av激情在线播放| 国产一区在线观看成人免费| 国产97色在线日韩免费| 欧美+亚洲+日韩+国产| 欧美成人一区二区免费高清观看 | 这个男人来自地球电影免费观看| 久久久久国产精品人妻aⅴ院| 色综合站精品国产| 怎么达到女性高潮| 亚洲成人国产一区在线观看| 日韩欧美在线二视频| 国产精品久久久久久亚洲av鲁大| 久久久国产成人免费| 国语自产精品视频在线第100页| 90打野战视频偷拍视频| 我的亚洲天堂| 他把我摸到了高潮在线观看| e午夜精品久久久久久久| 欧美亚洲日本最大视频资源| 大香蕉久久成人网| 欧美日韩瑟瑟在线播放| 亚洲九九香蕉| 欧美一级a爱片免费观看看 | 黄色女人牲交| 亚洲男人的天堂狠狠| www.自偷自拍.com| 99在线视频只有这里精品首页| 午夜激情av网站| 露出奶头的视频| 两个人看的免费小视频| 黄色女人牲交| 亚洲一区高清亚洲精品| 午夜福利高清视频| 欧美成狂野欧美在线观看| 欧美日韩瑟瑟在线播放| 男女之事视频高清在线观看| 国产亚洲精品一区二区www| 日韩三级视频一区二区三区| 国产aⅴ精品一区二区三区波| 日韩成人在线观看一区二区三区| 国产亚洲av嫩草精品影院| 激情在线观看视频在线高清| 两个人视频免费观看高清| 精品国内亚洲2022精品成人| av天堂在线播放| 免费观看人在逋| 成年女人毛片免费观看观看9| 麻豆成人av在线观看| 99精品欧美一区二区三区四区| 1024视频免费在线观看| 日日爽夜夜爽网站| 男男h啪啪无遮挡| 国产精品自产拍在线观看55亚洲| 国内毛片毛片毛片毛片毛片| 夜夜夜夜夜久久久久| 欧美日韩精品网址| 在线免费观看的www视频| 日本撒尿小便嘘嘘汇集6| 一边摸一边做爽爽视频免费| 黄色视频不卡| bbb黄色大片| 99国产精品一区二区三区| av视频免费观看在线观看| 免费在线观看黄色视频的| 成年版毛片免费区| 国产黄a三级三级三级人| av片东京热男人的天堂| 国产乱人伦免费视频| 国产精品自产拍在线观看55亚洲| 欧美大码av| 最好的美女福利视频网| 欧美成人性av电影在线观看| 欧美中文综合在线视频| 欧美一区二区精品小视频在线| 天天添夜夜摸| 国产成人啪精品午夜网站| 波多野结衣高清无吗| 这个男人来自地球电影免费观看| 一区二区三区国产精品乱码| 亚洲精品国产区一区二| 欧美日韩亚洲综合一区二区三区_| 国产精品 欧美亚洲| 亚洲国产高清在线一区二区三 | 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲精品第一综合不卡| 日韩视频一区二区在线观看| 很黄的视频免费| 免费无遮挡裸体视频| 国产又爽黄色视频| 午夜福利在线观看吧| 91大片在线观看| 日韩高清综合在线| 久久热在线av| 婷婷精品国产亚洲av在线| 99riav亚洲国产免费| 精品国产国语对白av| 国产精品香港三级国产av潘金莲| 亚洲成av人片免费观看| 亚洲欧美精品综合一区二区三区| 欧美激情高清一区二区三区| 久久精品亚洲精品国产色婷小说| 搡老妇女老女人老熟妇| 欧美精品啪啪一区二区三区| 亚洲国产精品成人综合色| 亚洲一区二区三区不卡视频| 搡老妇女老女人老熟妇| 曰老女人黄片| 午夜福利在线观看吧| 九色亚洲精品在线播放| 亚洲精品久久国产高清桃花| 国产精品亚洲一级av第二区| 成人手机av| 亚洲人成网站在线播放欧美日韩| 青草久久国产| 一级a爱视频在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 欧美中文综合在线视频| 国产成人精品久久二区二区免费| 男女午夜视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产高清videossex| 亚洲精品中文字幕在线视频| 一个人免费在线观看的高清视频| 欧美黄色淫秽网站| 亚洲色图av天堂| 久久久久久久午夜电影| 精品久久蜜臀av无| 999久久久精品免费观看国产| 两个人视频免费观看高清| 国产精品电影一区二区三区| 男人舔女人下体高潮全视频| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 香蕉国产在线看| 动漫黄色视频在线观看| 精品熟女少妇八av免费久了| 此物有八面人人有两片| 十分钟在线观看高清视频www| 欧美日本亚洲视频在线播放| 性少妇av在线| 身体一侧抽搐| 黄片大片在线免费观看| 亚洲精品国产区一区二| 十八禁人妻一区二区| 欧美乱色亚洲激情| 搡老妇女老女人老熟妇| 国产精品一区二区精品视频观看| 日韩高清综合在线| 黄色 视频免费看| 69精品国产乱码久久久| 国产精品久久久久久亚洲av鲁大| 国产成人欧美在线观看| 久热这里只有精品99| 亚洲精品国产色婷婷电影| 欧美午夜高清在线| 精品一区二区三区av网在线观看| 美女高潮到喷水免费观看| 在线国产一区二区在线| 中文字幕另类日韩欧美亚洲嫩草| 免费无遮挡裸体视频| 久久精品91无色码中文字幕| 亚洲精品在线美女| 免费在线观看黄色视频的| 此物有八面人人有两片| 欧美丝袜亚洲另类 | 久久伊人香网站| 国产精品久久久人人做人人爽| 最新美女视频免费是黄的| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| 嫩草影院精品99| 熟妇人妻久久中文字幕3abv| 亚洲五月天丁香| 精品不卡国产一区二区三区| 久久午夜亚洲精品久久| 日韩免费av在线播放| 久久久精品国产亚洲av高清涩受| 搡老岳熟女国产| 多毛熟女@视频| 宅男免费午夜| 麻豆一二三区av精品| 露出奶头的视频| 熟妇人妻久久中文字幕3abv| 久久精品91无色码中文字幕| 丝袜在线中文字幕| 亚洲成a人片在线一区二区| 久久国产精品男人的天堂亚洲| √禁漫天堂资源中文www| 亚洲成人国产一区在线观看| 免费一级毛片在线播放高清视频 | 国产精品免费视频内射| 成年人黄色毛片网站| 亚洲专区中文字幕在线| 成人国语在线视频| 18禁美女被吸乳视频| 女性被躁到高潮视频| 电影成人av| 中文亚洲av片在线观看爽| 国产av又大| 男人舔女人的私密视频| 亚洲欧美精品综合久久99| 国产精品久久久人人做人人爽| 黄色a级毛片大全视频| videosex国产| 亚洲一区中文字幕在线| 禁无遮挡网站| 午夜免费成人在线视频| 国产成人啪精品午夜网站| 岛国视频午夜一区免费看| 麻豆一二三区av精品| 制服丝袜大香蕉在线| 国产精品98久久久久久宅男小说| 国产av又大| 精品人妻1区二区| 校园春色视频在线观看| 欧美激情 高清一区二区三区| 日日摸夜夜添夜夜添小说| 黑丝袜美女国产一区| 亚洲午夜精品一区,二区,三区| 久久久久九九精品影院| 亚洲av成人不卡在线观看播放网| 成人三级做爰电影| 日韩欧美一区二区三区在线观看| 一级毛片女人18水好多| 免费看美女性在线毛片视频| 精品不卡国产一区二区三区| 人人妻人人澡人人看| 亚洲第一av免费看| 国产精品一区二区免费欧美| 亚洲性夜色夜夜综合| 欧美日韩精品网址| 在线观看日韩欧美| 国产又爽黄色视频| 国产成人av激情在线播放| 亚洲人成77777在线视频| 美女国产高潮福利片在线看| 波多野结衣一区麻豆| 午夜免费成人在线视频| 丰满人妻熟妇乱又伦精品不卡| 在线天堂中文资源库| 丝袜美足系列| 午夜福利免费观看在线| 中文字幕高清在线视频| 最近最新中文字幕大全免费视频| 欧美成人午夜精品| a在线观看视频网站| 女同久久另类99精品国产91| 久久香蕉激情| 国产真人三级小视频在线观看| 91大片在线观看| 精品久久久久久久毛片微露脸| 欧美日韩精品网址| 在线观看免费午夜福利视频| 亚洲国产看品久久| 精品国内亚洲2022精品成人| 亚洲七黄色美女视频| 亚洲电影在线观看av| 日本撒尿小便嘘嘘汇集6| 久久精品国产亚洲av香蕉五月| 怎么达到女性高潮| 久久精品国产亚洲av高清一级| 在线观看www视频免费| 操美女的视频在线观看| 1024香蕉在线观看| 国产亚洲精品av在线| 麻豆av在线久日| 成人国产一区最新在线观看| 亚洲国产精品久久男人天堂| 女生性感内裤真人,穿戴方法视频| 少妇熟女aⅴ在线视频| 一区二区三区精品91| 人人妻人人澡欧美一区二区 | 成人亚洲精品一区在线观看| 九色亚洲精品在线播放| 国产精品秋霞免费鲁丝片| 在线观看一区二区三区| 一级毛片精品| 亚洲aⅴ乱码一区二区在线播放 | 亚洲自偷自拍图片 自拍| 中国美女看黄片| 97碰自拍视频| 久久久久精品国产欧美久久久| videosex国产| 久久国产精品影院| 国产精品秋霞免费鲁丝片| 国产av一区二区精品久久| 成人精品一区二区免费| 1024视频免费在线观看| 日本五十路高清| 国产高清videossex| or卡值多少钱| 亚洲成人免费电影在线观看| 首页视频小说图片口味搜索| 欧美黑人欧美精品刺激| 又黄又粗又硬又大视频| 好男人在线观看高清免费视频 | 夜夜爽天天搞| 日韩免费av在线播放| 国产成人啪精品午夜网站| 国产精品日韩av在线免费观看 | 一级作爱视频免费观看| 精品一品国产午夜福利视频| 男男h啪啪无遮挡| 久久精品91无色码中文字幕| 精品人妻1区二区| 成人18禁高潮啪啪吃奶动态图| 香蕉丝袜av| 不卡一级毛片| 成人三级做爰电影| 国产午夜精品久久久久久| 国语自产精品视频在线第100页| 美女 人体艺术 gogo| 男女做爰动态图高潮gif福利片 | 天天躁狠狠躁夜夜躁狠狠躁| 可以免费在线观看a视频的电影网站| 欧美在线黄色| 女人精品久久久久毛片| 亚洲第一av免费看| 日韩欧美在线二视频| 他把我摸到了高潮在线观看| 黄色a级毛片大全视频| av有码第一页| 精品久久久精品久久久| 一夜夜www| 一二三四在线观看免费中文在| 国产精华一区二区三区| ponron亚洲| 国产精品亚洲av一区麻豆| avwww免费| 精品第一国产精品| 国产午夜精品久久久久久| 国产熟女xx| 夜夜爽天天搞| 999久久久精品免费观看国产| 免费在线观看黄色视频的| 午夜影院日韩av| 成人亚洲精品av一区二区| 宅男免费午夜| 黄色毛片三级朝国网站| 午夜亚洲福利在线播放| 国产精品免费视频内射| 国产av又大| 国产精品影院久久| 一卡2卡三卡四卡精品乱码亚洲| 色综合站精品国产| 中文亚洲av片在线观看爽| 欧美一级毛片孕妇| 女性生殖器流出的白浆| 在线观看免费视频日本深夜| 国产97色在线日韩免费| 久久久水蜜桃国产精品网| 一二三四在线观看免费中文在| 亚洲一区高清亚洲精品| 久久久水蜜桃国产精品网| 变态另类成人亚洲欧美熟女 | 亚洲视频免费观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利,免费看| 色老头精品视频在线观看| 极品人妻少妇av视频| 午夜福利,免费看| 手机成人av网站| 国产区一区二久久| 啦啦啦 在线观看视频| 欧美国产精品va在线观看不卡| 18美女黄网站色大片免费观看| 成人av一区二区三区在线看| 国产精品秋霞免费鲁丝片| 久热这里只有精品99| av电影中文网址| 可以在线观看的亚洲视频| 欧美老熟妇乱子伦牲交|