• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation?

    2018-12-13 06:33:28ChaoGao高超andPengZhang張芃
    Communications in Theoretical Physics 2018年12期
    關(guān)鍵詞:高超

    Chao Gao(高超) and Peng Zhang(張芃)

    1Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    2Department of Physics,Renmin University of China,Beijing 100872,China

    3Beijing Computational Science Research Center,Beijing 10084,China

    4Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-nano Devices,Renmin University of China,Beijing 100872,China

    AbstractThe Skorniakov-Ter-Martirosian(STM)integral equation is widely used for the quantum three-body problems of low-energy particles(e.g.,ultracold atom gases).With this equation these three-body problems can be efficiently solved in the momentum space.In this approach the boundary condition for the case that all the three particles are gathered together is described by the upper limit of the momentum integral,i.e.,the momentum cuto ff.On the other hand,in realistic systems,the three-body recombination(TBR)process can occur when all these three particles are close to each other.In this process two particles form a deep dimer and the other particle can gain high kinetic energy and then escape from the low-energy system.In the presence of the TBR process,the momentum-cuto ffin the STM equation would include a non-zero imaginary part.As a result,the momentum integral in the STM equation should be done in the complex-momentum plane.In this case the result of the integral depends on the choice of the integral path.Obviously,only one integral path can lead to the correct result.In this paper we consider how to correctly choose the integral path for the STM equation.We take the atom-dimer scattering problem in a specific ultracold atom gas as an example,and show the results given by different integral paths.Based on the result for this case we explore the reasonable integral paths for general case.

    Key words:STM equation,integral path,atom-dimer scattering

    1 Introduction

    The three-body problems are important for various directions of quantum physics,e.g.,nuclear physics,[1?3]quantum chemistry,[4?5]condensed matter physics[6]and ultracold gases.[3,7]By solving these problems one can not only calculate the important parameters for the quantum systems,e.g.,the atom-dimer interaction intensity[8]and chemical reaction rate,[4]but also explore many interesting physical effects,e.g.,the E fimov effect,[9?11]which is induced by the scaling symmetry of three particles with resonant s-wave interactions.

    In the previous research of quantum three-body problems,many attentions are paid to the low-energy systems where the de Broglie wavelength of the three particles are much larger than the characteristic length of the interparticle interaction potentials.Two examples are the ultracold atom gases and some low-energy nuclear systems.For these systems the physical properties are determined by a few parameters of the inter-particle interactions,such as the two-body scattering lengths,and are independent of the details of these interactions.[12]In another word,the physical properties of these systems are very universal.

    Technically speaking,in the low-energy three-body problems the two-body interaction can be described by simple zero-range potentials or finite-range separable potentials.As a result,the three-body Schr?dinger equation can be re-expressed as an integral equation in the momentum space,i.e.,the Skorniakov-Ter-Martirosian(STM)equation,[13]which is easy to be solved numerically.The STM equation was initially developed by Skorniakov and Ter-Martirosian in 1957,and has been widely used for the three-body problems in various systems,e.g.,the ultracold gases or nuclear systems.

    On the other hand,in the three-body problem with zero-range inter-particle potentials,there are two types of important boundary conditions.They are

    (i)The “two-body short-range boundary conditions”for the cases that two of the three particles are close to each other,while the third one is far away from them.

    (ii)The“three-body short-range boundary condition”for the case that all the three particles are gathered together.

    In the STM equation,the two-body short-range boundary conditions are described by the parameters of two-body low-energy scattering,e.g.,the scattering length,while the three-body short-range boundary condition is described by the upper limit of the integrals over the three-body momentum,[14?17]i.e.the three-body momentum cuto ff.

    Furthermore,in many realistic cases,e.g.,the ultracold atom gases,when the three particles come together,there occurs an inelastic scattering process,which is called as the three-body recombination(TBR).[18?19]Through this process,two particles can form a deep dimer while the third particle obtains high kinetic energy.As a result,the de Broglie wavelengths of all the three particles becomes pretty small,i.e.,the particles “escape” from the low-energy region.In the ultracold gases,with the help of the kinetic energy obtained from the TBR processes,the ultracold atoms can really loss from the trap.Accordingly,in the presence of TBR the momentum cuto ffin the STM equation becomes a complex number with nonzero imaginary part.As a result,the momentum integral in the STM equation must be done in the complex momentum plane,rather than just along the real axis.In this case,the result of the integral depends on the choice of the integral path.[16]Thus,there is a crucial question:which integration path is correct for the calculation of three-body problem via STM equation?

    In this paper we try to investigate this problem by taking a typical atom-dimer scattering problem as an example.Explicitly,we consider the scattering between an ultracold bosonic atom and a shallow dimer,which is formed by one identical bosonic atom and another distinguishable atom(Fig.1),and compare the results given by different momentum integral paths.With the help of our result,we find the integral path,which may be always reasonable for various cases,i.e.,the path shown in Fig.5 and described in Sec.4 in detail.

    The remainder of this paper is organized as follows.In Sec.2,we describe the physical system we study and show the STM equation.In Sec.3,we compare the results given by different integral paths.In Sec.4,we generalize them to the STM equations for more general cases.There are some summary in Sec.5.

    2 System and STM Equation

    As shown in Fig.1,we consider a three-body system consisted by two ultracold identical bosonic atoms(denoted by B),and another ultracold distinguishable atom(denoted by X),with intra-and inter-species scattering length aBBand aBX,respectively.Here we assume that the scattering length aBXbetween each bosonic atom and the atom X is positive and much larger than the range of the inter-species interaction potential,i.e.,the van der Waals length rvdW.For realistic ultracold atom gases this can be realized via the technique of Feshbach resonance.[20]In this case one bosonic atom and the atom X can form a shallow dimer with energy

    whereμBX=mBmX/(mB+mX)is the reduced mass of one bosonic atom and atom X,with mBand mXbeing their respective masses.In addition,for the convenience of our discussion,we further assume the absolute value of the scattering length between the two bosonic atoms,i.e.,|aBB|,is small enough so that the condition

    is satisfied.

    Fig.1 (Color online)Schematic of the three-body system studied in this work.We consider two bosonic atoms(denoted as B)and one extra atom(denoted as X),and assume the two-body scattering length aBXbetween B and X is positive and much larger than the van der Waals length,so that one bosonic atom and the atom X can form a shallow dimer.We calculate the scattering length between this shallow dimer and the other bosonic atom.

    In this work we study how to calculate the scattering length aadbetween the shallow BX-dimer and the other bosonic atom.As shown above,for this system the inter-atomic interactions can be described by zero-range pseudo-potentials,and aadcan be calculated via the STM-equation approach.In Ref.[21]we derive the following STM equation for this problem from the corresponding Lippmann-Schwinger equation.We show that the STM equation can be expressed as the following equations for the functions{A(K,ε),η(K,ε)}(=mB=1):

    with mad=(mX/mB+1)/(mX/mB+2)being the value of the atom–dimer reduced mass in our natural unit,and the function I(K′,ε)in Eq.(3)being defined as

    Here we take the complex angle Arg[z]of a complex number z to be in the region Arg[z]∈ (?π,+π].As we show in Ref.[21],the atom-dimer scattering length aadis given by

    with A(K,ε)being the solution of Eqs.(3)and(4).

    In the STM equation(3)and(4), Λeiζis the upper limit of the momentum integral,or the momentum cuto ff.Here the norm Λ is real and positive,and the real number ζ is the phase angle. ζ is non-zero in the presence of the TBR process.As shown in Sec.1,this upper limit describes the boundary condition for the case that all the three atoms are gathered together.For a realistic ultra-cold atom system,the exact values of Λ and ζ are determined by the short-range detail of the atom-atom interaction.Usually Λ is of the order of 1/rvdW,with rvdWbeing the van der Waals length,and ζ is small and positive.For instance,for41K-87Rb-87Rb system,ζ is suggested to be about 0.19.[22]

    3 Results Given by Di ff erent Integral Paths

    It is clear that the integraldK′plays a central role for the STM equation(3)and(4).Now we compare the results given by different paths of this integral.To be clear,we separately discuss the following three cases:Case 1 aBB<0,Case 2 0a?,with the parameter a?being defined as

    In the following we will show the reason why we define the three cases as above.

    Here we also emphasis that,as a result of the TBR process,the scattering length aadhas a non-zero imaginary part.Furthermore,using the optical theorem one can prove that the imaginary part of aadmust be negative,i.e.,

    This is essentially due to the unitarity of the S-matrix of the atom-dimer scattering process.Physically speaking,the absolute value of Im(aad)is directly related to the TBR rate or the three-body loss rate K3via the relation

    Equation(8)is the necessary condition for the physicallycorrect solution of the STM equation.

    3.1 Case 1

    For case 1 with aBB<0,there are the following two typical integral paths,as shown in Fig.2(a).Path-I is the straight line from K′=0 to K′= Λeiζ,while path-II consists of two straight lines(in blue color with arrow):from K′=0 to K′=Re[Λeiζ](denoted as path-IIa),and then from K′=Re[Λ eiζ]to K′= Λ eiζ(path-IIb).It is clear that for the integraldK′in the STM equation(3)and(4),the integrands have no pole in the region between these two paths in the limit ε→ 0+.As a result,the solutions of the STM equation with the two integration paths are the same.

    Fig.2 (Color online)(a)Typical integration paths for case 1;(b)and(c):Re[aad]and Im[aad]as functions of aBB,for the systems of case 1.Here we take mB=mX,aBXΛ =100,and ζ=0.1,and show the results given by path-I(red dashed-dotted line)and path-II(blue open circles).The black dashed line in(c)indicates the positions with Im[aad]=0.

    In Figs.2(b)and 2(c)we show the real and imaginary parts of the atom-dimer scattering length aadgiven by the STM equation with the two integral paths,for the cases with three equal-mass atoms with ζ=0.1.It is clearly illustrated that,as analyzed above,the two results are same with each other.In addition,as shown in Fig.2(c),the condition(8)is well satisfied by the results given by the integral path-I and path-II.

    3.2 Case 2

    Now we consider case 2 with 00,in this case the two bosonic atoms can also form a dimer(BB-dimer),whose energycan be expressed as

    in our natural unit. According to our assumption in Eq.(2),we have>|Eb|,i.e.,the BB-dimer is a“deep dimer”whose binding energy is larger than the one of the shallow dimer formed by one bosonic atom and the atom X.

    In this case,the equation I(K′,ε)=0 with the function I(K′,ε)being defined in Eq.(5),has one solution near the positive half of the real axis of the complex K′plane in the limit ε → 0+.Explicitly,we have

    with

    It is clear that K0+iη is a pole of the integrand of the integral∫Λeiζ0dK′in the STM equation(3).In addition,since in this case we have 0

    Therefore,in this case there are three typical integral paths for the momentum integral in the STM equations,as shown in Fig.3(a).Path-I and path-II are defined as in the above case 1.In addition,path-III consists of four straight lines:the line from K′=0 to K′=Re[Λeiζ](path-IIIa,same to path-IIa),then from Re[Λeiζ]to K′=K1(path-IIIb),then from K′=K1to K′=K1+iIm[Λeiζ](path-IIIc),and finally from K′=K1+iIm[Λ eiζ]to K′= Λeiζ(path-IIId).Here K1can be an arbitrary real number larger than K0.

    Since no pole of the integrand of the STM equation appears in the area surrounded by path-I and path-II,and one pole(i.e.,K0+iη)appears in the area surrounded by path-II and path-III,the direct analysis yields that the the solution of the STM equation with momentum integral path-I and path-II would be same with each other,while the path-III would lead to a different solution.So,the question is:which path is reasonable?

    To answer this question,we calculate the atom-dimer scattering length aadwith the STM equation with these three integral paths,and show Re[aad]and Im[aad]in Figs.3(b)and 3(c),respectively.It is clearly shown that the necessary condition in Eq.(8)is well-satisfied by all the results from path-III,but violated by some results from path-I and path-II.Therefore,in this case the path-III is the reasonable integral path for the STM equation.

    Fig.3 (Color online)(a)Typical integration paths for case 2;(b)and(c):Re[aad]and Im[aad]as functions of aBB,for the systems of case 2.The parameters are same as in Fig.2.Here we show the results given by path-I(red dashed-dotted line),path-II(blue open circles),and path-III(magenta solid line).

    3.3 Case 3

    Now we consider case 3 with aBB>a?.Similar as in case 2,in this case the two bosonic atoms can also form a deep dimer with energygiven by Eq.(10).As a result,the pole K0+iη of the integrand of the integraldK′in the STM equation(3)can also appear near the positive half of the real axis of the complex K′plane.

    The only difference between the current case and case 2 is that,since aBB>a?,in the current we have

    Thus,as shown in Fig.4(a),now there are two typical momentum integral paths,i.e.,path-I and path-II,which have the same definitions as in the above cases 1 and 2.Nevertheless,the fact(15)yields that in the current case the pole K0+iη appears in the area surrounded by the two paths.Thus,the results given by these two integral paths would be different,and we should judge,which path is reasonable.

    In Figs.4(b)and 4(c)we show the real and imaginary parts of the atom-dimer scattering length aadgiven by the STM equation with these two integral paths.It is shown that the results given by the path-II can satisfy the necessary condition in Eq.(8),while the ones from path-I can violate this condition.Thus,in the current case path-II is reasonable.

    Fig.4 (Color online)(a)Typical integration paths for case 3;(b)and(c)Re[aad]and Im[aad]as functions of aBB,for the systems of case 3.The parameters are same as in Fig.2.Here we show the results given by path-I(red dashed-dotted line),path-II(blue dotted line).

    4 Generalization to Other Cases

    In the above section we study how to choose the reasonable momentum integral paths for the STM equation for the atom-dimer scattering problem introduced in Sec.2.Now we summarize the results obtained above to some principle,which can be generalized to other threebody problems.

    Our above analysis for the three cases 1,2,and 3 show that,the positions of some poles of the integrands of the integralin the STM equation is very important for the selection of the momentum integral path.Explicitly,the poles localized at the point K′=K?+iη?with K?>0 and η?→ 0+in the limit ε → 0+,with ε being the small positive imaginary part of the energy in the Green’s function,are very important.The reasonable integral path from K′=0 to K′= Λeiζshould go across below all of these poles.The reasonable paths for the above cases 1,2,and 3 all satisfy this condition.

    Thus,there is a special path,which would be always reasonable,i.e.,the path from K′=0 to K′=+∞,and then to K′=+∞ +iIm[Λeiζ]and then to K′= Λeiζ(the path shown in Fig.5(a)).Obviously,all the paths,which can be continuously deformed from this path without crossing any pole are also reasonable.

    In addition,there is an interesting particular case,i.e.,the case with ζ=0 and some poles with K?> Λ.This can be understood as the limit ζ→ 0 of the above cases.Thus,according to our above principle,as shown in Fig.5(b),for this case the reasonable integral path is not the path directly from K′=0 to K′=Λ.It would be the path from K′=0 to K′=+∞,and then to K′=+∞+iΓ,with Γ being any finite positive value,and then to K′= Λ +iΓ,and then to K′=Λ.

    It is clear that,the above principle for the choosing of the momentum integral path can be straightforwardly applied to the STM equations for other three-body problems.

    Fig.5 (Color online)Reasonable integration paths for general cases with ζ>0(a)and ζ=0(b).

    5 Summary and Discussion

    In this work we study how to choose the momentum integral path for the STM equation.By studying a typical atom-dimer scattering problem,we show that different integral path can lead to quite different solutions of the STM equation,especially for the imaginary part of the atom-dimer scattering length or the TBR rate K3.

    More importantly,we find that the necessary condition(8)can always be satisfied by the integral path,which the paths,which can be continuously deformed from the special path shown in Fig.5 without crossing any pole.This principle can be generalized to other three-body problems.Thus,our result is very helpful for the study of low-energy three-body problems in the presence of TBR.

    To our knowledge,so far the quantitative expression for the three-body short-range boundary condition in real space,which is mathematically equivalent to the momentum cuto ff Λeiζand the reasonable integral path shown above,has not been derived.In future we will try to explore this expression,so that the short-range physics can be described more clearly.

    Acknowledgments

    We thank Pascal Naidon,Hui Zhai,and Ren Zhang for helpful discussions and important suggestions.

    猜你喜歡
    高超
    Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose–Einstein condensate
    內(nèi)外兼修
    Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator
    我們愛勞動(dòng)
    哲理漫畫
    寶塔山詠懷
    中華魂(2021年10期)2021-10-15 21:42:51
    Single pixel imaging based on semi-continuous wavelet transform*
    Turbulent boundary layer control with a spanwise array of DBD plasma actuators
    巧奪天工
    美蓓亞展示提高汽車性能的高超技術(shù)
    汽車零部件(2015年4期)2015-12-22 05:45:22
    日韩 欧美 亚洲 中文字幕| www.999成人在线观看| 人妻久久中文字幕网| 在线观看午夜福利视频| 亚洲中文av在线| 日本五十路高清| 国产激情欧美一区二区| 日本一区二区免费在线视频| 亚洲欧美一区二区三区黑人| 日本 av在线| 欧美亚洲日本最大视频资源| 久久精品亚洲熟妇少妇任你| 国产99久久九九免费精品| 久久草成人影院| 久久性视频一级片| 大陆偷拍与自拍| av视频免费观看在线观看| 老熟妇仑乱视频hdxx| 久久国产精品男人的天堂亚洲| 精品人妻在线不人妻| 久久精品影院6| 亚洲精品中文字幕一二三四区| 久久中文字幕一级| 午夜亚洲福利在线播放| 亚洲国产精品成人综合色| 美女高潮到喷水免费观看| 国产三级黄色录像| 黄色视频,在线免费观看| 色播亚洲综合网| 欧美av亚洲av综合av国产av| 黄色成人免费大全| 日韩大尺度精品在线看网址 | 国产高清videossex| 久久午夜亚洲精品久久| 巨乳人妻的诱惑在线观看| 免费无遮挡裸体视频| 国产单亲对白刺激| 琪琪午夜伦伦电影理论片6080| 少妇熟女aⅴ在线视频| 欧美日韩亚洲国产一区二区在线观看| 欧美成狂野欧美在线观看| 国产亚洲欧美在线一区二区| 午夜影院日韩av| 亚洲欧美日韩另类电影网站| xxx96com| 国产亚洲欧美98| a级毛片在线看网站| 欧美激情 高清一区二区三区| 伊人久久大香线蕉亚洲五| 老熟妇乱子伦视频在线观看| 看免费av毛片| 久久久国产成人精品二区| 狠狠狠狠99中文字幕| 91麻豆精品激情在线观看国产| 亚洲精品中文字幕在线视频| 国产亚洲精品综合一区在线观看 | 又黄又爽又免费观看的视频| 黄色a级毛片大全视频| 欧美成人免费av一区二区三区| 麻豆国产av国片精品| 两个人视频免费观看高清| 一区福利在线观看| 一区二区三区高清视频在线| 不卡av一区二区三区| 级片在线观看| 老司机午夜十八禁免费视频| 日韩高清综合在线| 日韩视频一区二区在线观看| 国产精品久久久人人做人人爽| 一区二区三区高清视频在线| 99久久99久久久精品蜜桃| 亚洲天堂国产精品一区在线| 亚洲免费av在线视频| 如日韩欧美国产精品一区二区三区| 午夜免费激情av| 国产精品美女特级片免费视频播放器 | 午夜福利影视在线免费观看| 后天国语完整版免费观看| 亚洲狠狠婷婷综合久久图片| 久久婷婷人人爽人人干人人爱 | 欧美在线一区亚洲| 啦啦啦 在线观看视频| 一区二区日韩欧美中文字幕| 亚洲精品在线美女| 麻豆一二三区av精品| 美女扒开内裤让男人捅视频| 在线观看免费午夜福利视频| a在线观看视频网站| 嫩草影院精品99| 91麻豆精品激情在线观看国产| 人人妻人人澡欧美一区二区 | 嫩草影院精品99| 亚洲av美国av| 韩国精品一区二区三区| 麻豆一二三区av精品| 黄片小视频在线播放| 无遮挡黄片免费观看| 成人av一区二区三区在线看| 国产精品98久久久久久宅男小说| 中文字幕高清在线视频| 亚洲天堂国产精品一区在线| 国产区一区二久久| 久久九九热精品免费| 日本a在线网址| 国产精品一区二区三区四区久久 | 国产精品 欧美亚洲| 久久久国产成人精品二区| 99香蕉大伊视频| 日韩av在线大香蕉| 国产精品爽爽va在线观看网站 | 国产精品野战在线观看| 成人18禁高潮啪啪吃奶动态图| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕人妻熟女乱码| 久久久久国内视频| 欧美日韩乱码在线| 国产三级黄色录像| 一二三四社区在线视频社区8| 午夜福利一区二区在线看| 日韩精品免费视频一区二区三区| 日韩成人在线观看一区二区三区| 国产精品久久久久久亚洲av鲁大| 亚洲人成网站在线播放欧美日韩| 久热爱精品视频在线9| 成人国产综合亚洲| 91在线观看av| 国产激情欧美一区二区| 我的亚洲天堂| 天堂影院成人在线观看| √禁漫天堂资源中文www| 欧美成人免费av一区二区三区| 日本vs欧美在线观看视频| 久久久国产成人免费| 国产成人影院久久av| 一夜夜www| 欧美激情高清一区二区三区| 午夜福利免费观看在线| 岛国视频午夜一区免费看| 午夜福利一区二区在线看| 国产在线观看jvid| 涩涩av久久男人的天堂| x7x7x7水蜜桃| 在线观看免费午夜福利视频| 亚洲人成电影观看| 性色av乱码一区二区三区2| 99热只有精品国产| 欧美黑人精品巨大| 国产真人三级小视频在线观看| 男女午夜视频在线观看| 亚洲一区二区三区色噜噜| 亚洲专区国产一区二区| 国产乱人伦免费视频| 久久精品91蜜桃| 日本欧美视频一区| www.自偷自拍.com| 成人国产一区最新在线观看| 1024香蕉在线观看| 日韩精品免费视频一区二区三区| 亚洲国产精品sss在线观看| 亚洲精品一区av在线观看| 日本免费一区二区三区高清不卡 | 国产精品久久久久久精品电影 | 老司机深夜福利视频在线观看| 亚洲av电影不卡..在线观看| 操出白浆在线播放| 99riav亚洲国产免费| 国产欧美日韩一区二区三| 国产亚洲精品第一综合不卡| 久久精品亚洲熟妇少妇任你| 又黄又粗又硬又大视频| 亚洲国产日韩欧美精品在线观看 | 久久久国产欧美日韩av| 999久久久精品免费观看国产| 久久国产精品影院| 激情在线观看视频在线高清| 色老头精品视频在线观看| 不卡av一区二区三区| 国产成+人综合+亚洲专区| 久久国产精品人妻蜜桃| 国产人伦9x9x在线观看| 成人亚洲精品av一区二区| 女人被狂操c到高潮| 可以免费在线观看a视频的电影网站| 在线av久久热| 久久久精品国产亚洲av高清涩受| 日本 欧美在线| 最近最新免费中文字幕在线| 夜夜爽天天搞| 久久久久久久久久久久大奶| 1024视频免费在线观看| 桃红色精品国产亚洲av| 久9热在线精品视频| bbb黄色大片| 性少妇av在线| 夜夜夜夜夜久久久久| 午夜久久久久精精品| 熟女少妇亚洲综合色aaa.| 精品日产1卡2卡| 免费久久久久久久精品成人欧美视频| 午夜久久久在线观看| 美女扒开内裤让男人捅视频| 伦理电影免费视频| 精品一区二区三区视频在线观看免费| 午夜成年电影在线免费观看| 啪啪无遮挡十八禁网站| 亚洲视频免费观看视频| 日韩中文字幕欧美一区二区| www.熟女人妻精品国产| 亚洲精华国产精华精| 欧美黑人欧美精品刺激| 亚洲成人久久性| 精品久久久精品久久久| 精品久久久久久成人av| 夜夜爽天天搞| 美女高潮喷水抽搐中文字幕| 悠悠久久av| 国内久久婷婷六月综合欲色啪| 色精品久久人妻99蜜桃| 欧美激情 高清一区二区三区| 精品国产超薄肉色丝袜足j| 淫妇啪啪啪对白视频| 午夜免费激情av| 欧美在线一区亚洲| 男人的好看免费观看在线视频 | 日韩欧美国产在线观看| 精品第一国产精品| 淫妇啪啪啪对白视频| 免费在线观看日本一区| 看片在线看免费视频| 男男h啪啪无遮挡| 一本综合久久免费| 亚洲色图av天堂| 一级a爱视频在线免费观看| 999久久久国产精品视频| 村上凉子中文字幕在线| 美女大奶头视频| 午夜福利欧美成人| 乱人伦中国视频| 精品国产亚洲在线| 国产成人欧美| 亚洲精品一区av在线观看| 99re在线观看精品视频| 国产私拍福利视频在线观看| 美女高潮喷水抽搐中文字幕| 国产三级黄色录像| 久久中文字幕一级| 啪啪无遮挡十八禁网站| 一级片免费观看大全| 丝袜人妻中文字幕| 欧美色视频一区免费| 操美女的视频在线观看| 熟女少妇亚洲综合色aaa.| 国产精品电影一区二区三区| 国产成人精品久久二区二区免费| 岛国在线观看网站| 精品国产超薄肉色丝袜足j| 12—13女人毛片做爰片一| 日韩精品青青久久久久久| 此物有八面人人有两片| 国产在线观看jvid| 国产私拍福利视频在线观看| 国产三级黄色录像| 国产成人精品无人区| 给我免费播放毛片高清在线观看| 精品无人区乱码1区二区| 自拍欧美九色日韩亚洲蝌蚪91| 久久影院123| 精品卡一卡二卡四卡免费| 岛国在线观看网站| 精品一区二区三区视频在线观看免费| 不卡一级毛片| 亚洲少妇的诱惑av| 久久亚洲精品不卡| 老司机福利观看| 1024视频免费在线观看| 视频区欧美日本亚洲| 国产蜜桃级精品一区二区三区| 麻豆久久精品国产亚洲av| 两性午夜刺激爽爽歪歪视频在线观看 | 国产av在哪里看| 精品国产亚洲在线| 亚洲午夜精品一区,二区,三区| 久久 成人 亚洲| 午夜日韩欧美国产| 久久国产亚洲av麻豆专区| 国产av一区在线观看免费| 99在线视频只有这里精品首页| 亚洲欧美精品综合久久99| 国产亚洲精品av在线| 免费在线观看影片大全网站| 精品国产美女av久久久久小说| 国产成人精品无人区| 国产成人av教育| 脱女人内裤的视频| 一级a爱视频在线免费观看| av天堂在线播放| 精品乱码久久久久久99久播| 欧美日韩乱码在线| 女警被强在线播放| 多毛熟女@视频| 美女国产高潮福利片在线看| 久久婷婷成人综合色麻豆| 在线观看一区二区三区| 亚洲精品美女久久av网站| 免费女性裸体啪啪无遮挡网站| 操出白浆在线播放| 日本三级黄在线观看| 香蕉久久夜色| 一二三四在线观看免费中文在| 精品电影一区二区在线| 亚洲精品久久成人aⅴ小说| 久久久久久久午夜电影| 中亚洲国语对白在线视频| 国产区一区二久久| 我的亚洲天堂| 熟妇人妻久久中文字幕3abv| 老汉色∧v一级毛片| 色在线成人网| 91麻豆精品激情在线观看国产| 制服丝袜大香蕉在线| 麻豆国产av国片精品| 最新美女视频免费是黄的| 99国产精品一区二区三区| 日韩免费av在线播放| 国产精品二区激情视频| 免费女性裸体啪啪无遮挡网站| 午夜福利视频1000在线观看 | 一级a爱视频在线免费观看| 国产在线观看jvid| 成人免费观看视频高清| 99riav亚洲国产免费| svipshipincom国产片| 一本大道久久a久久精品| 99国产极品粉嫩在线观看| av在线天堂中文字幕| 中文字幕色久视频| 99国产精品一区二区三区| 亚洲国产精品sss在线观看| 国产三级黄色录像| 欧美乱妇无乱码| 亚洲七黄色美女视频| 男女下面插进去视频免费观看| 少妇的丰满在线观看| 麻豆一二三区av精品| 不卡一级毛片| 岛国视频午夜一区免费看| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9| 精品国产国语对白av| 天天躁夜夜躁狠狠躁躁| 国产成年人精品一区二区| 一区二区三区精品91| 在线观看免费视频网站a站| 婷婷精品国产亚洲av在线| 精品一品国产午夜福利视频| 亚洲人成77777在线视频| x7x7x7水蜜桃| 9191精品国产免费久久| 男人舔女人的私密视频| 深夜精品福利| 啪啪无遮挡十八禁网站| 自拍欧美九色日韩亚洲蝌蚪91| 搡老熟女国产l中国老女人| 亚洲美女黄片视频| 天天添夜夜摸| 欧美日韩一级在线毛片| 怎么达到女性高潮| 大型黄色视频在线免费观看| 国产av精品麻豆| 中文字幕色久视频| 成人国产综合亚洲| 国产免费av片在线观看野外av| av天堂在线播放| ponron亚洲| 亚洲情色 制服丝袜| 国产亚洲精品一区二区www| 国产一级毛片七仙女欲春2 | 精品人妻在线不人妻| 俄罗斯特黄特色一大片| 亚洲一卡2卡3卡4卡5卡精品中文| 日本三级黄在线观看| 久久精品亚洲熟妇少妇任你| 国产精品亚洲一级av第二区| 久久久久国内视频| 岛国在线观看网站| 性色av乱码一区二区三区2| 久久 成人 亚洲| 一本久久中文字幕| 在线天堂中文资源库| 夜夜看夜夜爽夜夜摸| 亚洲熟女毛片儿| 中国美女看黄片| 亚洲人成伊人成综合网2020| 窝窝影院91人妻| 激情视频va一区二区三区| 日韩欧美一区二区三区在线观看| 69av精品久久久久久| 欧美另类亚洲清纯唯美| 超碰成人久久| 99re在线观看精品视频| 亚洲一码二码三码区别大吗| 中出人妻视频一区二区| 女性被躁到高潮视频| 自线自在国产av| 午夜福利18| 19禁男女啪啪无遮挡网站| 制服人妻中文乱码| 亚洲第一青青草原| 淫妇啪啪啪对白视频| 免费在线观看完整版高清| 久久人妻av系列| 欧美激情 高清一区二区三区| 亚洲精品国产色婷婷电影| 男女做爰动态图高潮gif福利片 | 亚洲自偷自拍图片 自拍| 免费看美女性在线毛片视频| 欧美 亚洲 国产 日韩一| 国内毛片毛片毛片毛片毛片| 欧美绝顶高潮抽搐喷水| а√天堂www在线а√下载| 久久精品亚洲熟妇少妇任你| av超薄肉色丝袜交足视频| 亚洲精品一卡2卡三卡4卡5卡| 免费搜索国产男女视频| 国产精品99久久99久久久不卡| 啪啪无遮挡十八禁网站| 黑人巨大精品欧美一区二区mp4| 免费看十八禁软件| 久久久久久免费高清国产稀缺| 久久性视频一级片| 久久久久久人人人人人| 非洲黑人性xxxx精品又粗又长| av免费在线观看网站| 国产成人系列免费观看| 日本精品一区二区三区蜜桃| 18禁美女被吸乳视频| 欧美最黄视频在线播放免费| 国产精品爽爽va在线观看网站 | 无限看片的www在线观看| 日本免费a在线| 不卡av一区二区三区| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 桃红色精品国产亚洲av| 精品一区二区三区视频在线观看免费| 国产欧美日韩一区二区精品| 老熟妇仑乱视频hdxx| 亚洲人成伊人成综合网2020| 美女免费视频网站| 日本三级黄在线观看| 国产精品,欧美在线| 夜夜躁狠狠躁天天躁| 欧美激情极品国产一区二区三区| 丝袜美足系列| 啦啦啦韩国在线观看视频| 亚洲成av片中文字幕在线观看| 久久青草综合色| 亚洲av日韩精品久久久久久密| 亚洲一区二区三区不卡视频| 大型av网站在线播放| 亚洲专区国产一区二区| 亚洲黑人精品在线| 中文亚洲av片在线观看爽| 欧美色视频一区免费| 嫩草影视91久久| 少妇的丰满在线观看| avwww免费| 国产人伦9x9x在线观看| 日韩三级视频一区二区三区| 欧美日本视频| av超薄肉色丝袜交足视频| 亚洲精品在线美女| 热99re8久久精品国产| av中文乱码字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 国产私拍福利视频在线观看| 日日夜夜操网爽| 嫩草影院精品99| 欧美国产精品va在线观看不卡| 久久久久久久久久久久大奶| 精品国产超薄肉色丝袜足j| 无人区码免费观看不卡| 日本欧美视频一区| 级片在线观看| 国产三级黄色录像| 超碰成人久久| 国产精华一区二区三区| 久久欧美精品欧美久久欧美| 亚洲欧美精品综合久久99| 丰满的人妻完整版| 国产精品电影一区二区三区| 亚洲九九香蕉| 黄色成人免费大全| 69精品国产乱码久久久| 久久人人精品亚洲av| 亚洲精品国产一区二区精华液| 美女高潮喷水抽搐中文字幕| 中文字幕高清在线视频| 色播亚洲综合网| 日本黄色视频三级网站网址| 午夜老司机福利片| av在线播放免费不卡| xxx96com| 黑丝袜美女国产一区| 国产精品国产高清国产av| 国产成人影院久久av| 日本免费一区二区三区高清不卡 | 少妇被粗大的猛进出69影院| 怎么达到女性高潮| 欧美日韩亚洲综合一区二区三区_| 一边摸一边抽搐一进一出视频| 香蕉国产在线看| 免费看a级黄色片| 国产精品永久免费网站| 女性生殖器流出的白浆| 欧美绝顶高潮抽搐喷水| 给我免费播放毛片高清在线观看| 国产亚洲精品第一综合不卡| 久久久久精品国产欧美久久久| 99在线人妻在线中文字幕| 美国免费a级毛片| 亚洲国产欧美一区二区综合| 麻豆久久精品国产亚洲av| 国产区一区二久久| 免费av毛片视频| 久久久久久久久中文| 国产成人精品无人区| 国产午夜福利久久久久久| x7x7x7水蜜桃| 午夜福利一区二区在线看| 免费一级毛片在线播放高清视频 | 精品一区二区三区视频在线观看免费| 两人在一起打扑克的视频| 日韩欧美一区视频在线观看| 免费观看精品视频网站| 男女之事视频高清在线观看| 欧美日韩黄片免| 欧美丝袜亚洲另类 | 黄色丝袜av网址大全| 啦啦啦 在线观看视频| 欧美性长视频在线观看| 两性夫妻黄色片| 最好的美女福利视频网| 中文字幕最新亚洲高清| 亚洲人成77777在线视频| 九色亚洲精品在线播放| 可以在线观看的亚洲视频| 日韩精品免费视频一区二区三区| 精品国产乱子伦一区二区三区| 国产亚洲精品久久久久5区| 精品一区二区三区视频在线观看免费| 国产精品亚洲av一区麻豆| 18禁国产床啪视频网站| 欧美乱码精品一区二区三区| www.www免费av| 老司机在亚洲福利影院| 国内毛片毛片毛片毛片毛片| 怎么达到女性高潮| av视频免费观看在线观看| x7x7x7水蜜桃| 丝袜在线中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 日韩欧美国产在线观看| 少妇粗大呻吟视频| 日韩大码丰满熟妇| 国产精品一区二区精品视频观看| 亚洲人成77777在线视频| 中文字幕av电影在线播放| 亚洲精品美女久久久久99蜜臀| 最新美女视频免费是黄的| 亚洲激情在线av| 国产精品永久免费网站| 精品人妻在线不人妻| √禁漫天堂资源中文www| av欧美777| 免费久久久久久久精品成人欧美视频| 亚洲国产精品999在线| 十分钟在线观看高清视频www| 久久久久亚洲av毛片大全| 精品无人区乱码1区二区| 亚洲中文字幕一区二区三区有码在线看 | 好男人在线观看高清免费视频 | 日韩av在线大香蕉| 纯流量卡能插随身wifi吗| www.精华液| 色综合站精品国产| 一二三四在线观看免费中文在| 日韩一卡2卡3卡4卡2021年| 国产一卡二卡三卡精品| 国产免费男女视频| 99在线视频只有这里精品首页| 国产一区在线观看成人免费| 99精品在免费线老司机午夜| 日本 欧美在线| 国产亚洲精品第一综合不卡| 亚洲欧美日韩高清在线视频| av视频在线观看入口| 午夜精品国产一区二区电影| 欧美中文综合在线视频| 露出奶头的视频| 黄网站色视频无遮挡免费观看| 亚洲成国产人片在线观看| 亚洲熟妇熟女久久| 精品福利观看| 日韩一卡2卡3卡4卡2021年| 99精品欧美一区二区三区四区| 少妇熟女aⅴ在线视频| 精品熟女少妇八av免费久了| 亚洲片人在线观看| 亚洲av成人一区二区三| 嫁个100分男人电影在线观看| 亚洲国产精品sss在线观看| 久久青草综合色| 麻豆av在线久日| 美女大奶头视频|