• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recovery rates of combination antibiotic therapy using in vitro microdialysis simulating in vivo conditions

    2018-12-10 12:02:46JyshDhnniSuznnPrkrJryLipmnStvnWllisJrmyCohnJohnFrsrArinBrnttMichllChwJsonRobrts
    Journal of Pharmaceutical Analysis 2018年6期

    Jysh A.Dhnni,Suznn L.Prkr,Jry Lipmn,b,c,Stvn C.Wllis,Jrmy Cohn,b,John Frsr,Arin Brntt,Michll Chw,Json A.Robrts,b,g,h

    aBurns,Trauma and Critical Care Research Centre,The University of Queensland,UQ Centre for Clinical Research,Herston,Brisbane,QLD 4029,Australia

    bDepartment of Intensive Care Medicine,Royal Brisbane&Women's Hospital,Brisbane,Australia

    cFaculty of Health,Queensland University of Technology,Brisbane,Australia

    dCritical Care Research Group,The University of Queensland,Brisbane,Australia

    eInstitute of Health and Biomedical Innovation&School of Public Health and Social Work,Queensland University of Technology,Kelvin Grove,Brisbane,Australia

    fDepartment of Anaesthesiology and Intensive Care,and Department of Medical and Health Sciences,Link?ping University,Link?ping,Sweden

    gSchool of Pharmacy,The University of Queensland,Brisbane,Australia

    hDepartment of Pharmacy,Royal Brisbane&Women's Hospital,Brisbane,Australia

    Keywords:Microdialysis Combination antibiotic therapy Relative recovery rate Pharmacokinetics Anti-infectives Protein binding

    A B S T R A C T Microdialysis is a technique used to measure the unbound antibiotic concentration in the interstitial spaces,the target site of action.In vitro recovery studies are essential to calibrating the microdialysis system for in vivo studies.The effect of a combination of antibiotics on recovery into microdialysate requires investigation.In vitro microdialysis recovery studies were conducted on a combination of vancomycin and tobramycin,in a simulated in vivo model.Comparison was made between recoveries for three different concentrations and three different perfusate flow rates.The overall relative recovery for vancomycin was lower than that of tobramycin.For tobramycin,a concentration of 20μg/mL and flow rate of 1.0μL/min had the best recovery.A concentration of 5.0μg/mL and flow rate of 1.0μL/min yielded maximal recovery for vancomycin.Large molecular size and higher protein binding resulted in lower relative recoveries for vancomycin.Perfusate flow rates and drug concentrations affected the relative recovery when a combination of vancomycin and tobramycin was tested.Low perfusate flow rates were associated with higher recovery rates.For combination antibiotic measurement which includes agents that are highly protein bound,in vitro studies performed prior to in vivo studies may ensure the reliable measurement of unbound concentrations.

    1.Introduction

    Combination antibiotic therapy is commonly used in clinical practice due to an increase in multidrug resistant bacterial infections[1,2].Consequently,antibiotic pharmacokinetic data is essential to developing accurate dosing regimens which can achieve effective antibiotic concentrations at the site of infection which is mostly the interstitial fluid of tissue[3,4].This principle is fundamental for not only optimal microbiological and clinical outcome,but also for minimizing the risk of microbial resistance[5–9].Moreover,it is the free(unbound)drug concentrations at the site of infection that are relevant with dosing challenges prominent because tissue interstitial space fluid penetration can differ substantially for some drugs[10].

    Microdialysis is a minimally invasive sampling technique used to measure unbound drug concentrations in the interstitial space fluid of different tissues[11,12],both in animals and humans[13].The pharmacokinetic data from in vivo microdialysis studies can be used to design antibiotic dosing guidelines[14].The details of the microdialysis technique have been described else where[15–18].Brie fly,the probe has a semipermeable membrane tip,which is perfused with a physiological solution(perfusate)at a slow flow rate.According to the concentration gradient,molecules with a size less than that of the membrane pore size will diffuse from the tissue interstitial space fluid(Ctissue)into the perfusate and collect as the microdialysate(Cdialysate).

    For most substances,the full equilibrium cannot be achieved i.e.Ctissue>Cdialysate.The term ‘recovery’is used to describe the relationship between Ctissueand Cdialysate.The ratio of Cdialysateto Ctissueis termed ‘relative recovery’.This factor is then used to calculate the actual drug concentration in the tissue interstitial space fluid.Knowing the drug concentration in the solution,in vitro recovery studies could be used to investigate the effect of parameters such as perfusate flow rate,membrane characteristics,membrane length and drug characteristics on recovery[19].Furthermore,data from these studies could inform subsequent in vivo studies.

    With combination antibiotic therapy,a number of issues can affect drug recovery with in vivo studies[15].In vitro microdialysis recovery studies using combination drugs can provide preliminary data on drug recovery and likely in vivo calibration[15].Despite this there are very few microdialysis studies investigating relative recovery of antibiotics,let alone a combination of antibiotics,despite how commonly they are used clinically[20].Furthermore,for combination antibiotics therapy,previous in vitro microdialysis recovery studies have not fully accounted for in vivo conditions[20].

    Microdialysis catheters may have individual variation in membrane permeability. Diffusion through the microdialysis membrane follows Fick's law.Hence,factors such as partition coefficient,particle size and surface area of the substance will affect the drug permeability through the membrane[21].This necessitates individual probe calibration[22].

    The feasibility of using microdialysis for different drugs depends on the physico-chemical characteristics of the substance,e.g.lipophilic and high molecular weight compounds are less likely to diffuse through the microdialysis catheter membrane and may be less feasible for microdialysis[23].High molecular weight is associated with lower diffusion coefficients through the microdialysis membrane,thus resulting in decreased recovery[23].

    Vancomycin has protein binding of approximately 55%[24]and a molecular weight of~1.5 Da.The molecular weight of tobramycin is 467Da with low serum protein binding(<30%)[25].Both drugs are also hydrophilic and suitable for microdialysis studies.

    Therefore,the aim of this study was to assess the relative recovery of concomitant vancomycin and tobramycin in an in vitro model simulating in vivo conditions.The study assessed the effect of different perfusate flow rates and the concentrations of the antibiotic solutions on the relative recoveries.

    2.Materials and methods

    2.1.Chemicals and standards

    Vancomycin hydrochloride was obtained from Aspen Pharmacare(St Leonards,Australia),tobramycin sulphate was obtained from P fizer(Perth,Australia),and compound sodium lactate IV solution was obtained from Baxter(Old Toongabbie,Australia).The chemical structures for vancomycin and tobramycin are shown in Fig.1.

    Acetonitrile was of HPLC-gradient grade(Merck,Darmstadt,Germany),while dichloromethane(Merck,Darmstadt,Germany),formic acid(Ajax,Taren Point,Australia),hepta fluorobutyric acid(HFBA,Fluka,Castle Hill,Australia)and trichloroacetic acid(Sigma-Aldrich,Castle Hill,Australia)were of analytical grade.Ultrapure water was obtained using a Permutit system(resistivity at 25°C at least 18 ΩM.cm).Drug-free human plasma was obtained from the Royal Brisbane and Women's Hospital blood bank(Brisbane,Australia).

    Fig.1.Structures of vancomycin(A)and tobramycin(B).

    2.2.Microdialysis in vitro model

    Commercially available microdialysis probes CMA 63(CMA Microdialysis AB,Stockholm,Sweden)with a molecular weight cut-off of 20 kDa,an outer diameter of 0.6 mm and a membrane length of 30 mm were used.Probes were perfused with lactated Ringer's solution at flow rates of 1 and 2μL/min by using a precision microinfusion pump CMA 107(CMA Microdialysis AB,Stockholm,Sweden).To enable perfusion at 1.5 μL/min,a Cole-Parmer two-syringe infusion pump 230 VAC CE(John Morris Group,Chatswood,Australia),was used.

    2.3.Stock and standard solution preparation

    A stock solution was freshly prepared by dissolving tobramycin in compound sodium lactate IV solution at 2 mg/mL and stored at-80°C.A stock solution was freshly prepared by dissolving vancomycin in compound sodium lactate IV solution at 2 mg/mL and stored at-80°C.These stock solutions were serially diluted with compound sodium lactate IV solution to produce a standard solution containing 200 μg/mL of both vancomycin and tobramycin,and a standard solution containing 20 μg/mL of both vancomycin and tobramycin.

    2.4.Plasma sample solutions

    The study plasma solutions were prepared using the stock solutions containing both vancomycin and tobramycin and drug-free plasma,to yield plasma sample solutions containing vancomycin and tobramycin of 0.5,5.0 and 20 μg/mL.

    2.5.Recovery experiments

    Microdialysis probes were fully immersed in four separate 100 mL beakers.The beakers contained either 0.5,5 or 20 μg/mL of vancomycin and tobramycin plasma sample solution,or drug-free plasma.A magnetic stirrer was used to simulate in vivo conditions as previously described[26].Temperature and pH of each of the study solutions were recorded to ensure consistency of these variables.

    The microdialysis probe was connected to the precision pump and perfused at 5 μL/min with compound sodium lactate IV solution for 10min to flush the air out of the system.Following this,the probe was perfused at 1 μL/min for 1h to enable equilibration.At the end of the equilibration period the following perfusate flow rates were used for 100 min each,with sampling occurring at 20-min intervals(n=5 sampling points):1.0,1.5 and 2μL/min.Samples were then stored at-80°C for analysis.

    The percent relative recovery was calculated using the recovery-by-gain formula as follows:

    Relative recovery(%)=(Cdialysate/Csolution)×100

    Where Cdialysateis the mean concentration in the microdialysate(n=5);Csolutionis the mean concentration in the study solution(n=5).

    2.6.Instrument and analytical method

    Vancomycin and tobramycin in plasma and microdialysate matrices were measured using validated liquid chromatographytandem massspectrometry(LC-MS/MS)methods.Drug-free compound sodium lactate IV solution and drug-free plasma solution were used to prepare calibration standards used in the assay.

    The LC-MS/MS used two Perkin Elmer LC-200 micro-pumps and a CTC PAL autosampler equipped with an Applied Biosystems API2000 mass spectrometer detector.An electro-spray ionization(ESI)source interface operating in positive-ion mode was used for the multiple reaction monitoring(MRM)LC-MS/MS analysis.The interface settings consisted of the nebulizing gas flow of 40 L/min,turbo gas of 50 L/min,curtain gas of 30 L/min,ion-spray voltage of 4500 V,a turbo-gas temperature of 400°C,and the interface heater on.Two MRMs were monitored and summed for vancomycin,m/z of 725–144 and 725–99,whilst tobramycin was monitored at m/z of 468–163.

    Chromatographic separation of vancomycin,tobramycin and the internal standard(teicoplanin)was achieved using a Waters Xterra C18column(2.1mm × 150 mm,5 μm)using a gradient of mobile phases consisting of(a)0.1%formic acid with 10 mM HFBA and(b)80%methanol in 0.1%formic acid with 10mM HFBA.The mobile phase was operated using a concentration gradient for methanol,ranging from 5%to 80%.The analytical method for tobramycin was similar to that used in other studies[27–29].

    Vancomycin and tobramycin in plasma were assayed separately.For the extraction of vancomycin from plasma,100 μL of plasma was treated with 400 μL of acetonitrile to precipitate proteins,with 600 μL of dichloromethane subsequently added to remove both the acetonitrile and lipids.For the extraction of tobramycin from plasma,200μL of plasma was treated with the addition of 50 μL of 30%trichloroacetic acid.Both vancomycin and tobramycin were assayed simultaneously in microdiaysate,with 10 μL of sample being diluted with 40 μL of internal standard(teicoplanin,100 μg/mL)for direct injection onto the instrumental analysis.

    Calibration standards were prepared using sequential dilution to obtain concentrations of 0.1,0.2,0.5,1,2,5,10,20 and 50 μg/mL.The chromatographic calibration was linear for vancomycin from 0.1 to 50 μg/mL in plasma(LLOQ 0.0917±0.011(mean±SD))and 0.2–50 μg/mL in microdialysate(LLOQ 0.196±0.010,)and for tobramycin from 0.2 to 50 μg/mL in plasma(LLOQ 0.205±0.012),and 0.1–20 μg/mL in microdialysate(LLOQ 0.111±0.004).Quality control samples were prepared at three concentrations 0.6,2 and 16 μg/mL with precision and accuracy within 15%for all analyses.All analyses passed the batch acceptance criteria.The assay was validated according to an international FDA guideline[30]in terms of stability,specificity,linearity,precision and accuracy.

    2.7.Statistical analysis

    A linear regression model was used,with recovery as the dependent variable and flow rate and concentration as independent variables.This allowed us to examine if the recovery changed when the flow rate or concentration was altered.To estimate the variation in recovery we fitted the linear regression model using a Bayesian paradigm and modelled the result of a new test,using the 95%credible interval to estimate the likely range in percent recovery for a new test.As we assume a constant variance across dose, flow rate,and sample number,this credible interval will apply to any mean.We used 10,000 Markov chain Monte Carlo iterations with a burn-in of 10,000 thinned by 3.All analyses were made using R version 3.0.2(www.r-project.org)with the Bayesian analysis in WinBUGS version 3.1.4[31].

    3.Results

    The temperature of all the study solutions was constant at room temperature(24.0°C±0.5).The pH of all the study solutions was 7.40±0.04.The mean(±SD)concentrations of vancomycin and tobramycin are summarized in Table 1.Table 2 presents the mean(±SD)relative recoveries of vancomycin and tobramycin,respectively.

    3.1.Stability of relative recovery during in vitro microdialysis

    There was no significant inter-experiment variation in relative recovery.Relative recovery appeared stable for each microdialysis probe over the 100-min sampling period.The variations were±11%for tobramycin and±14%for vancomycin(using the Bayesian 95%credible intervals(CI)).

    Table 1 Mean(±SD)vancomycin and tobramycin concentrations(μg/mL)in microdialysate at different microdialysis flow rates(1,1.5,and 2 μL/min).

    Table 2 Mean(±SD)vancomycin and tobramycin relative recovery(%)at different microdialysis flow rates(1,1.5,and 2 μL/min).

    Table 3 Multiple regression analysis for relative recovery rates(mean(%)and 95%confidence interval(CI))of vancomycin and tobramycin for different concentrations and perfusate flow rates(For vancomycin,reference level is 1.0 μL/min flow rate and concentration 5.0 mg/mL.For tobramycin,reference level is 1.0μL/min flow rate and concentration 0.5μg/mL).

    3.2.Flow rate dependence on relative recovery

    As shown in Table 2,the relative recoveries for vancomycin were higher at the 1.0 μL/min and 1.5 μL/min flow rates(mean 29.7%and 26.4%,respectively),compared with the 2.0 μL/min flow rate group(mean 21.4%).The regression model in Table 3 shows that a flow rate of 2.0 μL/min had a significantly lower relative recovery than the reference flow rate of 1.0 μL/min.The relative recoveries remained stable for the duration of sampling,i.e.100 min.

    In Table 2,relative recoveries for tobramycin were seen to be comparable at the 1.0 μL/min and 1.5 μL/min flow rates(means 72.0%and 68.5%,respectively),but decreased at 2.0μL/min(61.4%).There were no significant variations in the results over the duration of the study.Table 3 shows the regression model demonstrating the differences in the effect of flow rate on the relative recoveries,with a significantly lower relative recovery for flow rates of 1.5 and 2.0 μL/min compared with 1.0 μL/min.

    3.3.Concentration dependence relative recovery

    As shown in Table 2,the relative recoveries for vancomycin were higher for the 5.0μg/mL concentration(range 20.664%–32.69%)compared with the 20 μg/mL concentration(range 21.7%–27.3%).Importantly,the microdialysate in the 0.5 μg/mL group did not yield any results,as the concentrations were less than the lower limit of quantification of the assay(0.2 μg/mL).For tobramycin,the range of relative recoveries is shown in Table 2 and was the highest for concentration of 0.5μg/mL(range 63.3%–81.66%).

    3.4.Combined effect of drug concentration and flow rate

    For vancomycin(Table 3)there was no statistical difference between the concentrations,but there was a lower relative recovery for flow rate of 2.0 μL/min compared with flow rate of 1.0 μL/min(mean difference-11.6%,95%CI:-18.9 to-4.3%,P value=0.003).The highest relative recovery was for the concentration of 5.0 μg/mL and flow rate of 1.0 μL/min(mean recovery 32.6%,95%CI:24.8%–35.7%).

    For tobramycin(Table 3),there was a higher relative recovery for the concentration of 20μg/mL compared with 0.5μg/mL,with a mean increase of 5.7%(95%CI 1.6%–9.9%,P value=0.008).Flow rates of 1.5μL/min and 2.0μL/min had lower relative recoveries than the flow rate of 1.0μL/min,with P value 0.009 and<0.001,respectively.The highest relative recovery was for a concentration of 0.5μg/mL and flow rate 1.0μL/min(mean 78.53%,95%CI:73.0%–80.6%).

    4.Discussion

    Though in vitro microdialysis studies have been performed previously to examine probe recovery,to the best of our knowledge,this is the first study simulating in vivo conditions and examining the relative recoveries for a combination of antibiotics in plasma.Knowledge of potential drug effects on microdialysis recovery is essential as combination antibiotic therapy is commonly used clinically and if not accounted for in relative recovery,may have the risk of under-or over-estimating drug concentrations in interstitial space fluid in in vivo studies.In vitro studies provide an ideal platform to study this effect and thus allow useful calibration for in vivo studies.Although there were inter-experiment differences in the relative recovery,its practical relevance is negligible.In general,for a drug,inter-experiment relative recovery variations of 20%are acceptable under in vivo conditions[12].

    Nosocomial infections due to methicillin-resistant Staphylococcus aureus(MRSA)and Pseudomonas spp are prevalent[32]and hence most therapies,both empirical and specific,would include vancomycin and tobramycin as part of the regimen[33].Hence,for our study,we chose these two antibiotics.Interstitial space fluid concentrations of antibiotics could be affected by a number of factors during in vivo microdialysis.For vancomycin,the reported values in the microdialysis samples have been variable with a wide range[34–36].For tobramycin,there is dearth of data in the microdialysis samples but Bernardi et al.[37]report a lung microdialysis study using tobramycin and Rodvold et al.[38]report a range of lung penetration ratio for tobramycin.Hence,the three concentrations chosen for the study would encompass a wide range of possible values.

    In comparison to a previous study[20],our study showed that relative recoveries for vancomycin were lower(26%vs.50%)across all flow rates and concentrations.Considering that MacVane et al.[20]performed their study in a non-protein medium,our results could be explained by the protein binding of vancomycin.However,perfusate composition,membrane characteristics and other factors may also play a role in this phenomenon.

    For both drugs and all concentrations,we found improved relative recovery at lower flow rates.Hence,where possible,lower microdialysis flow rates should be preferred for optimal recovery.However,decreasing the flow rate could reduce the ability to sample frequently,due to the increased time required to collect the sample volume required for the assay.Less frequent sampling may adversely affect the temporal resolution of the data.Studies using drugs with narrow therapeutic index or in conditions with temporal fluctuations of drug concentration are likely to produce significant differences.Therefore,choosing a flow rate appropriate for the desired sampling frequency is an important consideration of all studies.In future and with improved analytic techniques,where measurement in a low volume is possible,this may not be an issue.

    Careful consideration of the expected interstitial space fluid concentration should be taken into account when performing studies.Here,the lower recovery rates caused the microdialysate concentration to fall below the lower limit of the assay,as we encountered in the group of low vancomycin concentrations.Therefore,in vitro calibration can help prevent loss of clinical samples from the same issue.

    5.Limitations

    The exact composition of the interstitial space fluid is likely to be different between individual tissues and could be different in illness[39].Moreover,in critical illness the increased inflammation could lead to changes in the interstitial space fluid protein content[39].We were unable to obtain interstitial fluid,hence plasma was used for the study as the surrogate medium.Plasma offers a reasonable surrogate for this experiment,while the protein concentrations are higher at around 60–80g/L in a healthy adult,compared to interstitial fluid with protein content 24–32g/L(interstitial fluid to serum protein ratio~0.4)[40],this offers an insight into the conditions of a patient during critical illness where capillary leak syndrome may elevate the protein content in the interstitial fluid.Although we have attempted to mimic in vivo conditions,our study focussed on only two factors,drug concentration and perfusate flow rate,which affects relative recovery.There is currently no data on the effect of different concentrations of one antibiotic on the recovery rate of another antibiotic during combined antibiotic therapy.Our study did not investigate this effect,but it remains a worthy subject for better characterisation of relative recoveries in this context.Processes such as pressure gradients,extracellular–microvascular exchange,metabolism,and tissue diffusion of the drug can affect the relative recovery of the drugs.In vivo recovery may be affected by experimental and/or disease conditions[19].Besides these,microdialysis probe related factors such as membrane length,material and surface area,perfusate composition and temperature;tissue factors such as blood flow and temperature;the tissue-drugprobe material interactions could affect the drug concentrations,resulting in even lower concentrations of the drug in the microdialysate[19].With this study,we have attempted to establish a minimum set of conditions to be fulfilled for microdialysis-based studies.When possible,future studies should include in vivo calibration for recovery calculations.

    6.Conclusion

    In this simulated in vivo model,the in vitro relative recoveries for vancomycin and tobramycin varied with the perfusate flow rate and drug concentration.We suggest that a low perfusate flow rate≤ 1 μL/min should be used to achieve optimal relative recovery.

    Furthermore,we recommend performing in vitro recovery studies simulating in vivo conditions to accurately calibrate the microdialysis system prior to in vivo studies,to establish the most accurate combination of flow rate and drug concentration.Performing studies in plasma for moderate-to-highly protein bound drugs may better replicate in vivo conditions.Based on our study results,vancomycin and potentially other molecules of larger size and/or high protein binding need additional consideration for improving the relative recovery.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This study was funded by the TPCH foundation grant(MS2011-40)and the RBWH foundation grant 2012.We wish to recognize funding from the Australian National Health and Medical Research Council for a Centre of Research Excellence(APP1099452).JAR is funded in part by a Practitioner Fellowship(APP1117065)from the National Health and Medical Research Council of Australia.

    av中文乱码字幕在线| 999久久久精品免费观看国产| 97碰自拍视频| 香蕉av资源在线| 久久中文字幕一级| 三级毛片av免费| 亚洲人成网站高清观看| 国产亚洲av高清不卡| 国产一区在线观看成人免费| 18禁美女被吸乳视频| 桃色一区二区三区在线观看| 一本综合久久免费| www日本黄色视频网| 国产精品自产拍在线观看55亚洲| 成人av在线播放网站| 夜夜躁狠狠躁天天躁| 精品少妇一区二区三区视频日本电影| 丰满的人妻完整版| 亚洲五月婷婷丁香| 国产久久久一区二区三区| 日韩欧美在线乱码| 欧美日韩精品网址| 99re在线观看精品视频| 十八禁网站免费在线| 国产精品久久久久久人妻精品电影| 国产精品亚洲av一区麻豆| 亚洲成av人片在线播放无| 18禁观看日本| 国产精品自产拍在线观看55亚洲| 很黄的视频免费| 亚洲av片天天在线观看| 村上凉子中文字幕在线| 欧美成人性av电影在线观看| 亚洲avbb在线观看| av福利片在线观看| 日韩欧美三级三区| 青草久久国产| 日日摸夜夜添夜夜添小说| 身体一侧抽搐| 午夜福利免费观看在线| 久久久国产成人精品二区| 91九色精品人成在线观看| 人人妻,人人澡人人爽秒播| 亚洲av日韩精品久久久久久密| 在线观看免费午夜福利视频| 亚洲国产欧洲综合997久久,| 操出白浆在线播放| 久久精品亚洲精品国产色婷小说| 久久欧美精品欧美久久欧美| 一夜夜www| 精品一区二区三区四区五区乱码| 中文资源天堂在线| 久久精品夜夜夜夜夜久久蜜豆 | 三级毛片av免费| 丁香六月欧美| 午夜影院日韩av| 黄色视频,在线免费观看| 国产视频内射| 超碰成人久久| 亚洲av成人不卡在线观看播放网| 日韩欧美免费精品| 国产激情久久老熟女| 日韩精品中文字幕看吧| 免费电影在线观看免费观看| 色精品久久人妻99蜜桃| 伦理电影免费视频| 成人av一区二区三区在线看| 长腿黑丝高跟| aaaaa片日本免费| netflix在线观看网站| av天堂在线播放| av在线天堂中文字幕| 国产亚洲欧美98| 亚洲一区二区三区不卡视频| 在线观看一区二区三区| 毛片女人毛片| 天堂av国产一区二区熟女人妻 | 国产成人精品无人区| 精品日产1卡2卡| 白带黄色成豆腐渣| 中文字幕人妻丝袜一区二区| 亚洲人与动物交配视频| 久久久久久久久中文| 亚洲精品在线观看二区| 人成视频在线观看免费观看| 精品国产乱子伦一区二区三区| 人妻夜夜爽99麻豆av| 床上黄色一级片| 久久久国产成人免费| 看片在线看免费视频| 欧美+亚洲+日韩+国产| 最近视频中文字幕2019在线8| 国产日本99.免费观看| 国产午夜精品论理片| 国产在线观看jvid| 亚洲黑人精品在线| 级片在线观看| 91字幕亚洲| av在线天堂中文字幕| 国产v大片淫在线免费观看| 中文资源天堂在线| 色综合亚洲欧美另类图片| 久久性视频一级片| 丁香六月欧美| av欧美777| 中国美女看黄片| 观看免费一级毛片| 久久久久久人人人人人| 亚洲性夜色夜夜综合| 精品欧美一区二区三区在线| 一区二区三区激情视频| 国产精品精品国产色婷婷| 中出人妻视频一区二区| 国产精品亚洲一级av第二区| 久久久久久大精品| 久久伊人香网站| 亚洲 欧美 日韩 在线 免费| a级毛片a级免费在线| 亚洲免费av在线视频| 在线十欧美十亚洲十日本专区| 午夜福利欧美成人| 制服诱惑二区| 国产免费男女视频| 久久久久久久久久黄片| 成人国语在线视频| 精品一区二区三区视频在线观看免费| 亚洲九九香蕉| 最近最新中文字幕大全电影3| 黄色 视频免费看| 九九热线精品视视频播放| e午夜精品久久久久久久| 色老头精品视频在线观看| 丰满的人妻完整版| 97超级碰碰碰精品色视频在线观看| 亚洲国产精品合色在线| 亚洲熟妇中文字幕五十中出| 国产区一区二久久| 亚洲欧美精品综合一区二区三区| 亚洲熟妇中文字幕五十中出| 人妻久久中文字幕网| 黑人巨大精品欧美一区二区mp4| 老汉色av国产亚洲站长工具| 欧美中文日本在线观看视频| 欧美日韩黄片免| 91成年电影在线观看| 91麻豆av在线| 少妇粗大呻吟视频| 51午夜福利影视在线观看| 成人18禁在线播放| 婷婷精品国产亚洲av在线| а√天堂www在线а√下载| 国产精品 欧美亚洲| 久久婷婷成人综合色麻豆| a级毛片a级免费在线| 欧美日韩亚洲国产一区二区在线观看| 欧美成人午夜精品| 最近视频中文字幕2019在线8| 欧美另类亚洲清纯唯美| 少妇粗大呻吟视频| 夜夜爽天天搞| 精品久久久久久久久久免费视频| 欧美av亚洲av综合av国产av| 国产av又大| 久久精品国产综合久久久| 亚洲成人中文字幕在线播放| 久久久久国内视频| 香蕉久久夜色| 国产成年人精品一区二区| 非洲黑人性xxxx精品又粗又长| 国产午夜精品论理片| 国产精品av视频在线免费观看| 久久九九热精品免费| netflix在线观看网站| 婷婷六月久久综合丁香| 97超级碰碰碰精品色视频在线观看| 国语自产精品视频在线第100页| 十八禁网站免费在线| 性欧美人与动物交配| 黑人巨大精品欧美一区二区mp4| av有码第一页| 色尼玛亚洲综合影院| ponron亚洲| 一夜夜www| 亚洲av成人精品一区久久| 伊人久久大香线蕉亚洲五| 久久久久久久精品吃奶| 亚洲 欧美一区二区三区| 国产成人系列免费观看| 精品欧美国产一区二区三| 无限看片的www在线观看| 黄片小视频在线播放| 日本三级黄在线观看| 麻豆久久精品国产亚洲av| 香蕉丝袜av| 中文在线观看免费www的网站 | 精品久久久久久成人av| 久久国产精品影院| 精品国产乱码久久久久久男人| 中文在线观看免费www的网站 | 国内久久婷婷六月综合欲色啪| 午夜福利高清视频| av超薄肉色丝袜交足视频| 亚洲 欧美一区二区三区| www日本黄色视频网| 国产熟女午夜一区二区三区| 亚洲专区国产一区二区| 国内毛片毛片毛片毛片毛片| 免费观看精品视频网站| 国产不卡一卡二| 麻豆成人午夜福利视频| av福利片在线观看| 久久久国产精品麻豆| 免费在线观看成人毛片| 欧美性长视频在线观看| 久久伊人香网站| 搡老熟女国产l中国老女人| 人妻夜夜爽99麻豆av| 国产真人三级小视频在线观看| 十八禁人妻一区二区| 中文在线观看免费www的网站 | 一区福利在线观看| 丝袜人妻中文字幕| 别揉我奶头~嗯~啊~动态视频| 久久久久免费精品人妻一区二区| 久久精品夜夜夜夜夜久久蜜豆 | 91大片在线观看| 又黄又爽又免费观看的视频| 深夜精品福利| 色精品久久人妻99蜜桃| 看免费av毛片| 好男人电影高清在线观看| 亚洲av电影在线进入| 99久久精品国产亚洲精品| 搡老熟女国产l中国老女人| 国产成人系列免费观看| 欧美在线一区亚洲| 日本在线视频免费播放| 亚洲人成网站在线播放欧美日韩| 岛国视频午夜一区免费看| 国产成人av教育| 亚洲av成人一区二区三| 五月伊人婷婷丁香| 母亲3免费完整高清在线观看| 欧美大码av| 国产99白浆流出| 哪里可以看免费的av片| 非洲黑人性xxxx精品又粗又长| 法律面前人人平等表现在哪些方面| www日本在线高清视频| 国产精品av视频在线免费观看| 亚洲成av人片免费观看| 亚洲av中文字字幕乱码综合| 精品久久久久久,| a级毛片在线看网站| 天堂影院成人在线观看| 亚洲一区二区三区色噜噜| 国产一区二区激情短视频| 三级毛片av免费| 亚洲专区国产一区二区| 长腿黑丝高跟| 热99re8久久精品国产| 老司机深夜福利视频在线观看| 婷婷六月久久综合丁香| 久久九九热精品免费| 99久久99久久久精品蜜桃| 亚洲乱码一区二区免费版| 18禁裸乳无遮挡免费网站照片| 亚洲免费av在线视频| 国产1区2区3区精品| 国内少妇人妻偷人精品xxx网站 | 香蕉丝袜av| 亚洲男人的天堂狠狠| 在线观看www视频免费| 色综合站精品国产| 女人被狂操c到高潮| www日本在线高清视频| 国产蜜桃级精品一区二区三区| 日韩大码丰满熟妇| 欧美最黄视频在线播放免费| 午夜福利在线在线| 99国产精品一区二区蜜桃av| 精品国产乱子伦一区二区三区| 婷婷精品国产亚洲av在线| 51午夜福利影视在线观看| 国产人伦9x9x在线观看| 三级国产精品欧美在线观看 | 久久久久久久精品吃奶| 精品久久久久久久久久免费视频| 国内少妇人妻偷人精品xxx网站 | 十八禁人妻一区二区| 一级毛片高清免费大全| 美女大奶头视频| 俺也久久电影网| 亚洲av成人一区二区三| 久久亚洲精品不卡| 成人av在线播放网站| 不卡av一区二区三区| 亚洲自拍偷在线| 亚洲国产欧美一区二区综合| 亚洲av成人精品一区久久| www.自偷自拍.com| 亚洲黑人精品在线| 国产在线精品亚洲第一网站| 精品久久久久久,| 男女视频在线观看网站免费 | 香蕉av资源在线| 亚洲国产欧美人成| 午夜福利视频1000在线观看| 色尼玛亚洲综合影院| 91在线观看av| av国产免费在线观看| 桃红色精品国产亚洲av| 可以在线观看毛片的网站| 亚洲自拍偷在线| 禁无遮挡网站| 韩国av一区二区三区四区| 男女下面进入的视频免费午夜| 久久久久九九精品影院| 男男h啪啪无遮挡| 国产一区二区在线观看日韩 | 日本成人三级电影网站| 露出奶头的视频| 亚洲国产中文字幕在线视频| 久久久国产欧美日韩av| 欧美3d第一页| 国产野战对白在线观看| 欧美色欧美亚洲另类二区| 老熟妇仑乱视频hdxx| 亚洲欧美精品综合久久99| 妹子高潮喷水视频| 91成年电影在线观看| 欧美国产日韩亚洲一区| 欧美av亚洲av综合av国产av| 久久久久国产一级毛片高清牌| 2021天堂中文幕一二区在线观| 久久这里只有精品19| ponron亚洲| 久久香蕉激情| 亚洲 国产 在线| 最近在线观看免费完整版| 动漫黄色视频在线观看| 国产精华一区二区三区| 日本成人三级电影网站| 我要搜黄色片| 夜夜躁狠狠躁天天躁| 亚洲人成网站在线播放欧美日韩| 香蕉久久夜色| 亚洲美女黄片视频| 一本一本综合久久| 天天一区二区日本电影三级| 亚洲美女视频黄频| 欧美在线一区亚洲| 国产激情偷乱视频一区二区| 国产亚洲精品第一综合不卡| 岛国在线免费视频观看| 欧美国产日韩亚洲一区| 村上凉子中文字幕在线| 高清毛片免费观看视频网站| 亚洲一区二区三区不卡视频| 天堂√8在线中文| 国产单亲对白刺激| 国产三级中文精品| 日本 欧美在线| 久久精品国产综合久久久| 哪里可以看免费的av片| 一本精品99久久精品77| 一级a爱片免费观看的视频| 亚洲人成电影免费在线| 亚洲国产精品合色在线| 久久久精品欧美日韩精品| 在线播放国产精品三级| 人妻夜夜爽99麻豆av| 最近最新中文字幕大全免费视频| 成人欧美大片| 一进一出好大好爽视频| 国产日本99.免费观看| 黄色 视频免费看| 在线观看免费日韩欧美大片| 免费无遮挡裸体视频| 91av网站免费观看| 50天的宝宝边吃奶边哭怎么回事| av欧美777| 亚洲人与动物交配视频| 在线a可以看的网站| 国产成人精品无人区| 亚洲中文日韩欧美视频| 久久精品国产亚洲av香蕉五月| 在线观看免费午夜福利视频| 国产精品国产高清国产av| 欧美性猛交黑人性爽| 精品一区二区三区av网在线观看| 黄色女人牲交| 欧美丝袜亚洲另类 | √禁漫天堂资源中文www| av天堂在线播放| 青草久久国产| 欧美绝顶高潮抽搐喷水| 国产一区二区在线av高清观看| 中文字幕最新亚洲高清| 亚洲成人中文字幕在线播放| 好男人在线观看高清免费视频| 欧美成人午夜精品| 在线观看美女被高潮喷水网站 | 无限看片的www在线观看| 老汉色av国产亚洲站长工具| 国内久久婷婷六月综合欲色啪| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩一级在线毛片| 精品福利观看| 亚洲av熟女| 99国产精品一区二区三区| 亚洲狠狠婷婷综合久久图片| 观看免费一级毛片| 婷婷六月久久综合丁香| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区精品视频观看| a级毛片a级免费在线| 成人18禁高潮啪啪吃奶动态图| 日韩欧美精品v在线| 午夜老司机福利片| 欧美日韩黄片免| 又大又爽又粗| 国产精品野战在线观看| 18禁国产床啪视频网站| 首页视频小说图片口味搜索| 国产精品免费视频内射| 麻豆国产97在线/欧美 | 亚洲av成人一区二区三| 黄片小视频在线播放| 色av中文字幕| 国产三级在线视频| 制服诱惑二区| 国产精品亚洲一级av第二区| 久久久国产精品麻豆| 人妻丰满熟妇av一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 精品久久蜜臀av无| 999久久久精品免费观看国产| 国产欧美日韩精品亚洲av| 久久久国产成人免费| 熟妇人妻久久中文字幕3abv| 国产欧美日韩一区二区三| 国产真实乱freesex| 在线a可以看的网站| 国产精品自产拍在线观看55亚洲| 国内精品久久久久精免费| 在线永久观看黄色视频| 97超级碰碰碰精品色视频在线观看| 一区二区三区高清视频在线| 免费看十八禁软件| 免费在线观看视频国产中文字幕亚洲| 亚洲片人在线观看| 成年人黄色毛片网站| netflix在线观看网站| 久久久水蜜桃国产精品网| 精品久久蜜臀av无| 日韩精品青青久久久久久| 毛片女人毛片| 精品少妇一区二区三区视频日本电影| 亚洲av熟女| 在线观看舔阴道视频| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区| 国产91精品成人一区二区三区| 国产精品 欧美亚洲| 亚洲国产看品久久| 少妇的丰满在线观看| 女人高潮潮喷娇喘18禁视频| 丝袜美腿诱惑在线| 亚洲色图av天堂| 两性夫妻黄色片| 日韩欧美 国产精品| 桃色一区二区三区在线观看| 最近最新免费中文字幕在线| 国产高清视频在线播放一区| 狂野欧美激情性xxxx| 国产精品久久久久久精品电影| 欧美最黄视频在线播放免费| 黄色视频,在线免费观看| 国产乱人伦免费视频| 久久久久九九精品影院| 人人妻,人人澡人人爽秒播| 亚洲精品国产一区二区精华液| 深夜精品福利| 成人欧美大片| 两个人视频免费观看高清| 夜夜看夜夜爽夜夜摸| 99热6这里只有精品| avwww免费| 怎么达到女性高潮| 制服丝袜大香蕉在线| 国产精品亚洲一级av第二区| 非洲黑人性xxxx精品又粗又长| 国产不卡一卡二| 淫妇啪啪啪对白视频| 欧美性猛交╳xxx乱大交人| 亚洲av五月六月丁香网| 国产熟女午夜一区二区三区| 美女免费视频网站| 精品一区二区三区av网在线观看| 俄罗斯特黄特色一大片| 欧美成人午夜精品| 欧美色欧美亚洲另类二区| 久久精品国产亚洲av香蕉五月| 可以在线观看毛片的网站| 亚洲欧美一区二区三区黑人| 精品一区二区三区视频在线观看免费| 夜夜夜夜夜久久久久| 丰满的人妻完整版| 欧美高清成人免费视频www| 免费搜索国产男女视频| 亚洲成人久久性| 欧美一级毛片孕妇| 日本精品一区二区三区蜜桃| 香蕉久久夜色| 桃红色精品国产亚洲av| 欧美日本亚洲视频在线播放| 久久人妻av系列| 精品久久久久久久毛片微露脸| 亚洲一区中文字幕在线| 18禁裸乳无遮挡免费网站照片| 不卡一级毛片| 99精品久久久久人妻精品| 悠悠久久av| 久久久国产成人免费| www.自偷自拍.com| 欧美国产日韩亚洲一区| 91成年电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一进一出抽搐动态| 亚洲美女视频黄频| 看黄色毛片网站| 久久天躁狠狠躁夜夜2o2o| www.自偷自拍.com| 伦理电影免费视频| 国产精品av久久久久免费| 中文亚洲av片在线观看爽| 桃色一区二区三区在线观看| 欧美黄色片欧美黄色片| 日韩国内少妇激情av| 好男人在线观看高清免费视频| 亚洲成人中文字幕在线播放| 啦啦啦韩国在线观看视频| 岛国在线免费视频观看| 日韩免费av在线播放| 美女扒开内裤让男人捅视频| 亚洲精品粉嫩美女一区| 国产精品一区二区三区四区免费观看 | 精品福利观看| 美女 人体艺术 gogo| 免费av毛片视频| 国产熟女xx| 国产精华一区二区三区| 亚洲成人中文字幕在线播放| 成人一区二区视频在线观看| 老鸭窝网址在线观看| 大型黄色视频在线免费观看| 欧美国产日韩亚洲一区| 成在线人永久免费视频| 亚洲成人免费电影在线观看| 最新在线观看一区二区三区| 久久久久久久久久黄片| 欧美日韩瑟瑟在线播放| 18禁黄网站禁片午夜丰满| 日韩欧美一区二区三区在线观看| 欧美高清成人免费视频www| 十八禁人妻一区二区| 在线视频色国产色| 精品国产乱子伦一区二区三区| 欧美zozozo另类| 18禁观看日本| 日韩欧美国产在线观看| 一个人免费在线观看电影 | 免费高清视频大片| 国产精品一区二区三区四区免费观看 | 黄色视频不卡| 久热爱精品视频在线9| 亚洲人成伊人成综合网2020| 亚洲av美国av| 岛国在线观看网站| 操出白浆在线播放| 1024香蕉在线观看| 国产精品乱码一区二三区的特点| 欧美人与性动交α欧美精品济南到| 日韩精品免费视频一区二区三区| 色综合婷婷激情| 日本一二三区视频观看| 97人妻精品一区二区三区麻豆| 国产精品电影一区二区三区| 18美女黄网站色大片免费观看| 午夜福利18| 99精品在免费线老司机午夜| 1024视频免费在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品av麻豆狂野| 这个男人来自地球电影免费观看| 亚洲国产精品999在线| 免费一级毛片在线播放高清视频| 又大又爽又粗| 国产真人三级小视频在线观看| 国产成人精品久久二区二区免费| 国产亚洲av嫩草精品影院| avwww免费| 久久久久免费精品人妻一区二区| 久久久国产成人免费| 国产精品久久久人人做人人爽| 特级一级黄色大片| 国产精品美女特级片免费视频播放器 | АⅤ资源中文在线天堂| 国产精品一区二区三区四区免费观看 | 亚洲狠狠婷婷综合久久图片| 国产午夜福利久久久久久| 国产成人啪精品午夜网站| 俄罗斯特黄特色一大片| 久久久久久人人人人人|