柳伍生,周向棟,匡凱
?
基于IC卡數(shù)據(jù)的公交下車站點(diǎn)區(qū)間不確定性客流推導(dǎo)方法
柳伍生,周向棟,匡凱
(長(zhǎng)沙理工大學(xué) 交通運(yùn)輸工程學(xué)院,湖南 長(zhǎng)沙 410004)
在交通大數(shù)據(jù)背景下,針對(duì)現(xiàn)有公交客流推導(dǎo)研究中站點(diǎn)客流皆為固定單一值與實(shí)際波動(dòng)區(qū)間值不符的問題,利用區(qū)間不確定性理論,以及公交IC卡數(shù)據(jù)與GPS數(shù)據(jù)相結(jié)合,得到上車站點(diǎn)的公交區(qū)間客流。對(duì)公交刷卡行為進(jìn)行分析,考慮乘客個(gè)體出行特征和乘客出行距離于站點(diǎn)吸引權(quán)重中,得到下車站點(diǎn)客流推導(dǎo)概率模型,結(jié)合區(qū)間不確定性理論,得到下車站點(diǎn)客流區(qū)間值。以深圳市的21路公交IC卡數(shù)據(jù)和GPS數(shù)據(jù)為例進(jìn)行實(shí)例分析。通過對(duì)推導(dǎo)結(jié)果的合理性分析,表明得到的公交區(qū)間不確定性客流,更符合實(shí)際,算法流程清晰,具有更好的可靠性。
公交客流OD;區(qū)間不確定性理論;IC卡數(shù)據(jù);GPS數(shù)據(jù);下車站點(diǎn)
傳統(tǒng)的公交客流往往依靠人工調(diào)查,數(shù)據(jù)采集主要為人工調(diào)查方法。傳統(tǒng)方法往往通過人工問卷調(diào)查法獲取公交出行OD,需要耗費(fèi)大量的人力、物力,且樣本數(shù)量少、精度不高。近年來,以公交IC卡為主的數(shù)據(jù)分析方法,數(shù)據(jù)豐富全面有效,費(fèi)用較低,是現(xiàn)在公交客流OD研究的主流方法[1?4]。國(guó)外對(duì)結(jié)合大數(shù)據(jù)的公交客流OD研究較早,也相對(duì)成熟。Barry等[5]依托大數(shù)據(jù)分析實(shí)現(xiàn)了對(duì)紐約市的公交客流OD推導(dǎo)。ZHAO等[6]針對(duì)地鐵?地鐵,地鐵?公交的2類出行鏈做了公交客流推導(dǎo),CUI[2]對(duì)于不同規(guī)模的公交客流研究了相應(yīng)的推導(dǎo)方法。Pelletier等[7?12]采用公交智能卡對(duì)出行目的、出行鏈等進(jìn)行分析。國(guó)內(nèi)對(duì)于公交客流OD的推導(dǎo)研究較晚。胡郁蔥等[13]通過IC卡數(shù)據(jù)挖掘技術(shù)獲取了公交OD矩陣。陳崢嶸[14]將智能公交數(shù)據(jù)處理方法應(yīng)用于公交客流OD研究。胡繼華等[15]提出結(jié)合出行鏈的IC卡公交客流研究方法。國(guó)內(nèi)學(xué)者研究主要集中于IC卡數(shù)據(jù)的下車站點(diǎn)的客流推導(dǎo)確定值問題[16?20]。結(jié)合大數(shù)據(jù),國(guó)內(nèi)外對(duì)于區(qū)間不確定性分析研究較少。全維杰等[21?22]分別采用雙層規(guī)劃模型及高維代理模型對(duì)區(qū)間不確定性問題進(jìn)行分析。Averbakh等[23?25]分別研究了帶區(qū)間的后悔網(wǎng)絡(luò)優(yōu)化問題以及離散區(qū)間的優(yōu)化問題。實(shí)際上,復(fù)雜的公共交通環(huán)境以及乘客的個(gè)體隨機(jī)出行特征,使得上下車客流往往在一個(gè)區(qū)間范圍內(nèi)波動(dòng),但過去的方法往往得到的是一確定值。給定一個(gè)區(qū)間客流值給決策者提供更好的支撐。本研究通過區(qū)間不確定性理論與交通大數(shù)據(jù)相結(jié)合,以出行鏈的思想,對(duì)一天刷卡次數(shù)行為進(jìn)行分析,結(jié)合乘客出行站數(shù)和乘客個(gè)體出行特征,以公交IC卡數(shù)據(jù)和GPS數(shù)據(jù)為基礎(chǔ),對(duì)公交客流區(qū)間OD推導(dǎo)方法進(jìn)行系統(tǒng)研究,并以深圳市公交數(shù)據(jù)為實(shí)例進(jìn)行分析研究。
本研究數(shù)據(jù)來源于深圳市公交IC卡和公交GPS數(shù)據(jù),公交線路及站點(diǎn)基礎(chǔ)數(shù)據(jù),選取深圳市常規(guī)公交IC卡系統(tǒng)數(shù)據(jù)卡編號(hào),刷卡時(shí)間,車輛編號(hào),線路編號(hào)4個(gè)數(shù)據(jù)類型,GPS系統(tǒng)數(shù)據(jù)中終端ID(車輛編號(hào)),GPS系統(tǒng)時(shí)間,接受時(shí)間,經(jīng)緯度4個(gè)數(shù)據(jù)類型,線路及站點(diǎn)基礎(chǔ)數(shù)據(jù)中線路名稱,線路車輛編號(hào)、站點(diǎn)名稱,站點(diǎn)經(jīng)緯度4個(gè)數(shù)據(jù)類型,車輛編號(hào)與車牌號(hào)之間有種對(duì)應(yīng)關(guān)系,終端ID與車牌號(hào)之間有種對(duì)應(yīng)關(guān)系。篩選得到的公交基礎(chǔ)數(shù)據(jù)見表1,所得公交融合數(shù)據(jù)見表2。
表1 公交基礎(chǔ)數(shù)據(jù)
表2 公交融合數(shù)據(jù)
其中:t為車輛到站時(shí)間;t為車輛離站時(shí)間。
在實(shí)際復(fù)雜的公共交通環(huán)境下,公交客流OD時(shí)刻在變化,存在或多或少的不確定性因素。依托交通大數(shù)據(jù),通過對(duì)海量公交客流數(shù)據(jù)進(jìn)行分析,可得公交客流OD區(qū)間集合。傳統(tǒng)公交客流OD推導(dǎo)方法未考慮區(qū)間不確定性因素,使用區(qū)間不確定理論,可減少簡(jiǎn)化和假設(shè),使得模型更真實(shí)更符合實(shí)際。
區(qū)間不確定性理論在數(shù)學(xué)上叫做區(qū)間數(shù)優(yōu)化方法[20?22]。通過一個(gè)參數(shù)取值的波動(dòng)區(qū)間集合,對(duì)該區(qū)間集合進(jìn)行優(yōu)化即區(qū)間數(shù)優(yōu)化。區(qū)間數(shù)優(yōu)化方法一般以概率大小來確定不確定約束及控制的滿意程度,不確定性目標(biāo)函數(shù)的性能由多個(gè)約束保證,具有更好的靈活性和柔性。區(qū)間數(shù)優(yōu)化方法分為3類:一為基于區(qū)間數(shù)序關(guān)系的線性區(qū)間數(shù)優(yōu)化,二為基于最大最小后悔準(zhǔn)則的線性區(qū)間數(shù)優(yōu)化,三為非線性區(qū)間數(shù)優(yōu)化。
結(jié)合現(xiàn)實(shí)生活中存在和人共乘,一卡多刷的現(xiàn)象,提出和人共乘行為的假設(shè):如果同一卡號(hào)的連續(xù)2次以上的刷卡記錄的時(shí)間間隔小于對(duì)應(yīng)站點(diǎn)間的行程時(shí)間,則后幾條刷卡記錄判定為和人共乘記錄。假設(shè)和人共乘人員出行路徑一致,即兩者下車站點(diǎn)一致(假設(shè)1)。對(duì)刷卡數(shù)據(jù)進(jìn)一步整理,對(duì)代刷次數(shù)合并整理,以下刷卡次數(shù)為已合并代刷的刷卡次數(shù)。
實(shí)際生活中公交乘客存在一天多次的刷卡行為,本研究對(duì)一天刷卡次數(shù)1至4次的行為進(jìn)行了分析,對(duì)于刷卡次數(shù)超過4次以上的少數(shù)情況忽略不計(jì),不予考慮,本研究選取一天刷卡次數(shù)4次以下數(shù)據(jù)為研究數(shù)據(jù)對(duì)象。依據(jù)出行特征將刷卡數(shù)據(jù)進(jìn)行分類分析,從而對(duì)下車站點(diǎn)進(jìn)行分類推導(dǎo),分類方法見表3。部分一天多次的刷卡記錄可依據(jù)表1的上下車站點(diǎn)推導(dǎo)依據(jù)直接推導(dǎo)得出。
表3 IC卡上下車站點(diǎn)推導(dǎo)依據(jù)
結(jié)合刷卡行為分析,結(jié)合實(shí)際運(yùn)營(yíng)中,公交乘客于同一站點(diǎn)間換乘,提出換乘假設(shè):乘客下次刷卡站點(diǎn)位于當(dāng)次乘客刷卡上車站點(diǎn)的下游站點(diǎn)(當(dāng)次乘客線路行駛方向向下)且時(shí)間間隔為當(dāng)次乘車所用時(shí)間波動(dòng)區(qū)間內(nèi),則乘客當(dāng)次乘車的下車站點(diǎn)為下次乘車上車站點(diǎn)(假設(shè)2)。
現(xiàn)有公交IC卡信息中無乘客下車信息,依本研究上車站點(diǎn)確定方法,可得乘客上車站點(diǎn)具體情況,下車站點(diǎn)可通過挖掘乘客出行規(guī)律和站點(diǎn)的客流特征來進(jìn)行推導(dǎo),從而預(yù)測(cè)一天的下車站點(diǎn)客流。乘客出行站數(shù)分布具有一定的統(tǒng)計(jì)分布規(guī)律,本研究采用泊松分布。
個(gè)體乘客的出行概率,在任意站點(diǎn)上車的特定乘客,在線路l下游任意站點(diǎn)下車,定義 如下:
1) 下游站點(diǎn)集合:運(yùn)行方向下線路l在上車站點(diǎn)的下方所有站點(diǎn)集合。
2) 高頻站點(diǎn)集合F:下游站點(diǎn)集合中,乘客上下車頻次高的站點(diǎn)。由于每個(gè)乘客的高頻站點(diǎn)各不相同,F為乘客前天上車站點(diǎn)記錄的集合與E的交集。F中的站點(diǎn)需滿足如下條件,乘客在該站點(diǎn)的前天上車次數(shù)高于數(shù)值。的取值由前天的時(shí)間跨度所決定,從而得到高頻站點(diǎn)集合F。
3) 換乘樞紐站點(diǎn)集合G:乘客下次乘車的上車站點(diǎn)與的交集。
若G非空,則站點(diǎn)對(duì)特定乘客的站點(diǎn)吸引權(quán)為:
若G為空,F非空,則站點(diǎn)吸引權(quán)重為
其中:I為在線路l上,特定乘客在前天在站點(diǎn)的上車次數(shù);為高頻站點(diǎn)集合包含的站點(diǎn) 個(gè)數(shù)。
若G為空,F為空,則站點(diǎn)吸引權(quán)重為
綜上,考慮乘客個(gè)體出行特征情況,線路l上在站點(diǎn)上車的特定乘客,經(jīng)過個(gè)站點(diǎn)在站點(diǎn)下車的概率為
依據(jù)本研究下車站點(diǎn)客流推導(dǎo)流程法則,進(jìn)行下車站點(diǎn)推導(dǎo),高頻站點(diǎn)集的頻次約束不低于3次,乘客近期出行的歷史數(shù)據(jù)為2015?11?10~2016? 01?10的深圳市21路刷卡數(shù)據(jù),判斷出下車站點(diǎn)的數(shù)據(jù)總數(shù)共61 610條,其部分計(jì)算結(jié)果和下車站點(diǎn)客流區(qū)間如表4和圖1所示。2016?01?13對(duì)深圳市21路進(jìn)行區(qū)間抽樣調(diào)查得到擴(kuò)樣系數(shù)表見表5,全天各站點(diǎn)下車人數(shù)調(diào)查統(tǒng)計(jì)見表6,各站點(diǎn)全天調(diào)查下車人數(shù)與預(yù)測(cè)下車站點(diǎn)客流區(qū)間進(jìn)行有效性判別,結(jié)果顯示,該天客流均在預(yù)測(cè)客流區(qū)間范圍內(nèi),見表6,得調(diào)查客流在預(yù)測(cè)區(qū)間范圍內(nèi)占比例95.55%,準(zhǔn)確度高,具有很高的實(shí)際調(diào)度參考價(jià)值。
表4 算法部分計(jì)算結(jié)果
圖1 下車客流區(qū)間分布圖(單向)
表5 部分?jǐn)U樣系數(shù)
表6 部分下車客流區(qū)間檢驗(yàn)
1) 分析公交乘客刷卡行為特性,結(jié)合區(qū)間不確定性理論,考慮乘客個(gè)體出行特征和乘客出行距離于站點(diǎn)吸引權(quán)重計(jì)算模型,得到單條線路乘客上車客流區(qū)間值,更符合實(shí)際分布。
2) 對(duì)于乘客上車客流區(qū)間值分布研究,本研究可做到每天每個(gè)時(shí)段的精確分布;對(duì)于乘客下車客流區(qū)間值分布研究,本文研究每天的客流區(qū)間分布,對(duì)于每個(gè)時(shí)段的客流區(qū)間分布將是下一步研究重點(diǎn),同時(shí)將通過可靠的居民出行OD數(shù)據(jù)結(jié)合交通大數(shù)據(jù),得到公交出行交通出行區(qū)間OD。
[1] Bagchi M, White P R. The potential of public transport smart card data[J]. Transport Policy, 2005, 12(5): 464?474.
[2] CUI A. Bus passenger origin-destination matrix estimation using automated data collection system[D]. Boston: Massachusetts Institute of Technology, 2006.
[3] 楊萬波, 王昊, 葉曉飛, 等. 基于GPS和IC卡數(shù)據(jù)的公交出行OD推算方法[J]. 重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 34(4): 117?121. YANG Wanbo, WANG Hao, YE Xiaofei, et al. OD matrix inference for urban public transportation trip based on GPS and IC card data[J]. Journal of Chongqing Jiaotong University (Natural Science), 2015, 33(4): 117?121.
[4] 陸百川, 鄧捷, 馬慶祿, 等. 基于IC卡和RBF神經(jīng)網(wǎng)絡(luò)的短時(shí)公交客流量預(yù)測(cè)[J]. 重慶交通大學(xué)學(xué)報(bào)(自然科學(xué)版), 2015, 34(6): 106?110. LU Baichuan, DENG Jie, MA Qinlu, et al. A short-term public transit volume forecasting model based on IC card and RBF neural network[J]. Journal of Chongqing Jiaotong University (Natural Science), 2015, 34(6): 106? 110.
[5] Barry J, Newhouser R, Rahbee A, et al. Origin and destination estimation in New York City with automated fare system data[J]. Transportation Research Record, 2002, 18(17): 183?187.
[6] ZHAO J H. The planning and analysis implications of automated data collection systems: rail transit OD matrix inference and path choice modeling examples[D]. Cambridge: Massachusetts Institute of Technology, 2004.
[7] Pelletier M P, Trépanier M, Morency C. Smart card data use in public transit: A literature review[J]. Transportation Research Part C, 2011, 19(4): 557?568.
[8] Markus Hofmalill, Margaret O’Mahony. Transfer. Journey identification and analyses from electronic fare collection data[C]// Proceedings of 8th International IEEE Conference on Intelligent Transportation Systems, Vienna, Austria, 2005.
[9] ZHAO Jinhua. The planning and analysis implications of automated data collection systems: Rail transit OD matrix inference and path choice modeling examples[D]. Massaehusetts Institute of Teehnology, 2004.
[10] Sang G L, Hickman M. Trip purpose inference using automated fare collection date[J]. Public Transport, 2014, 6(2): 1?20.
[11] Gordon J B, Koutsopoulos H N. Automated inference of linked transit journeys in London using fare-transaction and vehicle location data[J]. Transportation Research Record Journal of the Transportation Research Board, 2013, 23(43): 17?24.
[12] Nassir N, Hickman M, Ma Z L. Activity detection and transfer identification for public transit fare card data[J]. Transportation, 2015, 42(4): 1?23.
[13] 胡郁蔥, 梁杰榮, 梁楓明. 基于IC卡數(shù)據(jù)挖掘獲取公交OD矩陣的方法[J]. 交通信息與安全,2012, 30(4): 66?70. HU Yucong, LIANG Jierong, LIANG Fengming. A way to get bus regional OD matrix based on mining IC card information[J]. Journal of Transport Information and Safety, 2012, 30(4): 66?70.
[14] 陳崢嶸. 智能公共交通系統(tǒng)數(shù)據(jù)分析方法與應(yīng)用研究[D]. 南京: 東南大學(xué), 2012. CHEN Zhengrong. Study on intelligent public transportation system data analysis methods and applications[D]. Nanjing: Southeast University, 2012.
[15] 胡繼華, 鄧俊, 黃澤. 結(jié)合出行鏈的公交IC卡乘客下車站點(diǎn)判斷概率模型[J]. 交通運(yùn)輸系統(tǒng)工程與信息, 2014, 14(2): 62?67. HU Jihua, DENG Jun, HUANG Ze. Trip-chain based probability model for identifying alighting stations of smart card passengers[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(2): 62?67.
[16] 鄧連波, 高偉. 基于換乘網(wǎng)絡(luò)的城市軌道交通關(guān)聯(lián)公交接駁線網(wǎng)優(yōu)化[J].鐵道科學(xué)與工程學(xué)報(bào), 2012, 9(6): 77?83. DENG Lianbo, GAO Wei. Optimal design of feeder-bus network related to urban rail transit based on transfer network[J]. Journal of Railway Science and Engineering, 2012,9(6): 77?83.
[17] 王周全. 基于IC卡數(shù)據(jù)與GPS數(shù)據(jù)的公交客流時(shí)空分布研究[D]. 成都: 西南交通大學(xué), 2016. WANG Zhouquan. Research on bus passenger flow space-time distribution based on IC card data and GPS data[D]. Chengdu: Southwest Jiaotong University, 2016.
[18] 陳紹輝, 陳艷艷, 賴見輝. 基于GPS與IC卡數(shù)據(jù)的公交站點(diǎn)匹配方法[J]. 公路交通科技, 2012, 29(5): 102?106. CHEN Shaohui, CHEN Yanyan, LAI Jianhui. An approach on station ID and trade record match based on GPS and IC card data[J]. Journal of Highway and Transportation Research and Development, 2012, 29(5): 102?106.
[19] 徐文遠(yuǎn), 鄧春瑤, 劉寶義. 基于公交IC卡數(shù)據(jù)的公交客流統(tǒng)計(jì)方法[J]. 中國(guó)公路學(xué)報(bào), 2013, 26(5): 158?163. XU Wenyuan, DENG Chunyao, LIU Baoyi. Approach on public traffic passenger flow statistics based on IC data[J]. China Journal of Highway and Transport, 2013, 26(5): 158?163.
[20] 周和平,全維杰, 楊啟福, 等. 基于區(qū)間情景的不確定性O(shè)D反推模型與算法[J].系統(tǒng)工程, 2013, 31(10): 75?80. ZHOU Heping, QUAN Weijie, YANG Qifu, et al. Uncertain optimization model and algorithm of estimating origin-destination matrices based on interval scenarios[J]. Systems Engineering, 2013, 31(10): 75?80.
[21] 全維杰. 區(qū)間不確定需求下的OD反推模型與算法研究[D]. 長(zhǎng)沙: 長(zhǎng)沙理工大學(xué), 2013. QUAN Weijie. The model and algorithm for estimating origin-destination matrices under interval and uncertain demand[D]. Changsha: Changsha University of Science and Technology, 2013.
[22] 趙子衡. 區(qū)間不確定性優(yōu)化的若干高校算法研究及應(yīng)用[D]. 長(zhǎng)沙: 湖南大學(xué), 2012. ZHAO Ziheng. Research on efficient algorithms of interval-based optimization under uncertainty and its applications[D]. Changsha: Hunan University, 2012.
[23] Averbakh I, Lebedev V. Interval data minmax regret network optimization problems[J]. Discrete Applied Mathematics, 2004, 138(3): 289?301.
[24] Kasperski A. Discrete optimization with interval data: Minmax regret and fuzzy approach[J]. Distributed Computing & Networking, Internation, 2008, 4904: 393? 400.
[25] Kun An, Hong K Lo. Two-phase stochastic program for transit network design under demand uncertainty[J]. Transportation Research Part B, 2016, 11(84): 157?181.
The method of deriving passenger flow of bus alighting stops based on smart card data and interval uncertainty
LIU Wusheng, ZHOU Xiangdong, KUANG Kai
(School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410004, China)
In the context of large traffic data, for the existing passenger traffic OD derivation study passenger flow OD are fixed single value and the actual fluctuation interval value does not match the problem, the use of interval uncertainty theory, bus IC card data and GPS data combined, respectively To carry out on and off the station section of the passenger flow optimization, get off the bus station bus section OD. Integration of bus IC card data and GPS data, the use of interval uncertainty theory to get on the passenger flow interval value. The passenger travel behavior is analyzed, considering the passenger travel characteristics and passenger travel distance in the site to attract the weight, get off the station passenger flow derivation probability model, using interval uncertainty theory, get off the station passenger flow interval value. Taking the IC bus data and GPS data of 21 bus routes in Shenzhen as an example. Through the analysis of the rationality of the results, it shows that the OD of the passenger flow is more realistic, the algorithm is clear and the reliability is better.
Public transit OD; interval uncertainty theory; smart card data; GPS data; alighting location
10.19713/j.cnki.43?1423/u.2018.11.032
U49
A
1672 ? 7029(2018)11 ? 2988 ? 07
2017?09?28
國(guó)家自然科學(xué)基金面上資助項(xiàng)目(61508065,51178061)
柳伍生(1976?),男,湖北監(jiān)利人,副教授,博士,從事交通運(yùn)輸規(guī)劃與管理、公共交通網(wǎng)絡(luò)設(shè)計(jì)、交通行為分析等方面的研究;E?mail:lwusheng@163.com
(編輯 陽麗霞)