• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Instantaneous frequency measurement using two parallel I/Q modulators based on optical power monitoring

    2022-01-23 06:34:32ChuangyeWang王創(chuàng)業(yè)TigangNing寧提綱JingLi李晶LiPei裴麗JingjingZheng鄭晶晶andJingchuanZhang張景川
    Chinese Physics B 2022年1期
    關(guān)鍵詞:李晶晶晶

    Chuangye Wang(王創(chuàng)業(yè)) Tigang Ning(寧提綱) Jing Li(李晶) Li Pei(裴麗)Jingjing Zheng(鄭晶晶) and Jingchuan Zhang(張景川)

    1Key Laboratory of All Optical Network and Advanced Telecommunication Network of EMC,Institute of Lightwave Technology,Beijing Jiaotong University,Beijing 100044,China

    2Beijing Institute of Spacecraft Environment Engineering,Beijing 100029,China

    Keywords: microwave photonics,instantaneous frequency measurement,optical power monitoring

    1. Introduction

    Instantaneous frequency measurement (IFM) has been a research hotspot in recent years. It has important applications in both military and civil fields, such as radar,communication systems, and electronic warfare systems.[1,2]The traditional electronics method is no longer suitable for future development due to the disadvantages of large loss,small measurement bandwidth and no immunity to electromagnetic interference, but the photonics method perfectly overcomes these shortcomings.[3-5]The researchers have proposed many IFM schemes based on photonics methods, for example,based on the frequency-space mapping method,[6-8]frequency-time mapping method,[9-14]frequency-phase mapping method,[15,16]and frequency-power mapping method.Among them,the method based on frequency-power mapping is the most common. The basic principle is to use a modulator to modulate the received RF signal, then the modulated signal is divided into two channel signals and processed in the optical domain, and the processed optical signals are directly used to measure the optical power, or converted into electrical signals by the photodetector to measure the electrical power. The ACF is constructed to establish the corresponding relationship between the frequency of the RF signal and the power ratio of two channel signals. The frequency of the RF signal can be determined by monitoring the optical power ratio or the electrical power ratio of the two channel signals. In Refs. [17-20], these schemes first used a modulator to modulate the input RF signal, then the modulated signal went through different dispersion processes to achieve different power attenuation,and finally a fixed relationship between the input RF frequency and the power ratio of two output signals was established. The frequency of the RF signal can be derived from the power ratio. In Refs.[21,22],the input RF signal first entered Mach-Zehnder modulator(MZM)for carrier suppression modulation, then the optical filter was used to process the modulated signal, and finally the power ratio of the two processed signals was used to derive the frequency of the input RF signal. In Ref.[23], a phase modulator was put into a Sagnac loop to establish a relationship between the amplitude of the direct current output and the input RF frequency. The measurement range can reach 0.01 GHz-40 GHz and the measurement error is less than 6%. In addition,IFM can also be realized by converting frequency information into power information based on stimulated Brillouin scattering,[24,25]resonators,[26,27]and four-wave mixing.[28]Although these schemes can realize IFM, they are relatively complex in structure. In Ref. [29], the author realized IFM based on a dual-polarization modulator and an electrical delay line. Compared with the previous IFM schemes,the structure is simpler and the cost is lower (there is no expensive highspeed electronic device). However, in this scheme, the polarization controller needs to be accurately kept at 45°, which increases the instability of the system(the polarization device is sensitive to the environment).

    In this paper,a simpler structure for IFM is proposed.The scheme only uses one optical source,one electrical delay line,two I/Q modulators and two optical power meters. By setting the bias point of two I/Q modulators appropriately,a fixed relationship between the input signal frequency and the power ratio of two optical signals output by two I/Q modulators is established. The input signal frequency can be derived by the power ratio. The measurement range and measurement error can be adjusted by changing the delay amount of the electrical delay line. The scheme has a better measurement error for low frequency compared with other schemes. The measurement error of low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz in simulation.

    2. Model and theoretical analysis

    Figure 1 shows the schematic diagram of the proposed scheme. The optical signal generated by the CW laser is first divided into two equal power optical signals by an optical power splitter. The two equal power optical signals are injected into two I/Q modulators respectively. I/Q modulator 1 consists of two sub-modulators(MZM-1 and MZM-2),and I/Q modulator 2 consists of two sub-modulators(MZM-3 and MZM-4). The RF signal generated by the RF source is first divided into two equal power electrical signals by an electrical power splitter. One channel electrical signal first passes through an electrical delay line and then is divided by an electrical power splitter, and the generated two electrical signals are injected into the input RF ports of MZM-1 and MZM-3 respectively. The other channel electrical signal passes through an electrical power splitter and the generated two electrical signals are injected into the RF input ports of MZM-2 and MZM-4 respectively. MZM-1,MZM-2,MZM-3 and MZM-4 are biased at minimum transmission point (MITP). I/Q modulator 1 and I/Q modulator 2 are biased at maximum transmission point (MATP) and MITP respectively. Suppose the phase shift induced by DC bias of MZM-1,MZM-2,MZM-3,MZM-4,I/Q modulator 1 and I/Q modulator 2 areφ1,φ2,φ3,φ4,φ5, andφ6respectively, soφ1=φ2=φ3=φ4=φ6=πandφ5=0. The output optical signal by CW laser isEin(t)=E0exp(jω0t), whereE0andω0denote the amplitude and angular frequency respectively. The output electrical signal by the RF source isVRF(t)=VRFcos(Ωt),whereVRFandΩdenote the amplitude and angular frequency respectively. The delay amount of the electrical delay line isτ. The output optical signal of I/Q modulator 1 and I/Q modulator 2 can be expressed as

    Fig. 1. The schematic diagram of the scheme (RF source: radio frequency source; CW laser: continuous-wave laser; MZM: Mach-Zehnder modulator;DL:electrical delay line;OPM:optical power meter;φ1,φ2,φ3,φ4,φ5,and φ6: phase shifts induced by the DC bias of MZM-1, MZM-2, MZM-3,MZM-4,I/Q modulator 1,and I/Q modulator 2,respectively).

    wherefdenotes the frequency of the received RF signal.

    According to Eq. (6), whenτis a fixed value, there is a one-to-one corresponding relationship betweenfandP1/P2.Therefore,the frequency of the received RF signal can be derived by the power ratio of two optical signals generated by two I/Q modulators.

    Figure 2 is calculated ACF,P1,P2versus RF frequency diagram whenτ=20 ps. Figure 3 is the ACF curve diagram correspondingτ=20 ps, 30 ps, 40 ps, and 50 ps. As can be seen in Fig. 3, different delay amountτcorresponds to different ACF curve. Different ACF curve determines different measurement range.

    Fig. 2. Calculated ACF, calculated P1, calculated P2 versus RF frequency when τ =20 ps.

    Fig.3. Calculated ACF versus RF frequency when τ =20 ps,30 ps,40 ps,and 50 ps.

    3. Simulation and discussion

    The feasibility of the scheme is verified by simulation in the software OptiSystem. The parameters are set as follows: the power, wavelength and linewidth of the CW laser are 10 dBm, 1550.12 nm, and 10 MHz respectively. The extinction ratio,insertion loss and half-wave voltage of the MZM are 30 dB, 5 dB, and 4 V respectively. The amplitude of the RF source is 3.6 V (the modulation index of MZM is equal to 1). The electrical delay amount of the electrical delay line is 20 ps. MZM-1, MZM-2, MZM-3 and MZM-4 are biased at MITP. I/Q modulator 1 and I/Q modulator 2 are biased at MATP and MITP respectively. Figure 4 shows simulated received optical power values of the optical power meter 1 and optical power meter 2,and ACF curve when the frequency of RF changes from 0 GHz-30 GHz. As can be seen in Fig. 4,when the frequency of the input RF is from 0 GHz to 25 GHz,the ACF curve is monotonous. There is a one-to-one corresponding relationship between the frequency of the input RF and the value of ACF curve,so we can figure out the frequency of the input RF by the value of ACF in real time.

    Fig.4. Simulated ACF versus RF frequency when τ =20 ps.

    In previous theoretical calculation,the extinction ratio of the modulator is considered to be infinite, but the extinction ratio of the MZM is finite in practice. The effect of extinction ratio of the MZM on the scheme needs to be considered. The extinction ratio of the MZM is set to 20 dB,25 dB,and 30 dB respectively in the OptiSystem. The settings of other parameters remain unchanged. The relationship diagram between ACF and the input RF frequency can be obtained as shown in Fig. 5. Figure 5 shows that the higher the extinction ratio of the MZM is,the closer the obtained ACF curve is to the theoretical ACF curve. This is because the MZM cannot suppress the carrier and even-order sidebands effectively when the extinction ratio of the MZM is not high.

    The effect of the modulation index of the MZM on the scheme also needs to be considered. The modulation index of the MZM is set to 0.5,1.0,and 1.5 respectively.The extinction ratio of the MZM is set to 30 dB.Other parameter settings remain unchanged. The relationship diagram between the ACF and the input RF frequency can be obtained as shown in Fig.6.Figure 6 indicates that the larger the modulation indexmis in a certain range, the closer the ACF curve is to the theoretical curve. This is because the amplitude difference between generated first-order optical sidebands and generated higher odd-order optical sidebands by the MZM will increase when the modulation indexmincreases in a certain range, which will reduce the effect of higher odd-order sidebands on the scheme. However,the ACF curves under different modulation index are only different at the end of the monotone interval(0 GHz-25 GHz) and most regions of the monotone interval coincide with the theoretical ACF curve,which indicates that this scheme is not required for the power of the input RF.

    Fig. 5. Simulated ACF curve versus input RF frequency when εr =20 dB,25 dB,and 30 dB.

    Fig.6. Simulated ACF curve versus input RF frequency when m=0.5,1.0,and 1.5.

    When the modulation indexm= 1, the delay amountτ=20 ps and the extinction ratio of the MZM is 30 dB, the estimation error can be obtained as shown in Figs. 7(a) and 7(b). As shown in Fig. 7(a), the simulated frequency measurement results are approximately equal to the calculated frequency measurement results except around 25 GHz. The reason for the larger measurement error around 25 GHz is that the extinction ratio of the MZM is finite. As shown in Fig. 7(b),the estimation error is-0.15 GHz to +0.3 GHz in the measurement range of 0 GHz-24.5 GHz whenτ=20 ps.

    Fig.7.(a)Estimated RF frequency versus input RF frequency.(b)Estimation error versus input RF frequency.

    The estimation error is analyzed whenτ=30 ps, 40 ps,and 50 ps. The simulated results are shown in Fig. 8. Figures 8(a) and 8(b) indicate that the measurement range and the measurement error are 0 GHz-16 GHz and-0.3 GHz to+0.05 GHz whenτ=30 ps. The estimation error is larger around 16.7 GHz because the extinction ratio of MZM is finite.Similarly,it can be seen from Figs.8(c)and 8(d)that the measurement range and measurement error are 0 GHz-12.2 GHz and-0.05 GHz to +0.2 GHz whenτ=40 ps. Figures 8(e)and 8(f)indicate that the measurement range and measurement error are 0 GHz-9.6 GHz and-0.1 GHz to+0.05 GHz whenτ=50 ps.

    Fig.8.Estimated RF frequency versus input RF frequency at different τ=(a)30 ps, (c) 40 ps, (e) 50 ps. Estimation RF frequency error versus input RF frequency at different τ =(b)30 ps,(d)40 ps,(f)50 ps.

    Different measurement ranges and measurement errors are shown in Table 1. There is a trade-off balance between the measurement range and measurement error,as can be seen in Table 1. Whenτincreases, the measurement range decreases,but the measurement error becomes better. Since the ACF curve in this scheme has a high slope at low frequency,the measurement error of low frequency is better than that of other schemes.

    Table 1. Different measurement ranges and measurement errors.

    In the scheme, the four sub-modulators are set as MITP.I/Q modulator 1 and I/Q modulator 2 are set as MATP and MITP respectively. The effect of DC bias drift of the MZM on the scheme needs to be considered. Suppose that ΔV/Vπis the DC bias drift of the MZM, where ΔVdenotes the varied amount of DC bias voltage of the MZM andVπdenotes the half-wave voltage of the MZM.Takeτ=50 ps for example. The DC bias drift of MZM-1,MZM-2,MZM-3,MZM-4,I/Q modulator 1 and I/Q modulator 2 are set to±10%respectively. The corresponding parameter settings in the simulation software are shown in Table 2.

    Table 2. Parameter settings for different modulators.

    Fig.9. Estimation error diagram when DC bias drift is±10%: (a)MZM-1, (b) MZM-2, (c) I/Q modulator 1, (d) MZM-3, (e) MZM-4, (f) I/Q modulator 2.

    Figures 9(a) and 9(b) are the estimation error diagrams when the DC bias drift of MZM-1 is±10% and the DC bias drift of MZM-2 is±10% respectively. As shown in Figs.9(a)and 9(b),the estimation error becomes-0.55 GHz to +0.05 GHz. In order to reach the measurement error(-0.1 GHz to +0.05 GHz) before DC bias drift, the measurement range becomes 0 GHz-6.5 GHz. Figure 9(c) is the estimation error diagram when the DC bias drift of I/Q modulator 1 is±10%. As shown in Fig.9(c),the estimation error becomes-0.7 GHz to+0.07 GHz. In order to reach the measurement error-0.1 GHz to +0.07 GHz, the measurement range becomes 0 GHz-6.5 GHz.

    Figures 9(d) and 9(e) are the estimation error diagrams when the DC bias drift of MZM-3 is±10% and the DC bias drift of MZM-4 is±10% respectively. As shown in Figs. 9(d) and 9(e), the estimation error becomes-0.1 GHz to +0.7 GHz. In order to reach the measurement error(-0.1 GHz to +0.05 GHz) before DC bias drift, the measurement range becomes 3.9 GHz-9.6 GHz. Figure 9(f) is the estimation error diagram when the DC bias drift of I/Q modulator 2 is±10%. As shown in Fig. 9(f), the estimation error becomes-0.1 GHz to+0.9 GHz. In order to reach the measurement error(-0.1 GHz to+0.05 GHz)before DC bias drift,the measurement range becomes 3.9 GHz-9.6 GHz.

    4. Conclusion

    In this paper, a new scheme to realize IFM is proposed.The structure of the scheme is simple; it only consists of one optical source, one electrical delay line, two I/Q modulators,and two optical power meters. By setting each bias point of two I/Q modulators and the delay amount of the electrical delay line properly, a fixed relationship between the frequency of the RF signal and the optical power ratio can be obtained.Since the scheme is carried out in the optical domain, no expensive electronic devices are used. The scheme also has no polarization devices, which reduces the impact of environmental disturbances on the system. The measurement range and measurement error can be adjusted by changing the delay amount of the electrical delay line. Although there exists a trade-off balance between the measurement range and the measurement error,the measurement error of low frequency in this scheme is better than other schemes because the slope of the ACF curve is large at the low frequency. The measurement error in low frequency 0 GHz-9.6 GHz can reach-0.1 GHz to+0.05 GHz. We believe this method will provide guidance for IFM in the future.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFB1801003),the National Natural Science Foundation of China (Grant Nos. 61525501 and 61827817), and the Beijing Natural Science Foundation,China(Grant No.4192022).

    猜你喜歡
    李晶晶晶
    巧算最小表面積
    Digging for the past
    甲狀腺瘤瘤切除術(shù)后的臨床護(hù)理要點(diǎn)分析
    齊 家
    照相機(jī)(2021年2期)2021-04-06 16:28:01
    The Hardest Language
    炎熱的夏天
    The Impact of Dignity on Design Behavior
    青年生活(2019年3期)2019-09-10 16:57:14
    銀億股份:于無聲處聽驚雷
    “兄妹”大隱于市
    中外文摘(2015年21期)2015-10-10 11:41:53
    成年女人看的毛片在线观看| av天堂中文字幕网| 给我免费播放毛片高清在线观看| 久久99热这里只有精品18| 国语自产精品视频在线第100页| 久久人妻av系列| 国产又黄又爽又无遮挡在线| 女人十人毛片免费观看3o分钟| 日韩制服骚丝袜av| 欧美又色又爽又黄视频| 久久热精品热| 国产精品不卡视频一区二区| 国产一级毛片在线| 最后的刺客免费高清国语| 1024手机看黄色片| av卡一久久| 一个人免费在线观看电影| 淫秽高清视频在线观看| 国国产精品蜜臀av免费| 精品午夜福利在线看| 久久精品国产清高在天天线| 18禁黄网站禁片免费观看直播| 26uuu在线亚洲综合色| www.av在线官网国产| 国产成人精品一,二区 | 亚洲国产高清在线一区二区三| 国产欧美日韩精品一区二区| 日韩欧美精品免费久久| 色哟哟·www| 美女国产视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 欧美最新免费一区二区三区| 国产探花极品一区二区| 欧美3d第一页| 欧美一区二区亚洲| 日本色播在线视频| 久久久久久久久久久免费av| 亚洲三级黄色毛片| 国产老妇伦熟女老妇高清| 我要看日韩黄色一级片| 99热只有精品国产| 亚洲欧洲国产日韩| 亚洲欧洲国产日韩| 国产乱人视频| 麻豆乱淫一区二区| 国产视频首页在线观看| 偷拍熟女少妇极品色| 精品久久久久久久久av| 亚洲七黄色美女视频| 一级毛片我不卡| 一个人观看的视频www高清免费观看| 久久久色成人| 国产一区二区亚洲精品在线观看| 91av网一区二区| av在线亚洲专区| 国产三级中文精品| 99视频精品全部免费 在线| 天堂中文最新版在线下载 | 91精品国产九色| 亚洲不卡免费看| 国产成人精品一,二区 | 国产国拍精品亚洲av在线观看| 99久久中文字幕三级久久日本| 久久人人爽人人爽人人片va| 黄色一级大片看看| 看十八女毛片水多多多| 日韩,欧美,国产一区二区三区 | 看免费成人av毛片| 国产毛片a区久久久久| 黄色配什么色好看| 女同久久另类99精品国产91| 国产伦精品一区二区三区四那| 欧美激情国产日韩精品一区| 亚洲av二区三区四区| 亚洲电影在线观看av| 精品人妻偷拍中文字幕| 国产一级毛片七仙女欲春2| 国内精品美女久久久久久| 神马国产精品三级电影在线观看| 欧美区成人在线视频| 午夜免费男女啪啪视频观看| 精品人妻一区二区三区麻豆| 一卡2卡三卡四卡精品乱码亚洲| 直男gayav资源| 中文字幕制服av| 午夜精品国产一区二区电影 | 久久久精品欧美日韩精品| 只有这里有精品99| av在线亚洲专区| 婷婷精品国产亚洲av| 日本黄大片高清| 亚洲激情五月婷婷啪啪| 欧美bdsm另类| 18禁黄网站禁片免费观看直播| 日韩欧美一区二区三区在线观看| 一边亲一边摸免费视频| av在线观看视频网站免费| 看非洲黑人一级黄片| 国产精品,欧美在线| 成年女人永久免费观看视频| 成人特级av手机在线观看| 久久精品综合一区二区三区| 赤兔流量卡办理| 黄色欧美视频在线观看| 国产伦理片在线播放av一区 | 亚洲欧洲国产日韩| 在线免费观看的www视频| 男女边吃奶边做爰视频| 亚洲七黄色美女视频| 亚洲国产精品成人综合色| 久久午夜福利片| 国产黄色视频一区二区在线观看 | av视频在线观看入口| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av.av天堂| 大香蕉久久网| 男女那种视频在线观看| 干丝袜人妻中文字幕| 18禁裸乳无遮挡免费网站照片| 舔av片在线| 国产成人福利小说| 五月玫瑰六月丁香| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩高清专用| 国产精品一区www在线观看| 亚洲一区高清亚洲精品| 国产 一区 欧美 日韩| 国产午夜精品论理片| 人人妻人人看人人澡| 97超碰精品成人国产| 日日摸夜夜添夜夜添av毛片| 中文资源天堂在线| 色综合色国产| 一进一出抽搐gif免费好疼| 亚洲精品日韩在线中文字幕 | 男人和女人高潮做爰伦理| 男人狂女人下面高潮的视频| 乱码一卡2卡4卡精品| 亚洲国产精品合色在线| 国内少妇人妻偷人精品xxx网站| 村上凉子中文字幕在线| 丰满人妻一区二区三区视频av| 国产一区二区三区在线臀色熟女| 18禁在线无遮挡免费观看视频| 国产精品美女特级片免费视频播放器| 成人二区视频| 老女人水多毛片| 亚洲人成网站在线观看播放| 尤物成人国产欧美一区二区三区| 国产av麻豆久久久久久久| 婷婷亚洲欧美| 最好的美女福利视频网| 国内揄拍国产精品人妻在线| 欧美性猛交黑人性爽| 一本久久精品| 国产日本99.免费观看| 亚洲国产精品国产精品| 欧美+日韩+精品| 亚洲国产高清在线一区二区三| 亚洲国产精品sss在线观看| 少妇被粗大猛烈的视频| 亚洲自偷自拍三级| 中文字幕熟女人妻在线| 在线观看午夜福利视频| 简卡轻食公司| 级片在线观看| 黄色一级大片看看| 欧美+亚洲+日韩+国产| 久久99热这里只有精品18| 日韩欧美三级三区| 亚洲最大成人av| 麻豆国产av国片精品| av黄色大香蕉| 欧美+日韩+精品| 亚洲av中文av极速乱| 高清日韩中文字幕在线| 国产黄片视频在线免费观看| 日本撒尿小便嘘嘘汇集6| 可以在线观看毛片的网站| 白带黄色成豆腐渣| 亚洲av中文av极速乱| 国产成人精品婷婷| av卡一久久| 久久精品久久久久久久性| 国产午夜精品一二区理论片| 日韩欧美 国产精品| 久久精品国产亚洲av香蕉五月| 日本免费a在线| 午夜爱爱视频在线播放| 日本三级黄在线观看| 一级毛片aaaaaa免费看小| 欧美潮喷喷水| 不卡一级毛片| 亚洲一级一片aⅴ在线观看| 在线观看午夜福利视频| 国产久久久一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品乱码久久久久久按摩| 在线免费观看的www视频| 一本久久精品| 乱码一卡2卡4卡精品| 中文亚洲av片在线观看爽| 97人妻精品一区二区三区麻豆| 国产精品av视频在线免费观看| 免费人成视频x8x8入口观看| 色视频www国产| 人人妻人人看人人澡| 久久热精品热| 久久久久久久久大av| 亚洲最大成人av| 一进一出抽搐动态| 精品国内亚洲2022精品成人| 天堂中文最新版在线下载 | 麻豆乱淫一区二区| 内射极品少妇av片p| 2022亚洲国产成人精品| 中文精品一卡2卡3卡4更新| 精品欧美国产一区二区三| 国产在视频线在精品| 国产精品蜜桃在线观看 | 26uuu在线亚洲综合色| 狂野欧美激情性xxxx在线观看| 久久久久网色| 日韩视频在线欧美| 欧美精品一区二区大全| 深夜精品福利| 亚洲精品久久国产高清桃花| 亚洲av不卡在线观看| 亚洲人成网站高清观看| 日本-黄色视频高清免费观看| 搡女人真爽免费视频火全软件| 99国产精品一区二区蜜桃av| 亚洲av电影不卡..在线观看| 亚洲最大成人中文| 国产精品福利在线免费观看| 欧美一区二区亚洲| 亚洲国产精品成人久久小说 | 欧美精品国产亚洲| 在现免费观看毛片| 国产精品一二三区在线看| 日韩大尺度精品在线看网址| 日本-黄色视频高清免费观看| 亚洲国产欧美在线一区| 久久国内精品自在自线图片| 国产久久久一区二区三区| 国内精品一区二区在线观看| 村上凉子中文字幕在线| av在线播放精品| 午夜精品在线福利| 丝袜喷水一区| 免费观看在线日韩| 国产成年人精品一区二区| 六月丁香七月| 国产乱人偷精品视频| 成年版毛片免费区| 婷婷色综合大香蕉| 嫩草影院新地址| 国产精品久久久久久久久免| 日韩,欧美,国产一区二区三区 | 久久精品国产亚洲av香蕉五月| 午夜福利在线观看吧| 国产乱人偷精品视频| 亚洲欧美精品自产自拍| 色哟哟·www| 桃色一区二区三区在线观看| 不卡视频在线观看欧美| av免费观看日本| 91久久精品国产一区二区成人| 亚洲精品456在线播放app| 91狼人影院| 亚洲欧美日韩无卡精品| 一区二区三区四区激情视频 | 久久精品国产亚洲av香蕉五月| 亚洲婷婷狠狠爱综合网| 99热这里只有精品一区| 免费无遮挡裸体视频| 搡女人真爽免费视频火全软件| 久久午夜福利片| 成人美女网站在线观看视频| 亚洲成人av在线免费| 亚州av有码| 亚洲四区av| 亚洲第一电影网av| 亚洲经典国产精华液单| 91aial.com中文字幕在线观看| 久久中文看片网| 久久久色成人| 99精品在免费线老司机午夜| 22中文网久久字幕| 麻豆国产97在线/欧美| 18禁在线播放成人免费| 极品教师在线视频| 老熟妇乱子伦视频在线观看| 久久中文看片网| 成人av在线播放网站| 亚洲精华国产精华液的使用体验 | 日本黄色片子视频| 伦理电影大哥的女人| 国产精品一区二区性色av| 国产一区二区在线观看日韩| 床上黄色一级片| 午夜激情欧美在线| 99久久九九国产精品国产免费| 草草在线视频免费看| videossex国产| 天堂网av新在线| 人人妻人人澡欧美一区二区| 少妇裸体淫交视频免费看高清| 午夜精品国产一区二区电影 | 免费观看在线日韩| 成人特级av手机在线观看| 成人二区视频| 美女脱内裤让男人舔精品视频 | 精品一区二区三区视频在线| 人人妻人人看人人澡| 黄片wwwwww| 国产精品久久久久久av不卡| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| 欧美性猛交╳xxx乱大交人| 1024手机看黄色片| 日韩欧美国产在线观看| 身体一侧抽搐| 久久久久久久午夜电影| 中文字幕精品亚洲无线码一区| 青春草国产在线视频 | 精品久久久久久久久亚洲| 能在线免费看毛片的网站| 大又大粗又爽又黄少妇毛片口| av天堂在线播放| 69人妻影院| 99久久成人亚洲精品观看| 日本-黄色视频高清免费观看| 亚洲国产欧美人成| 国产亚洲欧美98| 一个人看的www免费观看视频| 中文精品一卡2卡3卡4更新| 99热这里只有是精品在线观看| 婷婷精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 舔av片在线| 国产麻豆成人av免费视频| 欧美激情久久久久久爽电影| 亚洲自偷自拍三级| 久久久久性生活片| 国产午夜精品论理片| 久久精品久久久久久噜噜老黄 | 能在线免费看毛片的网站| 成人美女网站在线观看视频| 日本与韩国留学比较| 性色avwww在线观看| 亚洲国产日韩欧美精品在线观看| 国产不卡一卡二| 亚洲欧美清纯卡通| 免费av观看视频| 看非洲黑人一级黄片| 欧美xxxx黑人xx丫x性爽| 国内精品久久久久精免费| 日日啪夜夜撸| videossex国产| 国产成人午夜福利电影在线观看| 国产 一区精品| 少妇猛男粗大的猛烈进出视频 | 成人亚洲欧美一区二区av| 中文字幕熟女人妻在线| 别揉我奶头 嗯啊视频| 国产免费一级a男人的天堂| 亚洲最大成人av| 国产在视频线在精品| 日产精品乱码卡一卡2卡三| 能在线免费看毛片的网站| 在线国产一区二区在线| 草草在线视频免费看| 韩国av在线不卡| 国产高清不卡午夜福利| 国产精品精品国产色婷婷| 国产综合懂色| 国产精品无大码| 在线免费十八禁| 国产伦一二天堂av在线观看| 国产成人91sexporn| 国产日本99.免费观看| 日韩,欧美,国产一区二区三区 | 色吧在线观看| 亚洲精品456在线播放app| 亚洲欧美精品自产自拍| 激情 狠狠 欧美| 免费黄网站久久成人精品| 国产爱豆传媒在线观看| av在线天堂中文字幕| 一级黄片播放器| 波多野结衣巨乳人妻| 欧美一区二区精品小视频在线| 日韩欧美一区二区三区在线观看| 日韩av在线大香蕉| 国产v大片淫在线免费观看| 麻豆一二三区av精品| 一区二区三区高清视频在线| 精品午夜福利在线看| 天天躁日日操中文字幕| 欧美色欧美亚洲另类二区| 青春草视频在线免费观看| 国产亚洲精品久久久久久毛片| 国产蜜桃级精品一区二区三区| 岛国在线免费视频观看| 成人二区视频| 中国美白少妇内射xxxbb| 国产精品综合久久久久久久免费| 色吧在线观看| 男插女下体视频免费在线播放| 中文字幕人妻熟人妻熟丝袜美| 伦理电影大哥的女人| 精品久久久久久久久亚洲| 久久99热这里只有精品18| 69av精品久久久久久| 成人亚洲精品av一区二区| 国产伦在线观看视频一区| 欧美一区二区精品小视频在线| 久久人人爽人人爽人人片va| 国产亚洲欧美98| 人妻夜夜爽99麻豆av| 99久久无色码亚洲精品果冻| 91精品一卡2卡3卡4卡| 一区福利在线观看| 国产精品久久久久久精品电影小说 | 一区二区三区高清视频在线| 国产高清有码在线观看视频| av在线老鸭窝| 日产精品乱码卡一卡2卡三| 日韩欧美精品免费久久| 日本熟妇午夜| 午夜a级毛片| 韩国av在线不卡| 岛国毛片在线播放| 亚洲内射少妇av| 亚洲天堂国产精品一区在线| 国国产精品蜜臀av免费| 亚洲国产精品久久男人天堂| 久久欧美精品欧美久久欧美| 日本欧美国产在线视频| 国产毛片a区久久久久| 亚洲精品国产成人久久av| 99热这里只有是精品50| 久久国产乱子免费精品| 在线免费十八禁| 美女脱内裤让男人舔精品视频 | 日本黄色片子视频| 成年av动漫网址| 人妻夜夜爽99麻豆av| 亚洲高清免费不卡视频| 熟妇人妻久久中文字幕3abv| 99热只有精品国产| 99久国产av精品| 亚洲精品乱码久久久久久按摩| 亚洲aⅴ乱码一区二区在线播放| 亚洲在线观看片| 黄片wwwwww| 一级黄片播放器| 久久热精品热| 最近手机中文字幕大全| 联通29元200g的流量卡| 精华霜和精华液先用哪个| 一进一出抽搐动态| 欧美区成人在线视频| 一边亲一边摸免费视频| 久久99热6这里只有精品| 一级二级三级毛片免费看| 极品教师在线视频| 男人舔奶头视频| 欧美日韩精品成人综合77777| 午夜激情福利司机影院| 国产精品一区二区性色av| 久久久久九九精品影院| 人人妻人人澡人人爽人人夜夜 | 国产精品电影一区二区三区| 美女黄网站色视频| 99久久人妻综合| 久久精品国产自在天天线| 国产单亲对白刺激| 日产精品乱码卡一卡2卡三| 欧美xxxx性猛交bbbb| 国产女主播在线喷水免费视频网站 | 亚洲三级黄色毛片| 国产真实伦视频高清在线观看| 亚洲国产精品成人久久小说 | 性插视频无遮挡在线免费观看| 久久久久免费精品人妻一区二区| 麻豆国产97在线/欧美| 又黄又爽又刺激的免费视频.| 搡女人真爽免费视频火全软件| 午夜福利成人在线免费观看| 男人舔奶头视频| 国产真实乱freesex| 悠悠久久av| 一本久久中文字幕| 国语自产精品视频在线第100页| 一级毛片久久久久久久久女| 看黄色毛片网站| 亚洲欧洲日产国产| 成人综合一区亚洲| 亚洲欧美日韩无卡精品| 非洲黑人性xxxx精品又粗又长| 人人妻人人澡人人爽人人夜夜 | 亚洲在线自拍视频| 午夜a级毛片| 中文字幕免费在线视频6| 婷婷色综合大香蕉| 免费看av在线观看网站| 国产av在哪里看| 人妻系列 视频| 亚洲精品乱码久久久久久按摩| 亚洲欧美中文字幕日韩二区| 国产精品麻豆人妻色哟哟久久 | 国产高清三级在线| 色综合亚洲欧美另类图片| 亚洲国产精品久久男人天堂| 日韩中字成人| 人妻久久中文字幕网| 3wmmmm亚洲av在线观看| 如何舔出高潮| 日韩欧美精品v在线| 精品无人区乱码1区二区| 亚洲激情五月婷婷啪啪| 亚洲成人久久爱视频| 久久久久久九九精品二区国产| 亚洲国产精品成人久久小说 | 国内精品宾馆在线| 熟女电影av网| 校园人妻丝袜中文字幕| 国产高清三级在线| 成人三级黄色视频| 能在线免费看毛片的网站| 日韩在线高清观看一区二区三区| www日本黄色视频网| 在线免费十八禁| 大香蕉久久网| 亚洲精品国产成人久久av| 国产乱人偷精品视频| 久久久午夜欧美精品| 亚洲国产精品成人综合色| 一级毛片aaaaaa免费看小| 26uuu在线亚洲综合色| 简卡轻食公司| 国产老妇女一区| 美女xxoo啪啪120秒动态图| 天堂影院成人在线观看| 久久热精品热| 日韩高清综合在线| 尾随美女入室| 色吧在线观看| 国产精品精品国产色婷婷| 亚洲不卡免费看| 国产三级在线视频| 男人的好看免费观看在线视频| 午夜视频国产福利| 日韩欧美三级三区| 日韩大尺度精品在线看网址| 亚洲国产精品sss在线观看| 国产v大片淫在线免费观看| 久久国产乱子免费精品| 性欧美人与动物交配| 美女大奶头视频| 国产一级毛片在线| 国产 一区精品| 九九爱精品视频在线观看| 久久久久久伊人网av| 最近最新中文字幕大全电影3| 少妇的逼好多水| 欧美变态另类bdsm刘玥| 淫秽高清视频在线观看| 国产伦在线观看视频一区| 岛国在线免费视频观看| 在线国产一区二区在线| 欧美一区二区亚洲| 日韩,欧美,国产一区二区三区 | 一区二区三区四区激情视频 | 91久久精品国产一区二区成人| av在线亚洲专区| 成人午夜高清在线视频| 少妇高潮的动态图| 国产精品久久视频播放| 中文亚洲av片在线观看爽| 在现免费观看毛片| 成人毛片60女人毛片免费| 欧美xxxx性猛交bbbb| 人人妻人人澡欧美一区二区| 91精品国产九色| 久久婷婷人人爽人人干人人爱| 最近最新中文字幕大全电影3| 欧美精品国产亚洲| 麻豆一二三区av精品| 99九九线精品视频在线观看视频| 久久精品国产亚洲av涩爱 | 天天一区二区日本电影三级| 亚洲五月天丁香| 亚洲电影在线观看av| 国产精品美女特级片免费视频播放器| 2022亚洲国产成人精品| 亚洲精品456在线播放app| 精品国产三级普通话版| 真实男女啪啪啪动态图| 久久久精品94久久精品| 国产成人一区二区在线| 性插视频无遮挡在线免费观看| 亚洲国产高清在线一区二区三| 久99久视频精品免费| 亚洲成人精品中文字幕电影| 欧美色欧美亚洲另类二区| 26uuu在线亚洲综合色| 老师上课跳d突然被开到最大视频| 国产精品一区二区三区四区久久| 国产大屁股一区二区在线视频| 九色成人免费人妻av| 欧美日本视频| 一区二区三区四区激情视频 |