• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Atmospheric Precursors of and Response to Anomalous Arctic Sea Ice in CMIP5 Models

    2018-12-06 07:35:43MichaelKELLEHERandJamesSCREEN
    Advances in Atmospheric Sciences 2018年1期

    Michael KELLEHER and James SCREEN

    College of Engineering,Mathematics and Physical Sciences,University of Exeter,Exeter EX4 4QE,UK

    Atmospheric Precursors of and Response to Anomalous Arctic Sea Ice in CMIP5 Models

    Michael KELLEHER and James SCREEN?

    College of Engineering,Mathematics and Physical Sciences,University of Exeter,Exeter EX4 4QE,UK

    This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea ice and the stratosphere,and between Arctic sea ice and cold winter temperatures over Eurasia.We present normalized regressions of Arctic sea-ice area against several atmospheric variables at extended lead and lag times.Statistically significant regressions are found at leads and lags,suggesting both atmospheric precursors of,and responses to,low sea ice;but generally,the regressions are stronger when the atmosphere leads sea ice,including a weaker polar stratospheric vortex indicated by positive polar cap height anomalies.Significant positive midlatitude eddy heat flux anomalies are also found to precede low sea ice.We argue that low sea ice and raised polar cap height are both a response to this enhanced midlatitude eddy heat fl ux.The so-called “warm Arctic,cold continents”anomaly pattern is present one to two months before low sea ice,but is absent in the months following low sea ice,suggesting that the Eurasian cooling and low sea ice are driven by similar processes.Lastly,our results suggest a dependence on the geographic region of low sea ice,with low Barents–Kara Sea ice correlated with a weakened polar stratospheric vortex,whilst low Sea of Okhotsk ice is correlated with a strengthened polar vortex.Overall,the results support a notion that the sea ice,polar stratospheric vortex and Eurasian surface temperatures collectively respond to large-scale changes in tropospheric circulation.

    sea ice–atmosphere coupling,stratosphere–troposphere coupling,atmospheric circulation,Eurasian climate

    1.Introduction

    Changes in Arctic sea ice have a direct impact on the local atmosphere and ocean in the region of ice loss;however,the remote impacts of changing sea ice are less well understood.As ice is lost,open ocean with lower albedo is exposed,giving rise to increased surface heat and moisture fluxes from the ocean into the atmosphere.This is hypothesized to weaken the equator-to-pole temperature gradient,thereby having an impact on midlatitude circulation.Multiple review papers,including Cohen et al.(2014),Vihma (2014),Walsh(2014)and Overland et al.(2016),have assembled the current status of our understanding of the interactions between Arctic sea ice and the atmosphere,both locally and remotely.Overland et al.(2016)suggested a nonlinear dependence on the state of the atmosphere–ocean–sea-ice system that means not all changes in sea ice lead to the same atmospheric response.It should also be noted that while connections between Arctic and midlatitude weather have been demonstrated,the interannual variability is affected by many other factors,includingsea surface temperatures and tropical teleconnections.

    The atmospheric geopotential height over the polar cap can be used to identify changes in circulation,and is strongly related to the mean temperature below a particular level.Changes in temperatures at lower levels can impact the atmosphere above through this relationship.The work by Sun et al.(2015)showed that changes in sea ice can impact the midto-upper tropospheric and lower stratospheric circulation in an idealized model.This is supported by the results of Peings and Magnusdottir(2014),Kim et al.(2014)and Nakamura et al.(2016),among others,who identified a connection with the stratosphere.However,such studies were largely concerned with the response to low sea ice and did not explicitly consider the causes of low sea ice in the first instance.In the present study,we suggest that the atmospheric conditions that precede low sea ice can also weaken the polar stratospheric vortex directly.

    There is an established relationship between midtropospheric eddy meridional heat flux,which is the vertical component of Eliassen–Palm wave activity flux(Edmon et al.,1980),and stratospheric circulation(e.g.,Newman and Nash,2000;Sjoberg and Birner,2012).Enhanced heat flux,or upward wave activity relative to climatology,over a pe-riod of a few months has been shown to be related to a weakened stratospheric polar vortex.Thereafter,changes in polar stratospheric circulation have been shown to enhance long time scale predictability in the troposphere(Baldwin and Dunkerton,2001;Christiansen,2001;Baldwin et al.,2003).As enhanced tropospheric meridional heat flux affects the stratosphere,and is also associated with midlatitude circulation anomalies that may affect sea ice,we speculate that midlatitude circulation anomalies associated with positive eddy heat flux anomalies can affect both Arctic sea ice and the stratospheric circulation directly, and then provide evidence for this speculation.This complicates the assessment of causality of sea-ice–stratosphere linkages,as both may be responding to eddy heat flux anomalies rather than the sea ice driving the stratosphere directly.

    A hypothesized impact of Arctic sea ice loss is the“warm Arctic,cold continent”pattern in surface temperatures.Work by Mori et al.(2014)suggested that more frequent Eurasian blocking due to sea ice loss forces cold-air advection into the region and thus cooler Eurasian winters.In Petoukhov and Semenov(2010)a similar process was discussed,though the resulting pattern was found to be nonlinearly dependent on the degree of sea ice loss. The work of McCusker et al.(2016)and Sun et al.(2016),however,provided modelling evidence that while a warm Arctic is driven by sea ice loss,the cold continental temperature pattern may not be.Sorokina et al.(2016)found a robust relationship between turbulent heat flux and Barents–Kara Sea ice using reanalysis data,though the link to cold continental temperatures was not apparent.As the “warm Arctic,cold continent”is a pattern that can be driven purely by internal variability,we attempt,by means of lead–lag regressions,to elucidate its temporal evolution and infer the directionality of the relationship between this pattern and Arctic sea ice.

    The atmospheric response to sea ice loss is likely to be sensitive to the geographical location of the ice anomalies.The results of Petoukhov and Semenov(2010),Sun et al.(2015),Koenigk et al.(2016),Pedersen et al.(2016),Screen(2017b)and others suggest that different regions of ice loss have different response patterns.This is possibly related to the interference with the climatological mean planetary wave(Martius et al.,2009;Garfinkel et al.,2010;Smith et al.,2011),whereby constructive(destructive)interference between the forced and climatological planetary waves acts to enhance(suppress)vertical wave propagation.For this reason,the present study examines relationships with pan-Arctic anomalies as well as with regional sea ice anomalies.

    This paper seeks to further our understanding of the precursors of,and response to,Arctic sea ice loss,presenting evidence from CMIP5 climate models.The CMIP5 models have been a relatively underused resource in this regard,with the notable exception of Boland et al.(2017).In contrast to Boland et al.(2017),who examined historical and future scenarios,we focus on pre-industrial control simulations to examine the internal variability in the absence of forced trends.We are especially motivated to better understand the nature of the coupled two-way relationship between Arctic sea ice and the stratospheric polar vortex,and additionally between Arctic sea ice and cold winter temperatures over Eurasia,as present within the selected CMIP5 models.

    2.Data and methods

    The data used in this study are from the CMIP5 archive.Monthly means from the pre-industrial control simulations are used,as the purpose of the investigation is to examine relationships between sea ice and the atmosphere that occur as part of the natural climate variability.There are 34 models(Table 1)that have the required data available.We first examine this group as a whole,before then using a subset of models with different model genealogy(Knutti et al.,2013),which can be considered to be roughly independent of one another.The model subset is denoted with bold text in Table 1,and is selected such that one model per family is chosen and,where possible,similar horizontal resolutions are used.Theresults from this subset of models are qualitatively similar to those using the full set of models; however, there are quantitative differences in the magnitude of the regressions and their statistical significance.We argue that the non-independence of the models in the full set leads to overconfidence and,therefore,opt to use the smaller set of independent models here.Selected results from a similarly constructed set of high-top models are also presented.These demonstrate that the specific selection of models does not impact the results qualitatively.

    Table 1.Details of the models with sufficient availability of sea ice and atmospheric data.Models in bold text are those used in the primary subset,while those marked with an asterisk are the ones used in the high-top subset.Further details on these models are available in http://cmip-pcmdi.llnl.gov/cmip5/.

    Time series of isobaric geopotential height and sea ice area(sea ice concentration multiplied by grid cell area)over the polar cap(66°–90°N),and zonal-mean meridional eddy heat fl uxover 45°–65°N are calculated.This latitudinal band for the averaging of heat flux is different to that used in previous studies(e.g.,Newman and Nash,2000;Sjoberg and Birner,2012)in order to separate the Arctic and midlatitudes,but this choice does not affect the results qualitatively.The time series of each variable is then used to calculate standardized climatological anomalies,whereand sxare the long-term monthly mean and standard deviation for the nearest 30 years to the modelled monthly variable x.

    The standardized sea ice area anomalies are regressed against the diagnostic variable anomalies at leads and lags of up to 14 months.To generate seasonal regressions,sea ice is masked such that only anomalies from each individual season are regressed against the atmospheric variables of all seasons.This means a lag of-3 in the December–January–February(DJF)mean is a mean of the regression of all December sea ice with September diagnostic variables,January sea ice with October diagnostic variables,and February sea ice with November diagnostic variables.In all plots,we show the negative regression slope,as this enables the association between the atmosphere and low sea ice conditions to be demonstrated.Statistical significance is calculated using Fisher’s method(Kost and McDermott,2002).

    3.Results

    3.1.Polar cap height

    We begin by looking at the linear regression between sea ice area and polar cap height at extended lead and lag times(Fig.1)for the set of all CMIP5 models with data available.There are statistically significant regressions at both positive and negative lags,implying both atmospheric precursors of,and responses to,low sea ice.Positive(anticyclonic)anomalies are the dominant signal through most of the atmosphere,with significant anomalies at both positive and negative lag times.This indicates that low sea ice is preceded by,and followed by,tropospheric high geopotential height anomalies in the Arctic region.In general,the regressions are stronger when the atmosphere leads sea ice,which suggests that sea ice,at least initially,is not forcing the changes in the polar mid-to-upper troposphere and lower stratosphere.This is especially the case for low summer and low autumn sea ice,suggesting sea ice in these seasons is particularly sensitive to the atmospheric conditions in preceding months.However,there are statistically significant positive anomalies in polar cap height following low sea ice in all seasons,but especially in winter and spring,which suggests a weakening of the polar stratospheric vortex following low sea ice.

    Fig.1.Linear regression of standardized polar cap sea ice area anomalies against standardized polar cap geopotential height anomalies for each season for the full set of models.The regressions have been multiplied by minus one to show the patterns associated with low sea ice.Hatching covers areas not statistically significant at the 99%confidence level,while dots cover areas where fewer than 75%of models agree with the sign of the regression slope.Negative lags indicate atmosphere leading sea ice.The shading is unitless(standardized regression coefficient).

    Figure 2 is constructed in a similar manner to Fig.1,but for the subset of independent models described in Table 1.There are some small but notable differences in the magnitude of the regressions(between the subset and full set),but the largest differences are in the areas of model agreement and statistical significance.Figure 3,showing the results from a subset of high-top(greater than 0.01 hPa)models,is similar to the previous two figures,with some key exceptions.The magnitudes of the regression slopes are higher,and all seasons show a statistically significant but weak negative anomaly in the early spring stratosphere.The latter may indicate a more persistent polar stratospheric vortex in spring,relative to the climatological mean transition to anticyclonic summer circulation.This could be a delay in thefinal stratospheric warming,the transition between winter(cyclonic)and summer(anticyclonic)stratospheric circulations,typically occurring in April.In general,the qualitative differences in the regressions are small(comparing the high-top subset and the full set),but the high-top subset has a smaller area of statistical significance and robustness compared to the full set.In the following figures,we show results only from the models of thefi rst subset of independent models,as the differences between the two subsets and the full set are small.It should also be noted that the maximum regression slopes,as well as correlation coefficients,are small(maximums of 0.3),despite the relationship being robust across models and statistically significant.This is to be expected,as multiple factors influence atmospheric circulation in addition to sea ice.

    3.2.Eddy heat flux

    We now turn our attention to the midlatitude tropospheric meridional eddy heat flux(hereafter,“heat flux”),which is known to drive stratospheric variability and is the vertical component of the Eliassen–Palm flux.In all seasons,a statistically significant heat flux is found to precede anomalously low polar cap sea ice(Fig.4).Enhanced heat flux is apparent in the lower troposphere for up to 6 months prior to low sea ice in winter and spring,and 12 months prior to low sea ice in summer and autumn.This strongly suggests that enhanced poleward heat flux contributes to the low sea ice anomalies.There is little evidence for the opposite—sea ice causing a change in the heat flux—with mostly insignificant regressions at positive lag times(i.e.,following anomalously low ice).A positive heat flux is known to contribute to stratospheric polar vortex weakening.The heat flux anomalies preceding low sea ice are one likely cause of the enhanced polar cap height that also precedes low sea ice.Therefore,it is probable that the sea ice and polar cap height are both responding to this enhanced midlatitude heat flux—similar to the results of Perlwitz et al.(2015)and Screen et al.(2012)with respect to Arctic warming being driven by heat transport into the Arctic from lower latitudes.

    3.3.Surface temperature

    Fig.2.As in Fig.1,but for the subset of eight selected models shown in Table 1.

    Fig.3.As in Fig.1,but for the subset of six selected high-top models shown in Table 1.

    In previous work,low sea ice(and in some cases a weakened stratospheric polar vortex)has been proposed to cause the “warm Arctic,cold continent”winter temperature anomaly pattern.It has been argued that low Arctic sea ice causes warmer Arctic surface temperatures but cooler conditions over Eurasia and North America(Honda et al.,2009;Petoukhov and Semenov,2010;Cohen et al.,2013;Mori et al.,2014;Kug et al.,2015).Figure 5 shows the lead–lag relationship between winter sea ice and Northern Hemisphere surface temperature.The CMIP5 models reproduce the “warm Arctic,cold continent”anomaly pattern at zero lag,with significant cold winter temperature anomalies over Eurasia correlated with low winter sea ice.This temperature anomaly pattern is also seen at a lag of-1 month and,to a lesser extent,at a lag of-2 months.This implies that both the Arctic warming and Eurasian cooling precede low winter sea ice.

    The warm anomaly in the Arctic is maximized over the Barents–Kara Sea and is present for at least two months before low winter sea ice.The progression of anomalously warm Arctic temperatures supports the results presented in the previous section,where warmer midlatitude air is transported to the Arctic,thereby reducing sea ice.The warm anomaly persists over the Barents–Kara Sea at lags of up to 3 months,likely in response to the low sea ice.The cool continental anomaly,however,is only present in the months before low sea ice,and not after.This implies the Eurasian cooling is not a response to low sea ice,but instead is driven by atmospheric circulation changes that precede and contribute to low sea ice.Of note is that we also find no evidence for Eurasian winter cooling following low sea ice in other seasons.More specifically,we find no evidence for Eurasian winter cooling following low autumn sea ice,as suggested by others(e.g.,Francis et al.,2009;Hopsch et al.,2012;Jaiser et al.,2012).

    3.4.Sea level pressure

    To further examine the atmospheric circulation changes linked to the Eurasian cooling,we carry out the same analysis again but with sea level pressure.In the CMIP5 models,the Eurasian cooling is dynamically related to a strengthened Siberian high,consistent with previous studies(Mori et al.,2014;Sun et al.,2016).A high sea level pressure anomaly is found simultaneously with,and for two months prior to,low winter sea ice,which can be seen in Fig.6.The strengthened Siberian high appears part of a larger-scale pattern of circulation anomalies,including a positive North Atlantic Oscillation(NAO)-type pattern in the North Atlantic and raised pressure in the North Pacific.The surface circulation anomalies are much weaker at positive lags,with the most notable feature being a negative NAO pattern at lags of 1 and 2 months.There is no evidence of a strengthened Siberian high following low sea ice,which helps explain the lack of Eurasian cooling following low winter sea ice.

    Several studies have examined the Siberian winter cooling trend,some of which have found that sea ice loss is a precursor to cold continental temperatures(Petoukhov and Semenov,2010;Mori et al.,2014).Others,meanwhile,have found that sea ice does not drive the cold continental temperatures,but does force a warming Arctic(McCusker et al.,2016;Sorokina et al.,2016;Sun et al.,2016).Our study falls into the latter category insofar as that,while there is evidence for sea ice loss as a precursor to warmer Arctic surface temperatures,the same cannot be said for cold continental temperatures.Thus far,the causes of the“warm Arctic,cold continent”pattern remain uncertain,as discussed in Screen(2017a).

    Fig.6.As in Fig.5 but for standardized mean sea level pressure anomalies.Red,solid contours are high pressure anomalies;blue,dashed contours are low pressure anomalies.The shading is unitless(standardized regression coefficient).

    3.5.Regional sea ice anomalies

    As mentioned earlier,low ice in specific regions of the Arctic can impact the atmosphere in different ways.To examine these relationships,Arctic sea ice is partitioned into the marginal seas shown in Fig.7,based on those previously used in Screen(2017b).Figures 8 and 9 show regressions of sea ice,averaged over the four selected polar seas,against the polar cap geopotential height and eddy heat flux,respectively.The regressions of Barents–Kara Sea winter sea ice with polar cap height(Fig.8a)are similar to those previously shown for the pan-Arctic ice area,with positive polar cap height(Fig.8a)and eddy heat flux(Fig.9a)anomalies preceding low ice by 2–3 months,and positive polar cap height anomalies following low sea ice.However,in comparison to the regressions with the pan-Arctic sea ice area,the regressions against Barents–Kara Sea ice are weaker at negative lags and strong at positive lags.Broadly similar lead and lag regressions are found for low winter Greenland Sea ice(Figs.8b and 9b).There are significant(mainly tropospheric)positive polar cap height and eddy heat flux anomalies preceding,and coincident with,low winter Bering Sea ice(Figs.8c and 9c).The Sea of Okhotsk has a noticeably distinct pattern from the other seas,with a large negative polar cap height anomaly(Fig.8d)and negative heat flux(Fig.9d)in the 2–5 months prior to low ice.This indicates reduced vertical wave activity propagation into the stratosphere and a stronger polar vortex.

    4.Conclusions

    In this paper,we present a series of regressions of atmospheric variables against Arctic sea ice area at extended leads and lags using output from CMIP5 pre-industrial control simulations.Wefi nd statistically significant regressions at both positive and negative lags,suggesting both atmospheric precursors of,and responses to,low sea ice.Despite being robust across models and statistically significant,we note the regressions are fairly modest,suggesting Arctic sea is not the dominant driver of polar-cap-average circulation variability,or vice-versa.Nevertheless,midlatitude circulation anomalies in the form of enhanced meridional eddy heat flux do significantly influence Arctic sea ice area.We find that positive polar cap anomalies,reflecting a weaker polar stratospheric vortex,both precede low sea ice and,in some seasons,also follow low sea ice.Zonal mean meridional eddy heat flux anomalies are shown to be statistically significant prior to low sea ice,but weaker and not statistically significant following low sea ice.This suggests that midlatitude atmospheric circulation changes,which manifest as an increase in eddy heat flux,lead to changes in Arctic sea ice as well as a weakening of the polar stratospheric vortex.In this regard,our results provide support for previous studies that have suggested a sizeable component of Arctic mid-tropospheric thickness changes is driven by lower-latitude processes(Screen et al.,2012;Perlwitz et al.,2015).We argue that whilst low sea ice may enhance Arctic warming and further weaken the polar vortex,it appears that in thefi rst instance both the low sea ice and weakened polar vortex are driven by the enhanced eddy heat flux.This is somewhat different to the conclusions of many studies reviewed by Cohen et al.(2014),which hypothesized that reduced sea ice leads to enhanced wave propagation from the troposphere to the stratosphere and a weakened polar vortex.

    Fig.7.Geographic regions used for spatial averaging of atmospheric and sea ice variables.Grey is the polar cap;Barents–Kara Sea in blue;Bering Sea in orange;Sea of Okhotsk in red;Greenland Sea in green.

    Fig.8.As in Fig.2 but for winter(DJF)sea ice standardized anomalies in the(a)Barents–Kara Sea,(b)Bering Sea,(c)Greenland Sea and(d)Sea of Okhotsk.

    Fig.9.As in Fig.8 but for midlatitude meridional eddy heat flux standardized anomalies.The shading is unitless(standardized regression coefficient).

    Fig.10.As in Fig.2,but for RCP8.5 simulations.

    As year-on-year variations in sea ice during the preindustrial control simulations may be of different magnitude and spatial pattern to those projected in the future,a similar analysis is performed using detrended RCP8.5 projections from the primary subset of models in Table 1.As shown in Fig.10,the results are qualitatively similar to those of the pre-industrial control simulations,which further emphasizes the robustness of the results.

    We find that low sea ice in winter is associated with warm winter surface temperatures over the Arctic and cold surface temperatures over Eurasia,consistent with previous studies using observations or reanalyses(Cohen et al.,2013;Mori et al.,2014;Kug et al.,2015).The Eurasian cooling is dynamically related to a strengthened Siberian high,again consistent with past work(Mori et al.,2014).Crucially however,we show that both the strengthened Siberian high and the Eurasian cooling are present several months before the low sea ice.In contrast,we find no evidence of a strengthened Siberian high or Eurasian cooling in the months following low winter sea ice.This suggests that the Eurasian cooling is driven by atmospheric circulation anomalies that precede and may contribute to low sea ice, but is not directly driven by low sea ice.This supports the conclusions of Sato et al.(2014),Sorokina et al.(2016),Sun et al.(2016)and McCusker et al.(2016),but is contrary to other studies that proposed a causal relationship between low sea ice and Eurasian cooling(Honda et al.,2009;Petoukhov and Semenov,2010;Mori et al.,2014;Kug et al.,2015).

    Finally,we examine relationships between regional sea ice anomalies and polar cap height.Similar to Sun et al.(2015),wefi nd that low Atlantic sector sea ice,specifically in the Barents–Kara Sea,is correlated with a weakened stratospheric polar vortex;and low Pacific sector sea ice,specifically in the Sea of Okhotsk,is correlated with a strengthened polar vortex.In both cases,the polar cap height anomalies precede low sea ice by several months and are associated with meridional heat flux anomalies that also precede the low sea ice.Thus,our analyses suggest that modified meridional eddy heat flux could contribute simultaneously to both a perturbed polar vortex and low sea ice.

    Acknowledgements.This work was supported by the Natural Environment Research Council(Grant No.NE/M006123/1).The authors would also like to acknowledge the assistance of Philip SANSOM in selecting the subset of CMIP5 models.

    Open Access.This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use,distribution,and reproduction in any medium,provided you give appropriatecredit to the original author(s)and the source,provide a link to the Creative Commons license,and indicate if changes were made.

    Baldwin,M.P.,and T.J.Dunkerton,2001: Stratospheric harbingers of anomalous weather regimes.Science,294,581–584,https://doi.org/10.1126/science.1063315.

    Baldwin,M.P.,D.B.Stephenson,D.W.J.Thompson,T.J.Dunkerton,A.J.Charlton,and A.O’Neill,2003:Stratospheric memory and skill of extended-range weather forecasts.Science,301,636–640,https://doi.org/10.1126/science.1087143.

    Boland,E.J.D.,T.J.Bracegirdle,and E.F.Shuckburgh,2017:Assessment of sea ice-atmosphere links in CMIP5 models.Climate Dyn.,49,683–702,https://doi.org/10.1007/s00382-016-3367-1.

    Christiansen,B.,2001:Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere:Model and reanalysis.J.Geophys.Res.,106,27 307–27 322,https://doi.org/10.1029/2000JD000214.

    Cohen,J.,J.Jones,J.C.Furtado,and E.Tziperman,2013:Warm arctic,cold continents:A common pattern related to arctic sea ice melt,snow advance,and extreme winter weather.Oceanography,26,150–160,https://doi.org/10.5670/oceanog.2013.70.

    Cohen,J.,and Coauthors,2014:Recent arctic amplification and extreme mid-latitude weather.Nature Geoscience,7,627–637,https://doi.org/10.1038/ngeo2234.

    Edmon,H.J.,B.J.Hoskins,and M.E.McIntyre,1980:Eliassenpalm cross sections for the troposphere.J.Atmos.Sci.,37,2600–2616,https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2.

    Francis,J.A.,W.H.Chan,D.J.Leathers,J.R.Miller,and D.E.Veron,2009:Winter northern hemisphere weather patterns remember summer arctic sea-ice extent.Geophys.Res.Lett., 36,L07503,https://doi.org/10.1029/2009GL037274.

    Garfinkel,C.I.,D.L.Hartmann,and F.Sassi,2010:Tropospheric precursors of anomalous northern hemisphere stratospheric polar vortices.J.Climate,23,3282–3299,https://doi.org/10.1175/2010JCLI3010.1.

    Honda,M.,J.Inoue,and S.Yamane,2009:Influence of low arctic sea-ice minima on anomalously cold Eurasian winters.Geophys.Res.Lett.,36,https://doi.org/10.1029/2008GL037079.

    Hopsch,S.,J.Cohen,and K.Dethlof f,2012:Analysis of a link between fall arctic sea ice concentration and atmospheric patterns in the following winter.Tellus A,64,18624,https://doi.org/10.3402/tellusa.v64i0.18624.

    Jaiser,R.,K.Dethlof f,D.Handorf,A.Rinke,and J.Cohen,2012:Impact of sea ice cover changes on the northern hemisphere atmospheric winter circulation.Tellus A,64,11595,https://doi.org/10.3402/tellusa.v64i0.11595.

    Kim,B.-M.,S.-W.Son,S.-K.Min,J.-H.Jeong,S.-J.Kim,X.D.Zhang,T.Shim,and J.-H.Yoon,2014:Weakening of the stratospheric polar vortex by arctic sea-ice loss.Nature Communications,5,4646,https://doi.org/10.1038/ncomms5646.

    Knutti,R.,D.Masson,andA.Gettelman,2013:Climate model genealogy:generation CMIP5 and how we got there.Geophys.Res.Lett.,40,1194–1199,https://doi.org/10.1002/grl.50256.

    Koenigk,T.,M.Caian,G.Nikulin,and S.Schimanke,2016:Regional arctic sea ice variations as predictor for winter climate conditions.Climate Dyn.,46,317–337,https://doi.org/10.1007/s00382-015-2586-1.

    Kost,J.T.,and M.P.McDermott,2002:Combining dependent P-values.Statistics&Probability Letters,60,183–190,https://doi.org/10.1016/S0167-7152(02)00310-3.

    Kug,J.-S.,J.-H.Jeong,Y.-S.Jang,B.-M.Kim,C.K.Folland,S.-K.Min,and S.-W.Son,2015:Two distinct influences of arctic warming on cold winters over North America and East Asia.Nature Geosci,8,759–762,https://doi.org/10.1038/ngeo2517.

    Martius,O.,L.M.Polvani,and H.C.Davies,2009:Blocking precursors to stratospheric sudden warming events.Geophys.Res.Lett.,36,https://doi.org/10.1029/2009GL038776.

    McCusker,K.E.,J.C.Fyfe,and M.Sigmond,2016:Twenty-five winters of unexpected Eurasian cooling unlikely due to arctic sea-ice loss.Nature Geoscience,9,838–842,https://doi.org/10.1038/ngeo2820.

    Mori,M.,M.Watanabe,H.Shiogama,J.Inoue,and M.Kimoto,2014:Robust arctic sea-ice influence on the frequent Eurasian cold winters in past decades.Nature Geoscience,7,869–873,https://doi.org/10.1038/ngeo2277.

    Nakamura,T.,K.Yamazaki,K.Iwamoto,M.Honda,Y.Miyoshi,Y.Ogawa,Y.Tomikawa,and J.Ukita,2016:The stratospheric pathway for arctic impacts on midlatitude climate.Geophys.Res.Lett.,43,3494–3501,https://doi.org/10.1002/2016GL068330.

    Newman,P.A.,and E.R.Nash,2000:Quantifying the wave driving of the stratosphere.J.Geophys.Res.,105,12485–12497,https://doi.org/10.1029/1999JD901191.

    Overland,J.E.,and Coauthors,2016:Nonlinear response of midlatitude weather to the changing arctic.Nat.Clim.Change,6,992–999,https://doi.org/10.1038/nclimate3121.

    Pedersen,R.A.,I.Cvijanovic,P.L.Langen,and B.M.Vinther,2016:The impact of regional arctic sea ice loss on atmospheric circulation and the NAO.J.Climate,29,889–902,https://doi.org/10.1175/JCLI-D-15-0315.1.

    Peings,Y.,and G.Magnusdottir,2014:Response of the wintertime northern hemisphere atmospheric circulation to current and projected arctic sea ice decline:A numerical study with CAM5.J.Climate,27,244–264,https://doi.org/10.1175/JCLI-D-13-00272.1.

    Perlwitz,J.,M.Hoerling,and R.Dole,2015:Arctic tropospheric warming:Causes and linkages to lower latitudes.J.Climate,28,2154–2167,https://doi.org/10.1175/JCLI-D-14-00095.1.

    Petoukhov,V.,and V.A.Semenov,2010:A link between reduced Barents-Kara sea ice and cold winter extremes over northerncontinents.J.Geophys.Res.,115,https://doi.org/10.1029/2009JD013568.

    Sato,K.,J.Inoue,and M.Watanabe,2014:Influence of the gulf stream on the Barents Sea ice retreat and Eurasian coldness during early winter.Environmental Research Letters,9,084009,https://doi.org/10.1088/1748-9326/9/8/084009.

    Screen,J.A.,2017a:Climate science:Far-flung effects of arctic warming.Nature Geoscience,10,253–254,https://doi.org/10.1038/ngeo2924.

    Screen,J.A.,2017b:Simulated atmospheric response to regional and pan-arctic sea ice loss.J.Climate,30,3945–3962,https://doi.org/10.1175/JCLI-D-16-0197.1.

    Screen,J.A.,C.Deser,and I.Simmonds,2012:Local and remote controls on observedArctic warming.Geophys.Res.Lett.,39,https://doi.org/10.1029/2012GL051598.

    Sjoberg,J.P.,and T.Birner,2012:Transient tropospheric forcing of sudden stratospheric warmings.J.Atmos.Sci.,69,3420–3432,https://doi.org/10.1175/JAS-D-11-0195.1.

    Smith,K.L.,P.J.Kushner,and J.Cohen,2011:The role of linear interference in northern annular mode variability associated with Eurasian snow cover extent.J.Climate,24,6185–6202,https://doi.org/10.1175/JCLI-D-11-00055.1.

    Sorokina,S.A.,C.Li,J.J.Wettstein,and N.G.Kvamst,2016:Observed atmospheric coupling between Barents Sea ice and the warm-arctic cold-Siberian anomaly pattern.J.Climate,29,495–511,https://doi.org/10.1175/JCLI-D-15-0046.1.

    Sun,L.T.,C.Deser,and R.A.Tomas,2015:Mechanisms of stratospheric and tropospheric circulation response to projected arctic sea ice loss.J.Climate,28,7824–7845,https://doi.org/10.1175/JCLI-D-15-0169.1.

    Sun,L.,J.Perlwitz,and M.Hoerling,2016:What caused the recent“warm arctic,cold continents”trend pattern in winter temperatures?Geophys.Res.Lett.,43,5345–5352,https://doi.org/10.1002/2016GL069024.

    Vihma,T.,2014:Effects of arctic sea ice decline on weather and climate:A review.Surveys in Geophysics,35,1175–1214,https://doi.org/10.1007/s10712-014-9284-0.

    Walsh,J.E.,2014:Intensified warming of the arctic:Causes and impacts on middle latitudes.Global and Planetary Change,117,52–63,https://doi.org/10.1016/j.gloplacha.2014.03.003.

    20 February 2017;revised 9 August;accepted 14 August 2017)

    :Kelleher,M.,and J.Screen,2018:Atmospheric precursors of and response to anomalous Arctic sea ice in CMIP5 models.Adv.Atmos.Sci.,35(1),27–37,https://doi.org/10.1007/s00376-017-7039-9.

    ?Corresponding author:James SCREEN

    Email:j.screen@exeter.ac.uk

    ?The Author[2018].This article is published with open access at link.springer.com

    欧美色欧美亚洲另类二区 | 亚洲伊人色综图| 天堂影院成人在线观看| 91国产中文字幕| 长腿黑丝高跟| 国产高清激情床上av| 亚洲 国产 在线| 香蕉久久夜色| 操出白浆在线播放| 欧美最黄视频在线播放免费| 久久久久久久久久久久大奶| 欧美性长视频在线观看| 欧美成狂野欧美在线观看| 性色av乱码一区二区三区2| 变态另类丝袜制服| 亚洲少妇的诱惑av| 亚洲 欧美 日韩 在线 免费| netflix在线观看网站| 九色国产91popny在线| 久久久国产成人精品二区| 69精品国产乱码久久久| 国产欧美日韩精品亚洲av| 女人高潮潮喷娇喘18禁视频| 欧美一级a爱片免费观看看 | 性欧美人与动物交配| 男女床上黄色一级片免费看| 亚洲最大成人中文| 国产成人精品久久二区二区免费| 高清毛片免费观看视频网站| 美女免费视频网站| 精品国产亚洲在线| 美女国产高潮福利片在线看| 中文字幕高清在线视频| 又大又爽又粗| 婷婷六月久久综合丁香| 亚洲一码二码三码区别大吗| 免费人成视频x8x8入口观看| 国产精品精品国产色婷婷| 久久精品国产清高在天天线| 在线永久观看黄色视频| 99热只有精品国产| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品久久久久5区| 久久久久久大精品| 国产av精品麻豆| 国产成人精品久久二区二区91| 亚洲精华国产精华精| 桃红色精品国产亚洲av| 18禁美女被吸乳视频| 欧美午夜高清在线| 国产xxxxx性猛交| 日韩欧美国产一区二区入口| 亚洲av五月六月丁香网| 美女扒开内裤让男人捅视频| 成人18禁高潮啪啪吃奶动态图| 91麻豆av在线| 亚洲人成伊人成综合网2020| 好男人在线观看高清免费视频 | 国产免费男女视频| 美女扒开内裤让男人捅视频| 男人操女人黄网站| av超薄肉色丝袜交足视频| 成人亚洲精品一区在线观看| 国产高清激情床上av| 国产xxxxx性猛交| 久热爱精品视频在线9| 国产aⅴ精品一区二区三区波| 亚洲第一欧美日韩一区二区三区| 国产国语露脸激情在线看| 嫁个100分男人电影在线观看| 俄罗斯特黄特色一大片| 亚洲成人国产一区在线观看| 亚洲成人精品中文字幕电影| 丝袜在线中文字幕| 久热爱精品视频在线9| 亚洲va日本ⅴa欧美va伊人久久| 免费一级毛片在线播放高清视频 | 亚洲五月天丁香| videosex国产| 在线免费观看的www视频| 两个人免费观看高清视频| 亚洲精品在线观看二区| 日本黄色视频三级网站网址| 又黄又粗又硬又大视频| 看片在线看免费视频| 日日夜夜操网爽| 级片在线观看| 久久久久国产一级毛片高清牌| 国产熟女午夜一区二区三区| 亚洲精华国产精华精| 69av精品久久久久久| 精品免费久久久久久久清纯| videosex国产| 久久精品人人爽人人爽视色| 欧美日韩中文字幕国产精品一区二区三区 | 黄色毛片三级朝国网站| √禁漫天堂资源中文www| 国产区一区二久久| 国产成人av教育| 国产色视频综合| 黄片大片在线免费观看| 桃红色精品国产亚洲av| 亚洲精品久久国产高清桃花| 欧美黑人欧美精品刺激| 国产亚洲精品久久久久久毛片| 波多野结衣巨乳人妻| 精品熟女少妇八av免费久了| 99riav亚洲国产免费| 免费看美女性在线毛片视频| 国产精品精品国产色婷婷| 国产精品自产拍在线观看55亚洲| 日韩精品免费视频一区二区三区| 国产精品久久久久久亚洲av鲁大| 老熟妇仑乱视频hdxx| 精品一区二区三区视频在线观看免费| 国产乱人伦免费视频| 午夜激情av网站| 久热爱精品视频在线9| 97超级碰碰碰精品色视频在线观看| 国产麻豆69| 两人在一起打扑克的视频| 日日干狠狠操夜夜爽| 大陆偷拍与自拍| 国产精品精品国产色婷婷| 日日干狠狠操夜夜爽| 国产一区二区激情短视频| 中文字幕人妻丝袜一区二区| 久久精品影院6| 久久欧美精品欧美久久欧美| av中文乱码字幕在线| 91成人精品电影| 欧美日韩黄片免| 99国产极品粉嫩在线观看| 男女下面进入的视频免费午夜 | 国产熟女午夜一区二区三区| 成年人黄色毛片网站| 69精品国产乱码久久久| 两人在一起打扑克的视频| 国产极品粉嫩免费观看在线| 亚洲一区高清亚洲精品| 黄色女人牲交| 午夜免费成人在线视频| 日本欧美视频一区| 午夜福利18| 在线永久观看黄色视频| 国产蜜桃级精品一区二区三区| 国产一区在线观看成人免费| 好男人电影高清在线观看| 成人av一区二区三区在线看| 亚洲成人免费电影在线观看| 黄色 视频免费看| 黄色女人牲交| 亚洲狠狠婷婷综合久久图片| 午夜免费激情av| 性少妇av在线| 亚洲欧美激情综合另类| 极品人妻少妇av视频| 制服诱惑二区| a在线观看视频网站| 免费人成视频x8x8入口观看| cao死你这个sao货| 1024香蕉在线观看| 成人特级黄色片久久久久久久| 97碰自拍视频| 成人国产一区最新在线观看| 国产一级毛片七仙女欲春2 | 桃红色精品国产亚洲av| 国产精品久久视频播放| 高清毛片免费观看视频网站| 日本免费a在线| 亚洲七黄色美女视频| 久久人妻福利社区极品人妻图片| 最近最新中文字幕大全免费视频| 国产成人精品无人区| 最近最新中文字幕大全免费视频| 老鸭窝网址在线观看| 日韩有码中文字幕| 久久久国产成人精品二区| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美在线二视频| 国产精品一区二区在线不卡| 在线av久久热| 精品久久久久久成人av| 91大片在线观看| 中文字幕av电影在线播放| 亚洲欧洲精品一区二区精品久久久| 夜夜躁狠狠躁天天躁| 午夜日韩欧美国产| 好看av亚洲va欧美ⅴa在| 成人国产综合亚洲| 九色亚洲精品在线播放| 激情视频va一区二区三区| 国产亚洲精品久久久久久毛片| 一区二区三区高清视频在线| 国产精品久久久久久亚洲av鲁大| 日韩 欧美 亚洲 中文字幕| 亚洲片人在线观看| 色综合站精品国产| 国产成人精品无人区| av天堂在线播放| 男女下面进入的视频免费午夜 | 欧美午夜高清在线| 婷婷六月久久综合丁香| 亚洲男人天堂网一区| 国产一区二区三区综合在线观看| 久久久国产精品麻豆| 欧美成人性av电影在线观看| 如日韩欧美国产精品一区二区三区| 国产成人av教育| 精品国产一区二区久久| e午夜精品久久久久久久| 久久久国产成人精品二区| 女人被狂操c到高潮| √禁漫天堂资源中文www| 制服人妻中文乱码| 精品国内亚洲2022精品成人| 91在线观看av| 女性被躁到高潮视频| 午夜两性在线视频| 亚洲国产高清在线一区二区三 | 丰满人妻熟妇乱又伦精品不卡| 国产成人av激情在线播放| 午夜久久久久精精品| 怎么达到女性高潮| 看片在线看免费视频| 久久精品亚洲熟妇少妇任你| 亚洲欧美精品综合一区二区三区| 亚洲中文字幕日韩| 亚洲中文字幕一区二区三区有码在线看 | 好看av亚洲va欧美ⅴa在| 亚洲精品粉嫩美女一区| www国产在线视频色| 成人国语在线视频| 国产成人啪精品午夜网站| 日本三级黄在线观看| 法律面前人人平等表现在哪些方面| 久久热在线av| 国产精品电影一区二区三区| 丁香六月欧美| 国产伦一二天堂av在线观看| 成人手机av| 国产欧美日韩综合在线一区二区| 免费av毛片视频| 亚洲国产精品成人综合色| 亚洲国产精品久久男人天堂| 少妇熟女aⅴ在线视频| 美女免费视频网站| 精品国产乱码久久久久久男人| 久99久视频精品免费| 中文字幕高清在线视频| 老司机在亚洲福利影院| 亚洲成人精品中文字幕电影| or卡值多少钱| 久久久久久亚洲精品国产蜜桃av| 香蕉久久夜色| 不卡一级毛片| 亚洲精品美女久久av网站| 别揉我奶头~嗯~啊~动态视频| 我的亚洲天堂| 亚洲成人久久性| 亚洲视频免费观看视频| av超薄肉色丝袜交足视频| 成熟少妇高潮喷水视频| 亚洲国产精品合色在线| 国产真人三级小视频在线观看| 国产一区二区三区在线臀色熟女| 十分钟在线观看高清视频www| 少妇熟女aⅴ在线视频| 一a级毛片在线观看| 1024视频免费在线观看| 午夜免费鲁丝| 久久久久久免费高清国产稀缺| 在线永久观看黄色视频| 欧美成狂野欧美在线观看| 精品国内亚洲2022精品成人| 精品一区二区三区视频在线观看免费| 久久精品影院6| e午夜精品久久久久久久| 老司机深夜福利视频在线观看| 国产成人系列免费观看| 日日干狠狠操夜夜爽| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区mp4| www.999成人在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 怎么达到女性高潮| 一区二区三区高清视频在线| 90打野战视频偷拍视频| 中文字幕色久视频| 国产精品99久久99久久久不卡| 日本 av在线| 色精品久久人妻99蜜桃| 精品一区二区三区av网在线观看| 一区二区三区激情视频| av有码第一页| 国产单亲对白刺激| 久久久久国产精品人妻aⅴ院| av视频免费观看在线观看| 如日韩欧美国产精品一区二区三区| 成人欧美大片| av中文乱码字幕在线| 免费观看人在逋| 成人三级做爰电影| 老熟妇乱子伦视频在线观看| 久久精品国产清高在天天线| 欧美乱妇无乱码| 亚洲精品av麻豆狂野| 欧美av亚洲av综合av国产av| 久久精品91无色码中文字幕| 人人澡人人妻人| 女人被躁到高潮嗷嗷叫费观| 国产精品爽爽va在线观看网站 | 黄色女人牲交| 波多野结衣一区麻豆| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 国产亚洲精品久久久久5区| 一卡2卡三卡四卡精品乱码亚洲| 激情视频va一区二区三区| 天堂动漫精品| 97超级碰碰碰精品色视频在线观看| 亚洲欧美精品综合一区二区三区| 深夜精品福利| 黄色片一级片一级黄色片| 美国免费a级毛片| 精品国产美女av久久久久小说| 亚洲成av人片免费观看| 一级毛片高清免费大全| 久久久久亚洲av毛片大全| 免费女性裸体啪啪无遮挡网站| 亚洲第一电影网av| 亚洲精品国产区一区二| 日韩三级视频一区二区三区| aaaaa片日本免费| 97人妻天天添夜夜摸| 午夜福利,免费看| www国产在线视频色| 变态另类成人亚洲欧美熟女 | 免费久久久久久久精品成人欧美视频| 一二三四在线观看免费中文在| 亚洲熟妇中文字幕五十中出| aaaaa片日本免费| 国产精品免费视频内射| 久久久水蜜桃国产精品网| 免费在线观看亚洲国产| 久久精品亚洲熟妇少妇任你| 国产91精品成人一区二区三区| 日本一区二区免费在线视频| 人成视频在线观看免费观看| √禁漫天堂资源中文www| 国产精品综合久久久久久久免费 | 成年女人毛片免费观看观看9| 亚洲欧美激情在线| 色综合站精品国产| 国产成人啪精品午夜网站| 日本黄色视频三级网站网址| 91av网站免费观看| 午夜久久久久精精品| 亚洲自拍偷在线| 国产亚洲av嫩草精品影院| 一本大道久久a久久精品| 日本精品一区二区三区蜜桃| 欧美色欧美亚洲另类二区 | 久久精品国产亚洲av高清一级| 91大片在线观看| 999久久久国产精品视频| av网站免费在线观看视频| 国产高清videossex| 亚洲一区二区三区色噜噜| 精品国产乱码久久久久久男人| 国产成人av激情在线播放| 波多野结衣av一区二区av| 99国产精品一区二区蜜桃av| 国产av一区在线观看免费| 精品人妻1区二区| 国产精品久久视频播放| 天堂动漫精品| 精品一区二区三区四区五区乱码| 精品久久久精品久久久| 久久中文看片网| 操美女的视频在线观看| 在线观看66精品国产| 久久久久久大精品| 午夜久久久在线观看| 大型黄色视频在线免费观看| a级毛片在线看网站| 精品高清国产在线一区| av视频免费观看在线观看| x7x7x7水蜜桃| 精品国产超薄肉色丝袜足j| 51午夜福利影视在线观看| 丁香六月欧美| 久热这里只有精品99| 精品熟女少妇八av免费久了| 777久久人妻少妇嫩草av网站| 琪琪午夜伦伦电影理论片6080| 亚洲第一电影网av| 女人高潮潮喷娇喘18禁视频| 成年人黄色毛片网站| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久精品欧美日韩精品| 在线播放国产精品三级| 伊人久久大香线蕉亚洲五| 啪啪无遮挡十八禁网站| 亚洲国产欧美网| 天堂√8在线中文| 国产成人啪精品午夜网站| 韩国精品一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 日日干狠狠操夜夜爽| 免费观看精品视频网站| 一a级毛片在线观看| 国产麻豆69| 国产亚洲精品久久久久久毛片| 精品免费久久久久久久清纯| 国产成人免费无遮挡视频| av视频免费观看在线观看| 夜夜夜夜夜久久久久| 国产一区二区三区视频了| 大型av网站在线播放| 窝窝影院91人妻| 精品国产美女av久久久久小说| 中出人妻视频一区二区| 好男人电影高清在线观看| 国产亚洲av嫩草精品影院| 亚洲av五月六月丁香网| 欧美日韩亚洲综合一区二区三区_| 国产成人av激情在线播放| 男女下面进入的视频免费午夜 | 国产一区二区激情短视频| 老司机午夜福利在线观看视频| 欧美亚洲日本最大视频资源| 啪啪无遮挡十八禁网站| 久久久久久久久中文| 国产私拍福利视频在线观看| 中文字幕精品免费在线观看视频| 丁香欧美五月| av超薄肉色丝袜交足视频| 亚洲国产日韩欧美精品在线观看 | 12—13女人毛片做爰片一| 男女下面插进去视频免费观看| 91九色精品人成在线观看| 欧美黄色片欧美黄色片| 性欧美人与动物交配| 一二三四社区在线视频社区8| 夜夜夜夜夜久久久久| 精品电影一区二区在线| 久久久久九九精品影院| 曰老女人黄片| 黄色视频,在线免费观看| xxx96com| 午夜a级毛片| 夜夜夜夜夜久久久久| 12—13女人毛片做爰片一| 日本 欧美在线| 亚洲专区字幕在线| 女生性感内裤真人,穿戴方法视频| 一区在线观看完整版| 黄色成人免费大全| 欧美成人性av电影在线观看| 色播在线永久视频| 88av欧美| www.熟女人妻精品国产| 成人三级黄色视频| 99久久国产精品久久久| 免费在线观看影片大全网站| 午夜免费激情av| 欧美不卡视频在线免费观看 | 女人爽到高潮嗷嗷叫在线视频| 欧美午夜高清在线| 欧美丝袜亚洲另类 | 亚洲情色 制服丝袜| 欧美黑人精品巨大| 老司机午夜福利在线观看视频| 日韩精品青青久久久久久| 禁无遮挡网站| 亚洲五月色婷婷综合| 两个人视频免费观看高清| 熟妇人妻久久中文字幕3abv| 19禁男女啪啪无遮挡网站| 久久久久久久久免费视频了| 黄色女人牲交| 人妻久久中文字幕网| 国产精品久久久av美女十八| 男人操女人黄网站| 国产视频一区二区在线看| 少妇裸体淫交视频免费看高清 | 色在线成人网| 69精品国产乱码久久久| 激情视频va一区二区三区| 国产成人精品无人区| 亚洲av成人一区二区三| 视频区欧美日本亚洲| 久久人妻av系列| 18禁国产床啪视频网站| 桃色一区二区三区在线观看| 波多野结衣高清无吗| 国产极品粉嫩免费观看在线| 亚洲中文字幕一区二区三区有码在线看 | 90打野战视频偷拍视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲第一av免费看| 精品欧美一区二区三区在线| 午夜福利18| 国产麻豆69| 午夜免费成人在线视频| 18禁黄网站禁片午夜丰满| 成人av一区二区三区在线看| 久久天躁狠狠躁夜夜2o2o| 韩国av一区二区三区四区| 99热只有精品国产| 亚洲情色 制服丝袜| 99热只有精品国产| 午夜久久久久精精品| 在线永久观看黄色视频| www.精华液| 久久精品国产亚洲av香蕉五月| 桃色一区二区三区在线观看| av中文乱码字幕在线| 97超级碰碰碰精品色视频在线观看| 亚洲精品在线观看二区| 99久久国产精品久久久| 老熟妇仑乱视频hdxx| 99精品久久久久人妻精品| ponron亚洲| 女警被强在线播放| 久久人人97超碰香蕉20202| 别揉我奶头~嗯~啊~动态视频| 在线观看www视频免费| 国产色视频综合| 一边摸一边做爽爽视频免费| 亚洲五月婷婷丁香| 国产99白浆流出| 午夜精品久久久久久毛片777| 不卡一级毛片| 别揉我奶头~嗯~啊~动态视频| 99久久久亚洲精品蜜臀av| 男人操女人黄网站| 亚洲成人久久性| 后天国语完整版免费观看| 欧美亚洲日本最大视频资源| 精品熟女少妇八av免费久了| 日本免费一区二区三区高清不卡 | 每晚都被弄得嗷嗷叫到高潮| 欧美色视频一区免费| 999精品在线视频| 中文字幕人妻熟女乱码| 午夜精品国产一区二区电影| 午夜精品久久久久久毛片777| 每晚都被弄得嗷嗷叫到高潮| 好男人在线观看高清免费视频 | 神马国产精品三级电影在线观看 | 亚洲国产精品sss在线观看| 女人被狂操c到高潮| 成人三级黄色视频| 国产亚洲欧美精品永久| 国产又爽黄色视频| 日本三级黄在线观看| 国产精品香港三级国产av潘金莲| 老司机福利观看| 国产高清激情床上av| 成人18禁高潮啪啪吃奶动态图| 十八禁网站免费在线| 高潮久久久久久久久久久不卡| www.999成人在线观看| 国产精品电影一区二区三区| 久久精品人人爽人人爽视色| 精品卡一卡二卡四卡免费| 俄罗斯特黄特色一大片| 香蕉久久夜色| 男女下面插进去视频免费观看| 麻豆成人av在线观看| 久久久久国内视频| 麻豆久久精品国产亚洲av| 国产极品粉嫩免费观看在线| 亚洲精品一区av在线观看| 中出人妻视频一区二区| 久热这里只有精品99| 精品第一国产精品| 天堂√8在线中文| 欧美日本视频| 国内毛片毛片毛片毛片毛片| 欧美 亚洲 国产 日韩一| 亚洲aⅴ乱码一区二区在线播放 | 精品无人区乱码1区二区| 丁香欧美五月| 国内久久婷婷六月综合欲色啪| 欧美激情 高清一区二区三区| 黄色毛片三级朝国网站| 91成年电影在线观看| 超碰成人久久| 最近最新免费中文字幕在线| 精品国产超薄肉色丝袜足j| 一进一出抽搐动态| 亚洲国产精品999在线| 国产精品久久电影中文字幕| 久久天堂一区二区三区四区| 亚洲在线自拍视频| 亚洲精品国产精品久久久不卡| 丝袜美足系列| 亚洲av熟女| 黄色成人免费大全| 69精品国产乱码久久久| 国产三级在线视频| 成熟少妇高潮喷水视频| 一区二区日韩欧美中文字幕| 天堂影院成人在线观看| 欧美黑人欧美精品刺激| 精品卡一卡二卡四卡免费| 满18在线观看网站| 亚洲五月色婷婷综合| 欧美日韩一级在线毛片| 无遮挡黄片免费观看| 亚洲精品国产色婷婷电影| 变态另类丝袜制服|