• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    污染控制—燃料電池的使能技術(shù)

    2018-12-05 07:02:56
    汽車文摘 2018年12期
    關(guān)鍵詞:冷卻劑主題詞陰極

    主題詞:燃料電池系統(tǒng) 裂化 污染物 陰極空氣過濾器 離子交換過濾器 冷卻劑粒子過濾器

    1 INTRODUCTION

    Climate change is one of the major threats to mankind.To reach the target of maximum 1.5°C temperature rise compared to pre-industrial levels set by the COP21 Conference in Paris[1],emissions from transport,accounting for 23%of the total CO2emissions[2],have to be drastically reduced.

    FuelCellElectric Vehicles(FCEV)offeran alternative to BEV for local zero-emission transport.The energy for electric driving is generated on-board by the catalytic reaction of hydrogen and oxygen from ambient air in a cold combustion reaction,yielding only water as the reaction product.

    As BEV′s driving range depends on the capacity and consequently in battery pack weight,their application for higher duty applications is limited.Fuel cell technology offers an alternative for transport with high daily driving ranges in combination with high vehicle weight[3],as shown in Figure 1.

    To improve the LT PEM fuel cell stack′s durability,degradation rates must be significantly reduced to reach the expected lifetime.The following chapterswill highlight solutions to this challenge.

    2 CLEAN CATHODE AIR

    2.1 Prior State-of-The-Art

    Laboratory Investigation

    Figure 1:Favorable applications of fuel cell technology in transport[3]

    Gaseous contaminations in the cathode air have a negative impact on the durability of LT PEM fuel cell systems,e.g.through poisoning of the platinum catalyst or damaging the membrane.The sensitivity of the stack will increase as platinum loading must be reduced to achieve necessary cost savings.In a publically funded project[4],the main sources for degradation were investigated systematically.Gases containing S-and N-atoms like SO2and NOxturned out to be especially critical for the system performance.Particles,e.g.salt crystals,also have a negative impact and have to be separated.The presence of ammonia at concentration levels even below 1 ppm poisons the electrodes of the cell which in turn affects the cell voltage as well[5].

    Poisoning the cathode with different gases showed that the pollutants cause a significant loss of performance,which can be irreversible without active regeneration.Further investigations showed that the critical concentration level can be as low as 100 ppb.Besides the harmful gases,a negative effect of ions,originating from salt particles like sodium chloride,negatively affect the cell voltage as well(Figure 2).The risk of such a contamination is especially high in coastal areas[6].

    Figure 2:Laboratory tests of effect from contamination on fuel cell voltage[6]

    Proof of Concept:Protection of stationary Fuel Cells against Real-Life Contamination

    Current research focusses on the transfer of the findings from laboratory tests to real-life environments.The positive effect of adsorptive filter elements on fuel cell degradation was proven in a field trial.In long-term test runs with cyclic NO load,the degradation rate after run-in was cut by almost 50%-from 60μV/h to 32μV/h[7].In a stationary fuel cell system containing two shortstacks,one stack was run without a filter element while a cathode air filter protected the other stack.Both started at the same cell voltage and were operated at 65°C and 400 mA/cm2.As shown in Figure 3,the degradation of the unprotected cell was more severe[4].In addition,it was demonstrated through continuous gas measurements that NOxhas a direct influence on the cell voltage under reallife conditions. The detected peaks in pollutant concentration directly lead to a partly reversible voltage drop of the fuel cell voltage.At the end of the test,a voltage difference of 70 mV was observed,equalling approximately 2.2%of the initial voltage,already after 650 hours of operation.The reaction of the filterprotected stack was much less pronounced which proved the functionality of the adsorptive cathode air filter.

    Figure 3:Filter performance under real-life conditions[4]

    The negative effect of NO on stack voltage is associated with molecular adsorption to the platinum catalyst.As NO binds at the same coordination sites as O2,NO adsorption is slowing down the oxygen reduction reaction.To reverse the negative effect,regeneration strategies can be employed.Tests reveal that a complete regeneration will only take place after several hours of regeneration,and the air has to be free of any NOx.In addition,reduction of NO can create NH4+which in turn is harmful for the Ionomer as it irreversibly occupies active sites for proton transport[7].

    2.2 New Insights Into Real-Life Effects On Fuel Cell Durability:ALASKA

    The ALASKA Project:Targets and Approach

    To investigate the effect of real-life contamination on fuel cell durability in mobile applications,the funded projectALASKA(“Auswertungvon Luftschadstoffszenarien zur Auslegung von Schadgasfiltern und Kathodenregenerationszyklen für Automotive Brennstoffzellen”, support code 03ET6036A)was initiated with the project partners Zentrum fürBrennstoffzellenTechnik (ZBT)GmbH,Forschungszentrum Jülich GmbH,Daimler AG,and MANN+HUMMEL Innenraumfilter GmbH&Co.KG.Oneoftheproject′stargetswasto continue the development of adsorbents against gases poisoning the fuel cell and to gain a better understanding of the necessary capacity and lifetime,with a special focus on the effect of peak concentrations.To gain the necessary data with high precision,a truck equipped with several analysers for the designated harmful gases operated as a mobile lab,measuring the concentration of the harmful substances with high spatiotemporal resolution.

    Figure 4:MOBILAB vehicle[8]

    A test lap to gather the required data was defined,containing all relevant types of roads,and also a representative height profile.The lap′s length was about 93 km,the road profile is depicted in Figure 5.

    Figure 5:Test lap for measurements of airborne contaminants[8]

    After a statistically relevant number of measurements,the typical concentration levels of the target gases were related to the different types of roads.The results of the measurements supported the knowledge-based development of the cathode air filter(Figure 6).Furthermore,the highly sensitive test equipment was being used to investigate the behaviour of the adsorbent under real-life condition to achieve additional performance improvements.

    Figure 6:Real-life NOXpollution levels on different road types(adapted from[9])Material Development:Activated Carbon

    The contaminants′profiles collected in the ALASKA project showed the need to develop specific adsorbents with tailored selectivity(Figure 7).

    Figure 7:Adsorption profiles of modified activated carbons for different target gases

    Activated carbons have proven to be a superior adsorbent choice.Since activated carbons mostly possess non-polar groups on their surfaces,impregnation is important for adsorbing polar gases such as NH3or NOx[10].

    Media Development

    Adsorbent materials

    Bulk measurements(Figure 7)of different activated carbon types show that different treatments are beneficial for some characteristic groups,but lead to a performance drop for other substances.Additionally the separation efficiency for some gases can be lower if other,more strongly bonding molecules,are present in gas mixtures.As protection against a broad range of harmful substances is required,further research led to the development of multilayer media containing these tailored adsorbents in different layers(Figure 8).Special care has to be taken of the rightsequence of layers for fulladsorption performance.Very selective adsorbent should be placed on the upstream side so that the pollutants do not block the binding sites of the less specific ones.

    Figure 8:Multilayer design for gas mixtures

    By selection of the most specific activated carbons and mixing them in the right proportion,the performance range of the adsorption media can be optimized.If the systemsareoperated in areaswith ahigh sulfur concentrations,e.g.areas with geysers or volcanoes,the share of catalytic activated carbon should be higher.For regions with high NH3levels,media with a higher content of the activated carbon with an acid impregnation yield higher capacity.Through this,multilayer media can be easily tailored for specific requirements.

    Figure 9:Breakthrough and capacity measurements of tailored filter media

    Figure 9 shows the adsorption performance of such media compositions.By using a higher share of the acidimpregnated carbon,the NH3adsorption capacity is enhanced.

    Underreal-life operating conditions,the gas concentrations will not be constant,but fluctuating.To analyse the adsorption performance,several filter media samples were tested on-road as part of the ALASKA project (Figure 10),showing excellent separation efficiency even at low concentration levels[11].

    Figure 10:Filter sample NH3separation efficiency under real-life driving conditions

    Particle filter media

    Salt particles can drain the cell voltage as well.HEPA mediaaccording to EN1822 show particle separation efficiencies of 99.95%at the most penetrating particle size.Therefore,such media protect the cathode againstsodium chloride particles very well.The disadvantage is a potentially fast media clogging,which requires a pre filter in dusty environments.To avoid an extended demand of mounting space,a double layer bellow was developed[11],as shown in Figure 11.

    Here,a HEPA media layer is pleated together with a media having a lower efficiency and a higher dust holding capacity.In this structure it is possible to generate a secure protection against fine particles as well as a sufficient dust holding capacity in a minimum mounting space.

    Figure 11:Double layer bellow

    Filter Element Designs

    Laminated media offer the advantage of adsorbent′s immobilization,so negative influence from movement or vibrations of the system can be avoided.Furthermore,the pressure drop can be optimized in relation to the performance density ofthe activated carbon with different design concepts(Figure 12).The trade-off between the performance characteristics (separation efficiency,capacity and pressure loss)on filter element level requires to find the best compromise between packaging constraints and adsorption performance.

    Figure 12:Typical air flow/pressure loss profiles for different element designs

    A standard pleated filter brings the benefit of a high filtration surface which leads to a lower media velocity and a low pressure drop,especially important for high volume flows,e.g.in FCEV.The open structure of a pleated filter results in a lower performance density.Alternatively,a stacked filter can be applied to gain a higher utilization of the available mounting space.The higher amount of activated carbon in the same volume brings more capacity and a longer contact time with the adsorbent.The higher carbon and performance density leads to a higher pressure loss of the filter element.

    For the automotive application investigated in the ALASKA project,a combination of stacked adsorbent layers(Figure 13)with pleated filter media turned out to be the best design option[11].

    Figure 13:ALASKA filter element

    The projectresultsclearly show thatharmful contamination levels of airborne contamination are easily exceeded in selected environments,and that cathode air filters with adsorbent stages are efficient means to reduce degradation rates of LT PEM stacks.

    3 CLEANFUELCELLCOOLANT

    3.1 Removal of Ions:Ion Exchanger Filter

    Scientific background

    To remove the heat generated by the fuel cell stack,liquid cooling with water-glycol mixtures is often used.It is crucial to keep the liquid at a very low electric conductivity to avoid electric shorts in the fuel cell stack.During operation,ions can enter the liquid e.g.from metal surfaces of coolant loop components,additives from plastics,and corrosive effects,leading to an increase in electric conductivity.Furthermore,the reactive ions will further propagate corrosion in the cooling circuit,acting as catalysts.Deposits containing different metal ions(Cr,Mn,Fe,Ni and Ca)indicate a degradation of the material′ssurfaceswhich can harm the fuelcell additionally.H2O2can be formed in the fuel cell(Figure 14)and even if the membrane is resistant against it under normal conditions,the presence of metal ions together with H2O2will catalyze the chemical degradation of the membrane.Additionally,almost all cations(except Li+)can replace the protons in the sulfonic acid functions of the membrane,which leads to a decreased protonic conductivity and therefore a performance drop[12].

    Figure 14:(l.)Vents corroded in De-Ionized(DI)water(r.)deposits of metal ions[12]

    To keep the conductivity low and to protect the coolant loop from accelerated corrosion,ion exchange technology must be applied.

    Ion Exchange Filters for Automotive Applications:Material and Product Design

    A mixture of strongly acidic and basic resins was developed which maintains its high volumetric capacity even at elevated temperatures,enabling the use in automotive applications.Strongly basic ion exchange resins often show a loss of capacity caused by thermal degradation of the anion-binding groups.This effect is attributed to the“Hofmann Degradation” which eliminatesone methylgroup from the quaternary functional group,yielding a tertiary amine,or even eliminates the whole amine block.Both mechanisms require the presence of OH--anions.For thermal aging tests,the resins where immersed in a water/ethylene glycol mixture and stored for three weeks at 90°C.The samples′remaining ion exchange capacity were measured and compared to the initial values,showing the degree of temperature- induced degradation.Monodisperse styrene-divinylbenzene copolymer(PSDVB) resins with sulfonic acid and quaternary ammonium functions combined good volume-based capacity with a very low degradation after the aging procedure.

    To achieve full utilization of the resin mix,an innovative grid structure was developed.The internal lattice structure directs the coolant flow in a way that all resin is used efficiently(Figure 15).In addition,the internal matrix structure keeps the resin beads slightly apart,thus lowering the pressure loss in operation.The internal structure also prevents resin de-mixing caused by vibration in fuel cell systems(Figure 16).

    Figure 15:Homogenous flow field at ion exchange filter inlet

    Proof of Concept:Breakthrough Curves

    As the levels of initial ionic contamination and dragin rates are often not available,typical contamination levels, main contaminants and time- dependent concentration levels were defined,based on literature research,for proof-of-concept testing.The fulfilment of the separation task was proven by breakthrough measurements.The increase in electric conductivity indicates that the resins′capacities are fully spent,and that a filter change is required.

    Figure 16:Typical ion exchange filter breakthrough curve

    The qualification of the service interval depends on the unique application and is done together with the customer,based on the concrete operation requirements.

    3.2 Removal of Particles:Coolant Particle Filter

    Problem Description

    In addition to ions,the fuel cell coolant can be contaminated by particles.Potential sources for these particles can be the internal surfaces of piping and other components if the parts are not manufactured,stored and assembled in special environments,e.g.in clean rooms.These primary particles can lead to the formation of secondary particles,thus increasing the particle load.Hard particles can lead to several problems,e.g.blocking of narrow coolant channels through agglomeration and inducing wear inside the coolant pump.Both factors can lead to a reduction in cooling efficiency.In contrast to ion exchange filters which are typically installed in a bypass loop,coolant particle filters are placed in the coolant fullflow.This makes it necessary to choose product designs with very low pressure loss at high volume flow.In addition,the material selection for all components is strictly limited to materials which are compatible with the coolant to avoid degradation and leaching of additives which would increase the electric conductivity.

    Coolant Particle Filters:Material and Product Design

    Often simple meshes are used to hold back particles.These have the disadvantage that large splinters can easily passthrough iforiented in flow direction,perpendicular to the mesh(Figure 17).3D fibre structures overcome this concept′s drawback.

    Figure 17:MULTIGRADE media for coolant particle filters

    Media with high porosity are applied for low pressure drop.As these have a low thickness,an additional supporting grid must be applied downstream to stabilize the filterpleatsunderhigh volume flow conditions.

    ThroughComputationalFluidDynamics(CFD)analysis,a pressure-drop optimized filter design was developed,as shown in Figure 18.

    Figure 18:CFD simulation and product design for coolant particle filters

    4 SUMMARY

    Efficient contaminant removal from cathode air and coolant is required to pave the way to robust and durable,yet affordable fuel cell systems.With ever lower catalyst concentration,the need for a highly efficient protection will increase if the expected system lifetime shall be achieved.Special emphasis will remain on the separation of NH3as it does not only block the catalyst,but also damages the ionomer/membrane material[13].In Selective Catalytic Reduction (SCR)exhaustaftertreatment devices,ammonia slip can occur if an excess of AdBlue/urea solution is sprayed into the system,which will challenge the stack lifetime even more as these systems are expected to strongly penetrate the market.Research on the sensitivity of a LT PEM fuel cell against airborne contamination under real-life automotive conditions led to the knowledge-based development of adsorbents and media for cathode air filters,tailored to effective protection.

    To enable the efficient heat removal from the fuel cell stack,the required cleanliness level of the coolant has to be maintained.To protect the fuel cell system from corrosion and electric shorts,ion exchange resins have been developed to keep the electric conductivity and ion contamination in the liquid cooling circuit low.Innovative product features enhance the performance and resin utilization.In addition to ion removal,a coolant particle filter was developed to prevent wear in the coolant pump and blocking of narrow coolant channels.

    ABBREVATIONS

    ALASKA AuswertungvonLuftschadstoffszenarien zur Auslegung von Schadgasfiltern und Kathodenregenerationszyklen für Automotiv-Brennstoffzellen

    BEV Battery Electric Vehicle

    CFD Computational Fluid Dynamics

    CHP Combined Heat and Power

    DI De-Ionized

    FCEV Fuel Cell Electric Vehicle

    HEPA High Efficiency ParticulateAir filter

    LT PEM Low Temperature Proton Exchange Membrane

    PS-DVB Styrene-Divinylbenzene copolymer

    SCR Selective Catalytic Reduction

    Author Introduction of Dr.Michael Harenbrock

    Dr.Michael Harenbrock joined MANN+HUMMEL GmbH,a global leader in Filtration,in 1998.He works on fuel cell and battery projects since 2010.In his current position as Principal Expert Electric Mobility,he strategically identifies the need for new filtration solutions for Electric Mobility including Fuel Cell systems through technology and marketscouting,and coordinates all innovation- related activities globally.Networking and collaboration in industry organizations are essential parts of his work as well as presentations in international conferences.

    Contact at michael.harenbrock@mann-hummel.com

    猜你喜歡
    冷卻劑主題詞陰極
    核電站主冷卻劑泵可取出部件一體化吊裝檢修工藝探索
    Evaluation of Arctic Sea Ice Drift and its Relationship with Near-surface Wind and Ocean Current in Nine CMIP6 Models from China
    場發(fā)射ZrO/W肖特基式場發(fā)射陰極研究進(jìn)展
    電子制作(2018年12期)2018-08-01 00:47:46
    反應(yīng)堆冷卻劑pH對核電廠安全運(yùn)行影響研究
    中國核電(2017年1期)2017-05-17 06:10:13
    冷卻劑泄漏監(jiān)測系統(tǒng)在核電廠的應(yīng)用
    中國核電(2017年1期)2017-05-17 06:10:05
    冷卻劑管道取樣管焊縫裂紋分析
    焊接(2015年8期)2015-07-18 10:59:14
    IT-SOFCs陰極材料Sm0.8La0.2Ba1-xSrxFe2O5+δ的制備與表征
    微生物燃料電池空氣陰極的研究進(jìn)展
    我校學(xué)報(bào)第32卷第5期(2014年10月)平均每篇有3.04個(gè)21世紀(jì)的Ei主題詞
    我校學(xué)報(bào)第32卷第6期(2014年12月)平均每篇有3.00個(gè)21世紀(jì)的Ei主題詞
    日本一区二区免费在线视频| 国产精品免费大片| 两性夫妻黄色片| 丝袜人妻中文字幕| 日韩 亚洲 欧美在线| av国产精品久久久久影院| 色播在线永久视频| 五月天丁香电影| 性色av一级| 亚洲中文字幕日韩| 亚洲 国产 在线| 日韩中文字幕欧美一区二区 | 午夜福利免费观看在线| 麻豆国产av国片精品| 制服人妻中文乱码| 侵犯人妻中文字幕一二三四区| 免费少妇av软件| 国产av精品麻豆| 亚洲天堂av无毛| 精品第一国产精品| 丝袜在线中文字幕| 岛国毛片在线播放| 亚洲一区二区三区欧美精品| 精品人妻熟女毛片av久久网站| 欧美精品一区二区大全| 在线观看一区二区三区激情| 免费在线观看影片大全网站 | 亚洲国产精品国产精品| 亚洲 国产 在线| 亚洲国产成人一精品久久久| 国产精品久久久久久精品电影小说| 侵犯人妻中文字幕一二三四区| 国产精品一区二区精品视频观看| 午夜视频精品福利| 日韩视频在线欧美| 国产三级黄色录像| a级毛片在线看网站| 十分钟在线观看高清视频www| 青青草视频在线视频观看| 国产成人免费无遮挡视频| 亚洲欧美清纯卡通| 精品久久久精品久久久| 欧美 日韩 精品 国产| 国产xxxxx性猛交| 人妻一区二区av| 老司机影院毛片| 久久人妻福利社区极品人妻图片 | 亚洲午夜精品一区,二区,三区| 狠狠精品人妻久久久久久综合| 亚洲精品中文字幕在线视频| 性色av一级| 亚洲国产精品国产精品| 精品人妻在线不人妻| 国产一区二区三区综合在线观看| 少妇裸体淫交视频免费看高清 | 精品人妻熟女毛片av久久网站| 永久免费av网站大全| 国产男人的电影天堂91| 亚洲一区中文字幕在线| 人妻 亚洲 视频| 美女大奶头黄色视频| 美女扒开内裤让男人捅视频| 日韩中文字幕欧美一区二区 | 欧美乱码精品一区二区三区| 亚洲国产看品久久| 天天躁夜夜躁狠狠久久av| 国产精品欧美亚洲77777| 欧美日韩av久久| 80岁老熟妇乱子伦牲交| 如日韩欧美国产精品一区二区三区| 久久人人爽av亚洲精品天堂| 嫩草影视91久久| 午夜福利免费观看在线| 一级片'在线观看视频| 在线 av 中文字幕| 深夜精品福利| 精品久久久久久电影网| 日韩免费高清中文字幕av| tube8黄色片| 亚洲国产精品一区二区三区在线| 制服人妻中文乱码| 日韩制服丝袜自拍偷拍| 大话2 男鬼变身卡| 9色porny在线观看| av天堂在线播放| 国产亚洲精品久久久久5区| 国产成人欧美在线观看 | 如日韩欧美国产精品一区二区三区| 高潮久久久久久久久久久不卡| 婷婷成人精品国产| 你懂的网址亚洲精品在线观看| 成人三级做爰电影| 丝袜在线中文字幕| videosex国产| 18禁裸乳无遮挡动漫免费视频| 国产精品熟女久久久久浪| 亚洲精品久久成人aⅴ小说| 久久天躁狠狠躁夜夜2o2o | videosex国产| 高清av免费在线| 国产精品免费视频内射| 国产三级黄色录像| 爱豆传媒免费全集在线观看| 黄网站色视频无遮挡免费观看| 捣出白浆h1v1| 18禁裸乳无遮挡动漫免费视频| 男人爽女人下面视频在线观看| 一区二区日韩欧美中文字幕| 美女主播在线视频| 亚洲国产最新在线播放| 久久亚洲精品不卡| 欧美日韩视频精品一区| 2021少妇久久久久久久久久久| 国产xxxxx性猛交| 一级a爱视频在线免费观看| 亚洲精品中文字幕在线视频| 香蕉丝袜av| 国产亚洲欧美精品永久| 美女视频免费永久观看网站| 美女脱内裤让男人舔精品视频| 精品久久蜜臀av无| 国产无遮挡羞羞视频在线观看| 国产一区二区激情短视频 | 午夜91福利影院| 波多野结衣av一区二区av| 高清黄色对白视频在线免费看| 丰满人妻熟妇乱又伦精品不卡| 性色av一级| 视频区欧美日本亚洲| 亚洲成国产人片在线观看| 一边摸一边抽搐一进一出视频| 1024香蕉在线观看| 人人妻人人澡人人看| 最近手机中文字幕大全| 亚洲第一青青草原| 亚洲av成人精品一二三区| 一本综合久久免费| 欧美黄色片欧美黄色片| 亚洲欧洲国产日韩| 亚洲精品成人av观看孕妇| 日韩,欧美,国产一区二区三区| 国产精品秋霞免费鲁丝片| 婷婷色综合www| 人妻 亚洲 视频| 午夜av观看不卡| av国产久精品久网站免费入址| 美女中出高潮动态图| 国产成人影院久久av| 亚洲色图综合在线观看| 久久亚洲精品不卡| 国产成人一区二区三区免费视频网站 | 国产日韩欧美视频二区| 久久国产精品大桥未久av| 午夜激情久久久久久久| 欧美成人精品欧美一级黄| 欧美日韩综合久久久久久| 午夜激情久久久久久久| 男人舔女人的私密视频| 亚洲激情五月婷婷啪啪| 国产成人精品久久二区二区免费| kizo精华| 一级毛片 在线播放| 亚洲欧美中文字幕日韩二区| 性高湖久久久久久久久免费观看| 国产亚洲午夜精品一区二区久久| 亚洲 国产 在线| 国产免费福利视频在线观看| 我的亚洲天堂| 天天影视国产精品| 免费观看a级毛片全部| 午夜91福利影院| 80岁老熟妇乱子伦牲交| 一级毛片 在线播放| 亚洲欧美日韩另类电影网站| 久久国产精品大桥未久av| 国产精品欧美亚洲77777| 久久久久久人人人人人| av网站免费在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 精品人妻1区二区| 久久免费观看电影| 欧美乱码精品一区二区三区| www.999成人在线观看| 久久久久久亚洲精品国产蜜桃av| 啦啦啦啦在线视频资源| 国产成人精品久久二区二区91| 欧美日韩视频高清一区二区三区二| 国产在线一区二区三区精| 精品福利永久在线观看| 国产成人精品久久二区二区免费| 欧美黄色片欧美黄色片| 亚洲精品国产一区二区精华液| 亚洲av综合色区一区| 免费女性裸体啪啪无遮挡网站| www.精华液| 久久久久国产精品人妻一区二区| av视频免费观看在线观看| www.自偷自拍.com| 午夜福利视频精品| 人人妻,人人澡人人爽秒播 | 久久女婷五月综合色啪小说| 亚洲伊人久久精品综合| 老司机亚洲免费影院| 考比视频在线观看| 99香蕉大伊视频| 国精品久久久久久国模美| 99国产精品一区二区三区| 午夜福利一区二区在线看| 亚洲精品久久久久久婷婷小说| av一本久久久久| 国产精品99久久99久久久不卡| 美女午夜性视频免费| 老鸭窝网址在线观看| 亚洲美女黄色视频免费看| 狂野欧美激情性xxxx| 国产成人av激情在线播放| 午夜两性在线视频| 国产一卡二卡三卡精品| 久久精品成人免费网站| 免费av中文字幕在线| 日韩 亚洲 欧美在线| 80岁老熟妇乱子伦牲交| 亚洲av国产av综合av卡| 久久ye,这里只有精品| 亚洲欧美一区二区三区国产| 午夜免费观看性视频| 久久天躁狠狠躁夜夜2o2o | 午夜福利一区二区在线看| 亚洲激情五月婷婷啪啪| 国产高清国产精品国产三级| 国产精品国产三级国产专区5o| 亚洲,欧美,日韩| 亚洲精品久久久久久婷婷小说| 好男人视频免费观看在线| 欧美老熟妇乱子伦牲交| 亚洲精品国产一区二区精华液| 男人舔女人的私密视频| 成年人黄色毛片网站| 老司机深夜福利视频在线观看 | 亚洲天堂av无毛| 曰老女人黄片| 国产有黄有色有爽视频| 中文字幕高清在线视频| 国产在线视频一区二区| av网站在线播放免费| 中文字幕制服av| 亚洲精品自拍成人| 亚洲国产最新在线播放| 亚洲av日韩精品久久久久久密 | 男女无遮挡免费网站观看| 国产国语露脸激情在线看| 99热全是精品| 国产精品 国内视频| 9191精品国产免费久久| 国产欧美亚洲国产| 亚洲情色 制服丝袜| 国产成人免费观看mmmm| 亚洲精品在线美女| 国产福利在线免费观看视频| 婷婷色综合www| 岛国毛片在线播放| xxxhd国产人妻xxx| 久热这里只有精品99| 少妇人妻久久综合中文| 狠狠精品人妻久久久久久综合| 又大又爽又粗| 777久久人妻少妇嫩草av网站| 大陆偷拍与自拍| 久久热在线av| 另类亚洲欧美激情| 夫妻午夜视频| 精品国产一区二区三区四区第35| 成人国语在线视频| 亚洲伊人色综图| 国产精品一国产av| 一区二区三区激情视频| 亚洲精品久久久久久婷婷小说| 欧美国产精品va在线观看不卡| 五月开心婷婷网| 两个人看的免费小视频| 蜜桃在线观看..| 午夜激情久久久久久久| 天天影视国产精品| 爱豆传媒免费全集在线观看| 91成人精品电影| 99热国产这里只有精品6| 午夜两性在线视频| 色精品久久人妻99蜜桃| 手机成人av网站| 午夜福利免费观看在线| 人人妻人人添人人爽欧美一区卜| 91麻豆精品激情在线观看国产 | 欧美日韩av久久| 久久人妻福利社区极品人妻图片 | 永久免费av网站大全| 欧美乱码精品一区二区三区| 老司机影院毛片| av国产精品久久久久影院| 宅男免费午夜| 青春草亚洲视频在线观看| 欧美在线黄色| 国产一区亚洲一区在线观看| 亚洲欧美色中文字幕在线| 久久久精品国产亚洲av高清涩受| 亚洲 国产 在线| 欧美日韩视频精品一区| 国产一级毛片在线| 亚洲熟女精品中文字幕| 另类精品久久| 欧美成狂野欧美在线观看| 久久国产精品影院| 日韩av在线免费看完整版不卡| 欧美 亚洲 国产 日韩一| videosex国产| 精品卡一卡二卡四卡免费| 亚洲精品美女久久久久99蜜臀 | 亚洲av日韩精品久久久久久密 | 国产欧美日韩一区二区三 | 一级毛片女人18水好多 | 精品国产国语对白av| 久久久久精品人妻al黑| 亚洲 欧美一区二区三区| 免费在线观看完整版高清| www.熟女人妻精品国产| 久久毛片免费看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 丁香六月天网| 一本—道久久a久久精品蜜桃钙片| 韩国精品一区二区三区| 69精品国产乱码久久久| 飞空精品影院首页| 日韩伦理黄色片| 蜜桃国产av成人99| 最黄视频免费看| 亚洲欧美日韩另类电影网站| 国产精品国产三级专区第一集| 一级a爱视频在线免费观看| 国产女主播在线喷水免费视频网站| av电影中文网址| 天天添夜夜摸| av国产久精品久网站免费入址| 国产免费现黄频在线看| 国产免费一区二区三区四区乱码| 人体艺术视频欧美日本| 我要看黄色一级片免费的| 99精国产麻豆久久婷婷| 中文字幕精品免费在线观看视频| 久久人妻熟女aⅴ| 天天躁日日躁夜夜躁夜夜| 久久女婷五月综合色啪小说| 91精品伊人久久大香线蕉| 久久鲁丝午夜福利片| 91老司机精品| 九草在线视频观看| 午夜日韩欧美国产| 99精国产麻豆久久婷婷| 老司机深夜福利视频在线观看 | 啦啦啦在线观看免费高清www| 精品人妻一区二区三区麻豆| 一本色道久久久久久精品综合| 亚洲少妇的诱惑av| 精品久久蜜臀av无| 在线观看免费视频网站a站| 大片电影免费在线观看免费| av欧美777| 2018国产大陆天天弄谢| 国产av一区二区精品久久| 国产精品 欧美亚洲| 日韩精品免费视频一区二区三区| 激情五月婷婷亚洲| 亚洲男人天堂网一区| 国产成人av激情在线播放| 欧美人与善性xxx| 黄片播放在线免费| 欧美激情极品国产一区二区三区| 亚洲精品av麻豆狂野| 美女高潮到喷水免费观看| 啦啦啦在线免费观看视频4| 19禁男女啪啪无遮挡网站| 啦啦啦在线免费观看视频4| www.av在线官网国产| av在线播放精品| 欧美激情极品国产一区二区三区| 亚洲国产欧美网| 成人亚洲精品一区在线观看| 午夜福利影视在线免费观看| 国产成人精品无人区| 亚洲国产精品成人久久小说| 久久久亚洲精品成人影院| 精品少妇一区二区三区视频日本电影| 欧美精品一区二区免费开放| 18禁观看日本| 七月丁香在线播放| 日本欧美视频一区| 大片电影免费在线观看免费| 国产不卡av网站在线观看| 久久ye,这里只有精品| 熟女av电影| 91老司机精品| 久久久国产精品麻豆| netflix在线观看网站| 成人亚洲欧美一区二区av| netflix在线观看网站| 欧美激情高清一区二区三区| 国产精品久久久久久精品电影小说| 国产精品 国内视频| 99热全是精品| 最黄视频免费看| 亚洲图色成人| 日韩中文字幕视频在线看片| 亚洲精品久久成人aⅴ小说| 国产高清videossex| 亚洲男人天堂网一区| 啦啦啦中文免费视频观看日本| 性高湖久久久久久久久免费观看| 国产在视频线精品| 男的添女的下面高潮视频| 精品少妇一区二区三区视频日本电影| 亚洲天堂av无毛| 自线自在国产av| 色婷婷av一区二区三区视频| 国产精品麻豆人妻色哟哟久久| 自拍欧美九色日韩亚洲蝌蚪91| h视频一区二区三区| 中文字幕最新亚洲高清| 日韩,欧美,国产一区二区三区| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 欧美成人午夜精品| 亚洲人成电影免费在线| 一个人免费看片子| av一本久久久久| 中文字幕人妻丝袜一区二区| 国产成人精品久久二区二区免费| 亚洲七黄色美女视频| 久热爱精品视频在线9| 国产黄频视频在线观看| 亚洲专区中文字幕在线| 欧美黄色淫秽网站| 国产精品久久久人人做人人爽| 欧美久久黑人一区二区| 午夜福利在线免费观看网站| 一边摸一边抽搐一进一出视频| 国产极品粉嫩免费观看在线| 乱人伦中国视频| 国产成人欧美在线观看 | 久久久精品94久久精品| 青春草视频在线免费观看| 免费女性裸体啪啪无遮挡网站| 久久99精品国语久久久| 中文乱码字字幕精品一区二区三区| 国产伦人伦偷精品视频| 国产av国产精品国产| 亚洲成人国产一区在线观看 | 免费看av在线观看网站| 99精品久久久久人妻精品| 日本五十路高清| 午夜激情久久久久久久| 亚洲,欧美,日韩| 亚洲av片天天在线观看| 亚洲av欧美aⅴ国产| 韩国高清视频一区二区三区| 老司机午夜十八禁免费视频| 久久精品aⅴ一区二区三区四区| 两个人看的免费小视频| 成在线人永久免费视频| 欧美日韩av久久| 制服诱惑二区| 免费黄频网站在线观看国产| 国产人伦9x9x在线观看| 国产在线免费精品| 五月天丁香电影| 国产精品偷伦视频观看了| 嫩草影视91久久| 又粗又硬又长又爽又黄的视频| 欧美激情 高清一区二区三区| 国产免费视频播放在线视频| 性色av乱码一区二区三区2| 亚洲精品一卡2卡三卡4卡5卡 | 18禁裸乳无遮挡动漫免费视频| 两个人免费观看高清视频| 91老司机精品| 免费观看人在逋| 狂野欧美激情性bbbbbb| 在线观看免费午夜福利视频| 亚洲第一av免费看| 国产日韩一区二区三区精品不卡| 国产男女超爽视频在线观看| 日韩 亚洲 欧美在线| 69精品国产乱码久久久| 国产日韩欧美在线精品| 欧美日韩视频高清一区二区三区二| 成在线人永久免费视频| 亚洲五月色婷婷综合| 18禁黄网站禁片午夜丰满| 午夜影院在线不卡| 天堂8中文在线网| 国产熟女欧美一区二区| 国产亚洲av高清不卡| 日韩伦理黄色片| 精品一区二区三卡| 亚洲精品久久午夜乱码| 男女之事视频高清在线观看 | 人成视频在线观看免费观看| 婷婷成人精品国产| av又黄又爽大尺度在线免费看| 久久av网站| 一级毛片我不卡| 亚洲激情五月婷婷啪啪| 亚洲av成人不卡在线观看播放网 | 一边摸一边做爽爽视频免费| 一区二区av电影网| 一区福利在线观看| 亚洲精品av麻豆狂野| 国产成人精品久久二区二区91| 亚洲精品中文字幕在线视频| 可以免费在线观看a视频的电影网站| 91麻豆精品激情在线观看国产 | 国产精品久久久av美女十八| 人人澡人人妻人| 少妇裸体淫交视频免费看高清 | 精品一区二区三卡| 国产99久久九九免费精品| 久久精品国产亚洲av高清一级| 亚洲精品国产区一区二| 777米奇影视久久| 亚洲精品美女久久久久99蜜臀 | 亚洲美女黄色视频免费看| 午夜福利视频在线观看免费| 人人澡人人妻人| 黄频高清免费视频| 美女视频免费永久观看网站| 成人三级做爰电影| 国产在线免费精品| 亚洲欧美一区二区三区国产| 日韩制服骚丝袜av| 午夜免费观看性视频| 男男h啪啪无遮挡| 伊人亚洲综合成人网| 久久人人97超碰香蕉20202| 熟女少妇亚洲综合色aaa.| 国产欧美亚洲国产| 水蜜桃什么品种好| 日韩一卡2卡3卡4卡2021年| kizo精华| 高清欧美精品videossex| 国产色视频综合| 午夜影院在线不卡| av在线播放精品| 母亲3免费完整高清在线观看| 999久久久国产精品视频| 男女边吃奶边做爰视频| 亚洲av电影在线进入| 一边摸一边做爽爽视频免费| 成人国语在线视频| 久久久久精品人妻al黑| 下体分泌物呈黄色| 亚洲国产av影院在线观看| 国产精品久久久人人做人人爽| netflix在线观看网站| 在线观看免费日韩欧美大片| 国产成人系列免费观看| 亚洲精品av麻豆狂野| 日韩一本色道免费dvd| 女人高潮潮喷娇喘18禁视频| 精品第一国产精品| 男女免费视频国产| 91字幕亚洲| 伦理电影免费视频| 肉色欧美久久久久久久蜜桃| 晚上一个人看的免费电影| 日本猛色少妇xxxxx猛交久久| 色94色欧美一区二区| 午夜两性在线视频| 国产一区亚洲一区在线观看| 19禁男女啪啪无遮挡网站| 一级a爱视频在线免费观看| 七月丁香在线播放| 国产欧美日韩精品亚洲av| 午夜激情av网站| 操美女的视频在线观看| 久久精品国产亚洲av涩爱| 老司机影院成人| 99香蕉大伊视频| 亚洲人成网站在线观看播放| av电影中文网址| 欧美人与性动交α欧美精品济南到| 久久狼人影院| 99九九在线精品视频| 制服诱惑二区| 久热这里只有精品99| av电影中文网址| 美女主播在线视频| 国产精品国产av在线观看| 无限看片的www在线观看| av福利片在线| kizo精华| 中文乱码字字幕精品一区二区三区| 亚洲欧美成人综合另类久久久| 宅男免费午夜| 国产老妇伦熟女老妇高清| 日韩制服骚丝袜av| 99国产精品免费福利视频| 九色亚洲精品在线播放| 十分钟在线观看高清视频www| 看免费成人av毛片| 国产亚洲av高清不卡| 自拍欧美九色日韩亚洲蝌蚪91| 90打野战视频偷拍视频| 久久久久久免费高清国产稀缺| 2018国产大陆天天弄谢| 最近中文字幕2019免费版| 国产精品久久久久久精品古装| 国产成人啪精品午夜网站| 中文字幕另类日韩欧美亚洲嫩草|