劉 楊,閆志英,姬高升,許力山,房俊楠, 曾 勇,宦臣臣,佟欣宇
?
水稻秸稈序批式干發(fā)酵產沼氣中試及其動力學研究
劉 楊1,2,3,閆志英1,2※,姬高升1,2,許力山1,2,房俊楠1,2,3, 曾 勇1,2,宦臣臣1,2,佟欣宇1,2
(1.中國科學院環(huán)境與應用微生物重點實驗室,成都 610041;2. 環(huán)境微生物四川省重點實驗室,成都 610041; 3. 中國科學院大學,北京 100049)
干發(fā)酵處理有機廢棄物或生物質廢棄物等具有處理量大,用水量少,處理周期短等優(yōu)勢。該試驗以水稻秸稈為原料(269 kg,TS為89.19% ±0.24%),用沼液(500 kg)調節(jié)水稻秸稈含水率至67.58%,覆膜堆漚3 d,并以運行良好沼氣池污泥為接種物(300 kg,接種量為28.06%,TS為1.88±0.07%),室溫(30~35 ℃)條件下進行周期為55 d的干發(fā)酵中試試驗。試驗結果表明:反應55 d后,秸稈累積產氣量為308.20 m3/t,累積產甲烷量為167.44 m3/t,最高甲烷體積分數達57.88%,最大日產氣量為2.33 m3。通過Gompertz 模型對水稻秸稈產甲烷曲線進行擬合,擬合出的產甲烷潛力值和實際的產甲烷潛力值很接近,2為0.990 7,顯示出較高的準確性。該研究可為序批式干發(fā)酵法處理水稻秸稈提供理論依據和指導。
秸稈;沼氣;動力學;干發(fā)酵;降解
中國是農業(yè)生產大國,農作物秸稈資源非常豐富,但資源化利用率卻很低。通過中國主要作物產量和谷草比計算[1],2014年中國農作物秸稈理論總產量為8.97億t,可收集部分為7.69億t,可資源化利用部分為1.86億t,僅占秸稈總產量的20.74%。中國農作物秸稈主要包括水稻秸稈、玉米秸稈和小麥秸稈,占秸稈總量的75%[2-3]。這些作物秸稈富含木質纖維素,不易被降解,大部分被直接丟棄或焚燒,不僅造成資源浪費,而且對環(huán)境造成極大破壞[4]。近年來,隨著社會的發(fā)展和進步,環(huán)境問題和能源問題越來越受到國家關注,秸稈的無害化處理和資源化利用迫在眉睫,有效秸稈處理技術的開發(fā)不僅有重大生態(tài)效益,也有較大經濟效益[5]。
目前中國對作物秸稈資源利用和開發(fā)的方式多種多樣,其中厭氧消化產沼氣是一種清潔且高效的資源化利用方式[6-7]。秸稈厭氧消化產沼氣可將作物秸稈轉變?yōu)榍鍧嵉?、便于利用的甲烷,產生的副產物沼渣和沼液,因其富含氮和磷等植物營養(yǎng)元素,是優(yōu)質的有機肥料,可用于農業(yè)生產,能有效地提高作物產量[8]。厭氧消化可分為濕發(fā)酵和干發(fā)酵,現階段中國處理作物秸稈的方式主要為濕發(fā)酵,但濕法酵處理秸稈,存在裝置規(guī)模較大、秸稈易結殼、攪拌耗能大、沼液量大難處理等問題[9]。而干發(fā)酵,以作物秸稈、畜禽糞便或是垃圾等有機物為原料(干物質TS質量分數為20%~40%),通過厭氧菌降解利用,轉變?yōu)榧淄椤⒍趸嫉葰怏w的過程[10]。干發(fā)酵原料的干物質濃度高而導致的進出料難、傳熱傳質不均勻、易酸中毒等問題,是限制沼氣干發(fā)酵的技術難點,對此國內外都在進行深入研究[11]。Mustafa等[12]用蕈菌和里氏木霉預處理稻草后進行厭氧消化,發(fā)現2種方式預處理后的稻草甲烷產率分別提高120%和78.3%。Guendouz等[13]設計了漿式混合厭氧消化反應器,進行實驗室試驗和現場試驗,發(fā)現實驗室試驗能準確地模擬現場試驗,并指出微生物對發(fā)酵原料的適應性和干發(fā)酵反應的操作條件。于佳動等[14]以玉米秸稈和牛糞為原料進行干發(fā)酵,研究不同含固率、物料配比、接種物濃度、秸稈粒徑,以及噴淋頻率、噴淋量等因素對厭氧干發(fā)酵的影響,發(fā)現噴淋頻率、接種物濃度對厭氧干發(fā)酵產沼氣有關鍵作用。何榮玉等[15]研究復合菌劑預處理秸稈和添加沼氣發(fā)酵促進劑對秸稈干發(fā)酵的影響,發(fā)現預處理的同時添加沼氣發(fā)酵促進劑,能明顯提高沼氣產氣量。本研究以水稻秸稈進行序批式干發(fā)酵產沼氣試驗,探究秸稈干發(fā)酵產氣效果并對其進行動力學分析。根據實驗室預試驗結果,進行中試規(guī)模放大試驗,為水稻秸稈干發(fā)酵處理技術的推廣和使用提供試驗基礎。
供試發(fā)酵原料為水稻秸稈,取自成都市雙流區(qū)永安鎮(zhèn)農戶。水稻秸稈為陳放秸稈,經粉碎機粉碎,粒徑為1~2 cm,裝袋備用。接種物為沼氣池污泥,取自成都市雙流區(qū)永安鎮(zhèn)沼氣站內正常產氣的戶用沼氣池,產沼氣中甲烷體積分數達60%以上。水稻秸稈和接種物理化性質如表1所示。
表1 水稻秸稈和接種物的特性
中試試驗為鐵質車庫式反應器(圖1),有效體積 6 m3,裝料體積2 m3,裝置底部中央鋪設濾板,濾孔孔徑為0.5 cm,頂部設有工字型噴淋裝置,外部有保溫層;反應裝置還包括濾液池,有效體積為3 m3的密閉容器,位于反應器底面下方,濾液在重力作用下從反應器中流入濾液池,濾液經循環(huán)泵可進入反應器噴淋物料,達到循環(huán)噴淋的效果;反應器和濾液池產生的沼氣用不同的氣袋收集,并用沼氣流量計計量。
圖1 中試試驗裝置圖
基于實驗室預試驗結果確定中試試驗條件。由于現場條件受限,難以精準控制35 ℃恒溫條件,因此試驗在室溫30~35 ℃條件下進行,反應裝置設有加熱和保溫裝置,可保證試驗在相對穩(wěn)定條件下進行[16]?,F場試驗以水稻秸稈為原料(269 kg,TS為89.19% ±0.24%),用沼液(500 kg)調節(jié)水稻秸稈含水率至67.58%,覆膜堆漚3 d,并以運行良好沼氣池污泥為接種物(300 kg,接種量為28.06%,TS為1.88%±0.07%),混勻,裝填至反應器中并密封反應器。發(fā)酵第2天起進行濾液噴淋,每天3次,試驗周期為55 d。
每天定時用100 mL氣袋采集氣體樣品和50 mL離心管采集滲濾液樣品。通過測量產氣量、產氣濃度、pH值、氨氮濃度、揮發(fā)性有機酸(volatile fatty acid,VFA)以及纖維素、半纖維素、木質素等物質的變化,探究水稻秸稈干發(fā)酵產沼氣的效果,并對試驗結果進行動力學分析。
總固體、揮發(fā)性固體:烘干法;pH值:METTLER FE28型酸度計;氨氮濃度:TU-1810SPC紫外可見分光度計[17];半纖維素、纖維素、木質素:范氏法[18];甲烷濃度:安捷倫7890A氣相色譜分析儀;揮發(fā)性有機酸:安捷倫6890N氣相色譜分析儀[19];采用掃描電子顯微鏡對發(fā)酵前后的水稻秸稈結構進行分析,發(fā)酵前后的水稻秸稈 70 ℃烘干12 h,粉碎機粉碎后過0.18 mm篩子,取少量固定于載物臺上,然后在VEGE TS5136XM掃描電子顯微鏡下觀察和拍照。
對水稻秸稈干發(fā)酵產沼氣試驗過程進行動力學分析,采用修正Gompertz方程擬合累計甲烷產甲烷曲線[20-21]。
exp{-exp[R×e()1]}
式中為時刻的累計甲烷產氣量,L/kg;為最終甲烷產氣量,L/kg;R為最大產甲烷速率,L/(kg·d);為延滯期,d。、和R通過干發(fā)酵試驗數據擬合得到。
水稻秸稈富含各種有機物,主要為木質纖維素類物質,微生物能將其中木質纖維素等有機物降解消化,生成氫、有機酸等物質,這些物質被產甲烷菌轉化利用,生成CH4、CO2、H2S、氫等氣體。干發(fā)酵前后水稻秸稈木質纖維素的變化見表2。
從表2中可以看出,水稻原料中木質纖維素總質量分數達74.64%,經堆漚預處理和厭氧消化后,木質纖維素含量明顯降低,秸稈預處理后,木質纖維素降解了31.27%,厭氧消化后,水稻秸稈木質纖維素降解了66.39%。半纖維素和纖維素變化較大,秸稈中半纖維素降解了83.06%,纖維素降解69.23%。秸稈中木質素變化不大,降解的是半纖維素和纖維素,這由其物質結構決定。半纖維素由2種或2種以上糖基通過糖苷鍵而形成的側鏈或支鏈結構的非均一高聚糖,纖維素由D-葡萄糖基通過糖苷鍵連接聚合而成的多糖,這2種成分結構相對簡單,易被細菌利用,而木質素含多種芳香環(huán)類物質,結構復雜多樣,對微生物腐蝕具有較強抗性,不易被降解利用[22]。
表2 水稻秸稈木質纖維素變化
對水稻秸稈原料、堆漚預處理后和發(fā)酵后秸稈進行電鏡掃描,結果如圖2所示。
圖2 水稻秸稈木質纖維素變化電鏡圖(×1000)
由圖2a可以看出,水稻秸稈原料未經過任何處理,秸稈表面光滑平整、結構規(guī)整致密;堆漚后秸稈蠟質層遭到部分破壞,表面變得粗糙、致密結構被破壞,變得疏松(圖2b);由圖2c看出,發(fā)酵后水稻秸稈蠟質層被完全破壞,內部纖維結構也被破壞,出現很多的斷層,比堆漚預處理后水稻秸稈破壞的更徹底[19]。說明堆漚預處理破壞了水稻秸稈阻礙微生物腐蝕的蠟質層和致密的纖維結構,為厭氧微生物創(chuàng)造利用秸稈內部纖維類有機物的條件,使后續(xù)發(fā)酵試驗快速進入產氣階段[23]。
試驗共運行55 d,產氣效果如圖3a~3c所示。從圖3a中看出,甲烷體積分數先迅速上升至30%,稍微波動后達到50%,并逐漸上升,第31天達到最大59.22%,隨后在55%左右波動。由圖3b可知,日產氣量在第4天達到最大產量2.33 m3,下降后在第18天達到第2峰值1.7 m3,之后逐漸下降。整個試驗累積產氣量為308.20 m3/t,累積產甲烷量為167.44 m3/t(圖3c)。
甲烷體積分數和日產氣量是厭氧消化過程運行中的重要參數[24]。此試驗甲烷體積分數較高且日產氣量迅速達到產氣高峰,說明厭氧消化過程良好運行。水稻原料經預處理后,秸稈完整、致密結構變疏松,其纖維中的碳水化合物迅速轉化為單糖類物質,易被厭氧消化菌及產甲烷菌利用,快速產生沼氣且甲烷體積分數較 高[2,4,16,24]。實際沼氣工程應用中,為保證優(yōu)質接種活性污泥和工程穩(wěn)定運行,需花費大量時間培養(yǎng)馴化接種物,導致工程啟動時間較長[25]。而此試驗對接種物要求低,僅需預處理原料,就能快速啟動、到達產氣高峰,具有較強的實際應用價值。
圖3 水稻秸稈序批式干發(fā)酵特性
發(fā)酵過程中的pH值、氨氮質量濃度和總揮發(fā)性有機酸濃度變化如圖3d~3f所示。發(fā)酵過程的pH值變化如圖3d,由圖3d可看出 pH值呈現出先下降后上升再穩(wěn)定的變化。在第10天下降至最低6.52,之后逐漸上升,最后在7.0左右波動。畢少杰等[26]的研究表明,厭氧消化反應過程pH值在6.5~8.5范圍內是正常的,因為產酸菌生長的最適pH值為5.5~8.5,產甲烷菌生長的最適pH值為6.5~7.5。試驗pH值在6.52~7.54范圍內波動,這與厭氧消化過程中微生物的最適pH值相一致,在此狀態(tài)下微生物狀態(tài)較好[27]。
氨氮質量濃度一直處于波動的變化,變化范圍為0.92~1.76 g/L(圖3e)。雖然波動變化大,但可以看出氨氮質量濃度開始在1.2 g/L左右波動,第10天開始上升,升到最大值1.76 g/L后再下降,最終在1.2 g/L左右波動。Wiegant[28]和曹先艷等[29]認為氨氮質量濃度在6 g/L以下,不會出現氨抑制。試驗的氨氮濃度遠低于此閾值,屬正常范圍,未形成氨抑制。
圖3f為總揮發(fā)性有機酸含量變化圖。試驗初期總揮發(fā)性有機酸含量迅速上升,第3天出現最大峰值6.43 g/L,再逐漸下降,第45天后基本沒有揮發(fā)性有機酸。任南琪[30]的研究表明,厭氧消化反應酸化階段產生總揮發(fā)性有機酸質量濃度大于4.5 g/L時,會造成pH值降低,形成酸性環(huán)境,抑制產甲烷菌活性,反應過程易崩潰。試驗中總揮發(fā)性有機酸酸質量濃度最高超過4.5 g/L,但迅速降至4.5 g/L以下,時間較短,未造成酸抑制[23]。
pH值、氨氮質量濃度和總揮發(fā)性有機酸是厭氧消化過程中重要參數,相互之間有著密切聯系[29]。試驗初期,總揮發(fā)性有機酸迅速累積,反應體系的pH值逐漸下降,直至最低點;反應繼續(xù)進行,氨氮質量濃度上升,改變酸性環(huán)境,反應體系pH值上升,并逐漸保持穩(wěn)定。這是因為試驗初期,有機物快速分解,迅速產生大量揮發(fā)性有機酸并逐漸累積,影響反應體系的pH值,而體系中存在一定濃度氨氮,能提供弱堿性環(huán)境,增強體系緩沖能力,避免反應崩潰[31-32]。結果表明試驗日產氣量規(guī)律,pH值、氨氮質量濃度適合微生物生長,總揮發(fā)性脂肪酸超過4.5 g/L,但快速下降,說明試驗穩(wěn)定運行。
厭氧消化過程中,一定程度上甲烷產量與微生物生長呈函數關系。Wang等[24]用修正Gompertz方程對秸稈、豬糞原料單發(fā)酵和共發(fā)酵的產沼氣動力學進行了分析。王渝昆等[33]采用修正Gompertz方程對接種產甲烷復合菌劑試驗組和接種活性污泥試驗組進行動力學分析。本試驗采用修正Gompertz方程模擬和分析水稻秸稈厭氧消化產沼氣動力學過程。試驗累積產甲烷量擬合結果如圖4所示。
圖4 水稻秸稈厭氧消化試驗累積產甲烷曲線
從圖4可以看出,試驗結果擬合最終產甲烷量為170.6 L/kg。與以前所報道的相比,最終產甲烷量偏低[4]。其原因可能是水稻秸稈經過堆漚預處理后,好氧微生物降解和利用部分有機質,原料損失,水解微生物和產甲烷菌利用的有機質減少,產甲烷少[34]。秸稈厭氧消化依賴厭氧微生物中的纖維素降解菌,其產生酶類物質降解纖維結構,釋放小分子有機物,促進后續(xù)甲烷發(fā)酵,但此過程緩慢,需較長時間進行[35]。試驗55 d后仍產少量沼氣,試驗還未運行完成,擬合出的最終產甲烷量偏低。試驗結果擬合的最大產甲烷速率為6.1 L/(kg·d),延滯期為8.0 d。預處理后,水稻秸稈結構被破壞,易利用的有機物質暴露出來,被產氫產酸菌降解利用,而此時甲烷菌活性不高,產生沼氣主要為CO2、H2S等氣體,之后產甲烷菌利用有機酸和氫等物質產生甲烷[35]。修正Gompertz方程模擬結果表明,預處理會損失部分原料,使甲烷最終產量降低,但其能縮短產沼氣進程,顯著提高厭氧消化產沼氣效率,具有一定實際應用價值。
1)試驗運行55 d,原料累積產氣量為308.20 m3/t,累積產甲烷量為167.44 m3/t,最高甲烷體積分數達57.88%;反應過程pH值和氨氮質量濃度波動小,沼氣中甲烷體積分數高,此試驗運行良好。
2)試驗結果通過修正 Gompertz 方程擬合,進行動力學分析,得到試驗最終產甲烷量為170.6 L/kg,最大產甲烷速率為6.1 L/(kg·d),延滯期為8.0 d。預處理會損失部分原料,降低最終甲烷產量,但其能促進厭氧消化進程,提高產沼氣效率。
[1] 李想,趙立欣,韓捷,等. 農業(yè)廢棄物資源化利用新方向—沼氣干發(fā)酵技術[J]. 中國沼氣,2006,24(4):23-27. Li Xiang, Zhao Lixin, Han Jie, et al. New direction of agricultural waste resource utilization-biogas dry fermentation technology[J]. China Biogas, 2006, 24(4): 23-27.
[2] 張崇尚,劉樂,陸岐楠,等. 中國秸稈能源化利用潛力與秸稈能源企業(yè)區(qū)域布局研究[J]. 資源科學,2017,39(3): 473-481. Zhang Chongshang, Liu Le, Lu Qinan, et al. Research on China's straw energy utilization potential and regional distribution of straw energy enterprises[J]. Resources Science, 2017, 39(3): 473-481. (in Chinese with English abstract)
[3] Cui M M, Jiang L L, Yan T W. Potential evaluation and market assessment on crop straw resource utilization based on resource density[J]. Journal of China Agricultural University, 2016, 21(6): 117-131.
[4] Liew L N, Shi J, Li Y. Methane production from solid-state anaerobic digestion of lignocellulosic biomass[J]. Biomass and Bioenergy, 2012(46): 125-132.
[5] Hu H X, Ma Y H, Wang Y F, et al. Resource utilization of returned rapeseed straw and its effect on soil fertility and crop yields[J]. Nature Environment & Pollution Technology, 2013, 12(3): 449-454.
[6] Frigon J C, GuioT S R. Biomethane production from starch and lignocellulosic crops: A comparative review[J]. Biofuels, Bioproducts and Biorefining, 2010, 4(4): 447-458.
[7] Feijoo G, Soto M, Méndez R, et al. Sodium inhibition in the anaerobic digestion process: Antagonism and adaptation phenomena[J]. Enzyme & Microbial Technology, 1995, 17(2): 180-188.
[8] Yong Z, Dong Y, Zhang X, et al. Anaerobic co-digestion of food waste and straw for biogas production[J]. Renewable Energy, 2015(78): 527-530.
[9] Li W, Luo L, Dou Y, et al. Wet and dry coupling anaerobic fermentation process and fermentation characteristic test[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 148-153.
[10] 李強,曲浩麗,承磊,等. 沼氣干發(fā)酵技術研究進展[J]. 中國沼氣,2010,28(5): 10-14. Li Qiang, Qu Haoli, Cheng Lei, et al. Research progress of biogas dry fermentation technology[J]. China Biogas, 2010, 28(5):10-14. (in Chinese with English abstract)
[11] 韓夢龍,朱繼英,張國康. 接種物種類對玉米秸稈沼氣干發(fā)酵過程的影響 [J]. 環(huán)境科學學報,2014,34(10): 2586-2591. Han Menglong, Zhu Jiying, Zhang Guokang. Effects of inoculum species on dry fermentation of corn stalk biogas[J]. Chinese Journal of Environmental Science, 2014, 34 (10): 2586-2591. (in Chinese with English abstract)
[12] Mustafa A M, Poulsen T G, Sheng K. Fungal pretreatment of rice straw withandto enhance methane production under solid-state anaerobic digestion [J]. Applied Energy, 2016, 180: 661-671.
[13] Guendouz J, Buffiere P, Cacho J, et al. Dry anaerobic digestion in batch mode: Design and operation of a laboratory-scale, completely mixed reactor[J]. Waste Management, 2010, 30(10): 1768-1771.
[14] 于佳動,趙立欣,馮晶,等. 序批式秸稈牛糞混合厭氧干發(fā)酵影響因素研究[J]. 農業(yè)工程學報,2018,34(15): 215-221. Yu Jiadong, Zhao Linxin, Feng Jing, et al. Influence factors of batch dry anaerobic digestion for corn stalks-cow dung mixture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 215-221. (in Chinese with English abstract)
[15] 何榮玉,閆志英,劉曉風,等. 秸稈干發(fā)酵沼氣增產研究 [J]. 應用與環(huán)境生物學報,2007(4):583-585. He Rongyu, Yan Zhiying, Liu Xiaofeng, et al. Study on yield increase of straw dry fermentation biogas[J]. Journal of Applied and Environmental Biology, 2007 (4):583-585. (in Chinese with English abstract)
[16] Akyol ?, Ozbayra M E G, Ince O, et al. Anaerobic co-digestion of cow manure and barley: Effect of cow manure to barley ratio on methane production and digestion stability[J]. Environmental Progress & Sustainable Energy, 2016, 35(2): 589-595.
[17] 朱美華,葛沭鋒,王慶剛,等. 用納氏試劑法測定氨氮時校準曲線的時效性研究[J]. 能源環(huán)境保護,2018,32(4):51-54. Zhu Meihua, Ge Shufeng, Wang Qinggang, et al. Timeliness of calibration curve for determination of ammonia nitrogen by Nessler's reagent method[J]. Energy Conservation, 2018, 32(4): 51-54. (in Chinese with English abstract)
[18] 王金主,王元秀,李峰,等. 玉米秸稈中纖維素、半纖維素和木質素的測定[J]. 山東食品發(fā)酵,2010(3):44-47. Wang Jinzhu, Wang Yuanxiu, Li Feng, et al. Determination of cellulose, hemicellulose and lignin in corn stover[J]. Shandong Food Fermentation, 2010(3): 44-47. (in Chinese with English abstract)
[19] Yu L, Bule M, Ma J, et al. Enhancing volatile fatty acid (VFA) and bio-methane production from lawn grass with pretreatment[J]. Bioresource Technology, 2014, 162(6): 243-249.
[20] Ward A J, Hobbs P J, Holliman P J, et al. Optimisation of the anaerobic digestion of agricultural resources[J]. Bioresource Technology, 2008, 99(17): 7928-7940.
[21] Siripatana C, Jijai S, Kongjan P. Analysis and extension of Gompertz-type and Monod-type equations for estimation of design parameters from batch anaerobic digestion experiments[C]. Proceedings of the International Conference on Mathematics, Engineering and Industrial Applications, 2016.
[22] 張曉琰,彭學,政井英司. 木質素芳香族化合物降解菌. SYK-6的研究進展[J]. 微生物學報,2014,54(8):854-867. Zhang Xiaoyan, Peng Xue, Zheng Jingyingsi. Research progress of lignin aromatic compound degrading bacteria. SYK-6[J]. Journal of Microbiology, 2014, 54(8): 854-867. (in Chinese with English abstract)
[23] Wan C, Li Y. Fungal pretreatment of lignocellulosic biomass [J]. Biotechnology Advances, 2012, 30(6): 1447-1457.
[24] Wang M, Zhou J, Yuan Y X, et al. Methane production characteristics and microbial community dynamics of mono-digestion and co-digestion using corn stalk and pig manure[J]. International Journal of Hydrogen Energy, 2017, 42(8): 4893-4901.
[25] 孔維濤,胡棟,馬福民,等. 低溫沼氣發(fā)酵優(yōu)良菌系篩選及優(yōu)勢菌群分析[J]. 微生物學通報,2013,40(9):1590-1598.
Kong Weitao, Hu Dong, Ma Fumin, et al. Screening and Dominant population analysis of microbial strains in Biogas fermentation under the low temperature[J]. Microbiology China, 2013, 40(9): 1590-1598. (in Chinese with English abstract)
[26] 畢少杰,孫宇,孫志遠,等. 酸化處理對牛糞厭氧發(fā)酵有機酸和細菌多樣性的影響[J]. 中國沼氣,2015,33(4): 18-25.Bi Shaojie, Sun Yu, Sun Zhiyuan, et al. Effects of acidification on anaerobic fermentation of organic acids and bacteria in cattle manure[J]. China Biogas, 2015, 33(4): 18-25. (in Chinese with English abstract)
[27] Luo L N, Li W Z, Dou Y C, et al. Effect of urea pretreatments on solid-state anaerobic digestion of rice straw for improving biogas production[J]. International Agricultural Engineering Journal, 2013, 22(1): 7-13.
[28] Wiegant W M, Zeeman G. The mechanism of ammonia inhibition in the thermophilic digestion of livestock wastes [J]. Agricultural Wastes, 1986, 16(4): 243-253.
[29] 曹先艷,趙由才,袁玉玉,等. 氨氮對餐廚垃圾厭氧發(fā)酵產氫的影響[J]. 太陽能學報,2008,29(6):751-755. Cao Xianyang, Zhao Youcai, Yuan Yuyu, et al. Effect of Ammonia nitrogen on hydrogen production by anaerobic fermentation of kitchen waste[J]. Acta Energiae Solaris Sinica, 2008, 29(6): 751-755. (in Chinese with English abstract)
[30] 任南琪. 厭氧生物技術原理與應用[M]. 北京:北京化學工業(yè)出版社環(huán)境科學與工程出版中心,2004.
[31] Rouches E, Herpo?l-gimbert I, Steyer J P, et al. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review[J]. Renewable and Sustainable Energy Reviews, 2016(59): 179-198.
[32] Sheng K C, Xiang C, Pan J M, et al. Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion[J]. Biosystems Engineering, 2013, 116(2): 205-212.
[33] 王渝昆,袁月祥,李東,等. 產甲烷復合菌劑的性能評價及中試試驗產氣效果[J]. 農業(yè)工程學報,2014,30(16): 247-255. Wang Yukun, Yuan Yuexiang, Li Dong, et al. Performance of evaluation of methanogenic microbial inoculant and its effect of biogas production in pilot scale test[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 247-255.
[34] Mustafa A M, Poulsen T G, Xia Y, et al. Combinations of fungal and milling pretreatments for enhancing rice straw biogas production during solid-state anaerobic digestion [J]. Bioresource Technology, 2016, 224(174)
[35] Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production[J]. Renewable & Sustainable Energy Reviews, 2012, 16(3): 1462-1476.
Pilot plant test of biogas production by rice straw sequencing batch dry anaerobic digestion and its kinetic analysis
Liu Yang1,2,3, Yan Zhiying1,2※, Ji Gaosheng1,2, Xu Lishan1,2, Fang Junnan1,2,3, Zeng Yong1,2, Huan Chenchen1,2, Tong Xinyu1,2
(1,,610041,; 2.,,610041,; 3.,, 100049,)
The organic waste can be converted by anaerobic digestion into a clean energy source of methane under gentleconditions. Dry anaerobic digestion, one kind of anaerobic digestion, was often used to treat municipal waste and had achieved great results for decades in Europe and America. The dry anaerobic digestion of biogas production technology is a better way than wet fermentation to handle rice straw. It has lots of advantages, such as bigger processing capacity, simpler device, lower energy loss and water consumption. However, dry fermentation of straw is very easy to fail due to heterogeneity of substrate, acid inhibition, etc. There were a few researches on the key technology in exploring the AD efficiency of rice straw based agricultural waste. Therefore, this paper studied the biogas production characteristics of pilot-scale dry anaerobic digestion using rice straw as feedstock. The parameters were determined by the laboratory pre-experiment, rice straw was stacked on the field for 3 days with moisture of 67.58% adjusted by 500 kg biogas slurry, rice straw pretreated (269 kg, TS of 89.19%) was mixed with inoculums (300 kg, 28.06%). The pilot-scale dry anaerobic digestion was conducted under the conditions of constant temperature at 30-35 ℃ for 55 days. The result of the pilot-scale experiment showed that the biogas yield of rice straw was 308.20 m3/t, the methane yield of rice straw was 167.44 m3/t, the maximum methane content reached 57.88% after 55 days of dry anaerobic digestion. According to the results of biogas production, the pilot-scale experiment had excellent daily biogas production and higher methane concentration, and the whole process ran stably. The modified Gompertz equation was commonly used to perform kinetic analysis of anaerobic digestion, so the Gompertz model was used to fit the methane production curve of rice straw. The fitted methanogenic potential value was quite close to the actual methanogenic potential value, and2value is 0.990 7, which indicated that the Gompertz model was also suitable for fitting the methane production in this study. Although the pilot-scale test ran successfully, the conditions could be optimized for a better result. The study can provide theoretical guidance and basis for batch dry anaerobic digestion on the treatment of rice straw.
straw; biogas; kinetic; dry anaerobic digestion; degradation
劉 楊,閆志英,姬高升,許力山,房俊楠,曾 勇,宦臣臣,佟欣宇.水稻秸稈序批式干發(fā)酵產沼氣中試及其動力學研究[J]. 農業(yè)工程學報,2018,34(23):221-226. doi:10.11975/j.issn.1002-6819.2018.23.028 http://www.tcsae.org
Liu Yang, Yan Zhiying, Ji Gaosheng, Xu Lishan, Fang Junnan, Zeng Yong, Huan Chenchen, Tong Xinyu. Pilot plant test of biogas production by rice straw sequencing batch dry anaerobic digestion and its kinetic analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 221-226. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.23.028 http://www.tcsae.org
2018-09-27
2018-10-28
國家重點研發(fā)計劃(2017YFD0800803-02);環(huán)境微生物四川省重點實驗室開放基金(KLCAS-2017-6)
劉楊,主要從事固體廢棄物方向研究。Email:liuyang3@cib.ac.cn
閆志英,博士,研究員,主要從事生物質廢棄物生物轉化與資源化利用研究。Email:yanzy@cib.ac.cn
10.11975/j.issn.1002-6819.2018.23.028
X705
A
1002-6819(2018)-23-0221-06