鄒夢圓,董紅敏,朱志平,占源航,尹福斌,張萬欽,曹起濤
?
惰性填料種類對豬場沼液氨吹脫效果的影響
鄒夢圓,董紅敏,朱志平※,占源航,尹福斌,張萬欽,曹起濤
(中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,北京 100081)
氨吹脫作為豬場沼液的預(yù)處理方法,其處理效果受填料等多種因素的影響。分別采用空心多面球、鮑爾環(huán)和流化床填料在pH值10.5,氣液比2 000,溫度30 ℃的條件下吹脫豬場沼液,結(jié)果表明:空心多面球和流化床對沼液氨氮(ammonia nitrogen,NH4+-N)的平均去除率顯著高于鮑爾環(huán)填料(<0.05),吹脫2 h,氨氮的平均去除率分別為80.7%、59.0%和77.4%。投加NaOH使沼液化學(xué)需氧量(chemical oxygen demand,COD)因壓縮雙電層和混凝而降低,總固體(total solid,TS)和揮發(fā)性固體(volatile solid,VS)因OH-對微生物結(jié)構(gòu)的破壞和大分子物質(zhì)的水解而增加。吹脫過程使COD部分提高,而TS和VS有所降低。3種填料的性能參數(shù)差異導(dǎo)致吹脫后沼液COD平均去除率的變化和VS的平均去除率不同,但不存在顯著差異(>0.05),流化床填料對TS的平均去除率顯著高于空心多面球(<0.05)。選定空心多面球吹脫20 L沼液2 h,1 L的1 mol/L硫酸吸收液對吹脫尾氣中氨氣的平均吸收率為35.8%,兼顧吸收效果和經(jīng)濟(jì)性。
氨;去除效果;沼液;流化床填料;空心多面球填料;鮑爾環(huán)填料
隨著中國畜牧業(yè)的集約化和規(guī)?;l(fā)展,大量集中產(chǎn)生的養(yǎng)殖廢棄物使得農(nóng)業(yè)生態(tài)環(huán)境被污染的風(fēng)險日益加劇。近年來,利用厭氧發(fā)酵處理畜禽糞污的沼氣工程迅速發(fā)展[1],沼氣工程不僅可以實現(xiàn)養(yǎng)殖廢棄物的資源化利用,而且能夠防治農(nóng)業(yè)環(huán)境污染,同時具有較好的生態(tài)與經(jīng)濟(jì)效益[2],但是沼氣工程中產(chǎn)生的沼渣沼液等殘余物還需要進(jìn)行后續(xù)處理與利用。沼液成分復(fù)雜,不同原料厭氧發(fā)酵后特征差異較大[3-5]。作為優(yōu)質(zhì)的液體肥料來源,沼液富含氮、磷、鉀等營養(yǎng)元素和銅、鐵、鋅、錳等微量元素,此外還有氨基酸、水解酶、維生素等微生物代謝產(chǎn)物以及植物病蟲害抑制物質(zhì)[6],但種養(yǎng)不平衡、土地緊張和運(yùn)輸成本過高[7]等現(xiàn)實問題使沼液資源化利用受阻;沼液也是高濃度的有機(jī)廢水,其碳氮比低,氨氮濃度高,可生化性差,達(dá)標(biāo)排放成本高[8-9],如何對沼液進(jìn)行深度處理已經(jīng)成為大中型沼氣工程長期穩(wěn)定運(yùn)行的關(guān)鍵。
吹脫法是以空氣作為載體通入水中,在堿性條件下使氣水充分接觸,利用廢水中所含氨氮的實際濃度與平衡濃度的差異,氣相中氨氣濃度始終低于此條件下的平衡濃度,廢水中溶解的氨可以不斷越過氣液界面進(jìn)入氣相,從而脫除氨氮的方法[10]。影響氨吹脫效率的關(guān)鍵因素包括pH值、氣液比、溫度、吹脫時間和水力負(fù)荷等[11-12]。由于脫氮率高,操作靈活且占地小,氨吹脫工藝被廣泛應(yīng)用于稀土廢水[13]、垃圾滲濾液[14-15]、市政廢水[16]、養(yǎng)殖廢水[17-19]和焦化廢水[20]等多種類型高氨氮廢水的預(yù)處理環(huán)節(jié)。國內(nèi)外學(xué)者針對單獨或以組合工藝采用氨吹脫處理畜禽養(yǎng)殖場沼液[21-25]也開展了一系列研究,但針對不同惰性填料對豬場沼液氨吹脫效果的研究較少。
本文分別采用空心多面球、鮑爾環(huán)和流化床填料對豬場沼液進(jìn)行氨吹脫處理,研究不同惰性填料對氨的吹脫效果以及吹脫后沼液中COD、TS和VS的變化情況,選定氨吹脫的較優(yōu)填料后,進(jìn)一步研究不同摩爾濃度的硫酸吸收液吸收吹脫尾氣中氨氣的效果,為沼液的深度處理提供技術(shù)參數(shù)。
如圖1所示,試驗裝置包括控制單元和吹脫單元,吹脫單元又包括吹脫塔、儲液池和吸收裝置。控制單元采用PLC(S7-200,德國西門子公司)編程控制,包括曝氣風(fēng)機(jī)(RT-H3285AA,蘇州市貝雷克機(jī)械設(shè)備有限公司)變頻調(diào)節(jié)、pH計讀數(shù)顯示、攪拌器頻率調(diào)節(jié)板塊和10英寸彩色顯控觸摸屏(SK-102HE,深圳市顯控自動化技術(shù)有限公司)。顯控觸摸屏整合儲液池中沼液溫度的設(shè)定與數(shù)值顯示還有加熱棒、曝氣風(fēng)機(jī)、沼液和加藥蠕動泵(204K,重慶市杰恒蠕動泵有限公司)以及攪拌器的開關(guān)功能。沼液溫度接近設(shè)定值后,加熱棒加熱緩慢直至溫度達(dá)到設(shè)定值后停止加熱。
吹脫塔材質(zhì)為有機(jī)玻璃,高1.5 m,內(nèi)徑0.15 m(高徑比10∶1),頂部有排氣口,排氣口下方是噴淋頭,內(nèi)部裝填填料層,底部有曝氣頭,曝氣頭通過管路連接氣體轉(zhuǎn)子流量計(LZM-15G,余姚市工業(yè)自動化儀表廠)和曝氣風(fēng)機(jī),吹脫塔底部還有回水管路與儲液池連接。儲液池材質(zhì)為不銹鋼,長0.6 m,寬0.5 m,高0.5 m,有效容積150 L,內(nèi)部安裝攪拌器、pH計(PG-118,上海市經(jīng)米儀器儀表有限公司)、溫度熱電偶探頭(WRN-001,泰州市昊嘉電熱電器有限公司)和加熱棒。加藥蠕動泵通過管路連接堿液罐,用于調(diào)節(jié)儲液池中沼液的pH值,堿液罐材質(zhì)為有機(jī)玻璃,有效容積5 L,沼液蠕動泵通過管路一端連接儲液池,一端連接液體轉(zhuǎn)子流量計(LBZ-6,杭州市富陽華儀儀表有限公司)后連接噴淋頭,沼液和加藥蠕動泵均可調(diào)節(jié)進(jìn)水量。吸收裝置包括吸收罐和中和罐,材質(zhì)為有機(jī)玻璃,有效容積5 L,吸收罐通過管路連接排氣口和中和罐,中和罐通過管路接入大氣。
吹脫開始時,曝氣風(fēng)機(jī)曝氣,吹脫塔中空氣由底部向上流動,沼液蠕動泵抽提,沼液自噴淋頭向下流出,到吹脫塔底部后進(jìn)入儲液池,再經(jīng)沼液蠕動泵抽提,循環(huán)往復(fù)??諝夂痛得撐矚鈴呐艢饪谂懦龊?,氨氣被吸收液吸收,尾氣經(jīng)過NaOH溶液中和酸性,最后排入大氣。控制單元控制3套并列排放的吹脫單元,用于平行試驗。
1. 加藥蠕動泵 2. 沼液蠕動泵 3. 液體流量計 4. 排氣口 5. 吸收罐 6. 中和罐 7. 吸收裝置 8. 堿液罐 9. 曝氣頭 10. 吹脫塔 11. 氣體流量計 12. 曝氣風(fēng)機(jī) 13. 加熱棒 14. pH計 15. 攪拌器 16. 溫度熱電偶 17. 儲液池
試驗所用沼液為河北省衡水市某規(guī)?;i場沼氣工程厭氧發(fā)酵出水,經(jīng)過絮凝沉淀、固液分離和紙帶過濾預(yù)處理,試驗水質(zhì)指標(biāo)如表1所示。豬場沼氣工程連續(xù)運(yùn)行,每次取用沼液進(jìn)行試驗并完成指標(biāo)檢測間隔2~ 3 d,故各批次試驗的水質(zhì)存在一定差異。
填料是裝填于吹脫塔內(nèi)的惰性固體物料,作為氣液兩相傳質(zhì)的主要場所,是決定氨吹脫效果的關(guān)鍵[26]。如圖2所示,空心多面球的球心有1道繞過球面的加固環(huán),加固環(huán)的上下各有1個半球,每個半球里都有12片球瓣沿球體中心軸呈放射狀環(huán)繞放置,具有氣速高、葉片多和阻力小的特性。鮑爾環(huán)在拉西環(huán)的基礎(chǔ)上改進(jìn)而成,環(huán)壁有兩排帶內(nèi)伸舌葉的窗孔,彎入環(huán)內(nèi)指向環(huán)心的舌葉在環(huán)中心相搭,可以充分利用內(nèi)表面積。流化床填料為空心結(jié)構(gòu),內(nèi)外共有3層空心圓,外周邊帶齒,具有比表面積大和脫氮、分解有機(jī)物能力強(qiáng)的特性,常用作流化床反應(yīng)器中的好氧生物載體。比表面積、孔隙率和填料因子等參數(shù)是衡量填料性能的主要依據(jù),比表面積決定氣液接觸面積,孔隙率影響氣液流動阻力,填料因子是比表面積與孔隙率3次方的比值,干填料因子反映幾何特性,濕填料因子反映流體力學(xué)性能。試驗用填料性能參數(shù)如表2所示。
表1 氨吹脫試驗用沼液水質(zhì)指標(biāo)
Table 1 Water quality index of biogas slurry in ammonia stripping experiments
指標(biāo)Index氨氮NH4+-N/(mg·L-1)總氮TN/(mg·L-1)化學(xué)需氧量COD/(mg·L-1)pH值pH value總固體Total solid/%揮發(fā)性固Volatile solid/% 沼液Biogas slurry649.1±60.5707.1±66.1793.4±60.57.87±0.060.34±0.080.29±0.11
a. 空心多面球a. Polyhedral hollow ballb. 鮑爾環(huán)b. Pall ringc. 流化床c. Fluidized bed
圖2 氨吹脫試驗用3種填料
Fig.2 Three types of packing materialsin ammonia stripping experiments
隋倩雯等[23]的研究表明,在pH值為10.5,氣液比為2 000~2 500,溫度為30 ℃的運(yùn)行條件下吹脫豬場厭氧消化液,氨氮去除率較高為81.84%,兼顧去除率與經(jīng)濟(jì)性。本試驗以此參數(shù)為基礎(chǔ),在儲液池中加入50 L豬場沼液,打開攪拌器(80~120 r/min),投加NaOH調(diào)節(jié)pH值為10.5,設(shè)定曝氣風(fēng)機(jī)頻率并調(diào)節(jié)沼液蠕動泵,保持氣液比為2 000,設(shè)定儲液池中沼液溫度均勻加熱至 30 ℃??招亩嗝媲?、鮑爾環(huán)和流化床填料的直徑均為 25 mm,材質(zhì)均為聚丙烯塑料,分別在吹脫塔中裝填3種填料至高度為1 m,吹脫5 h,間隔30 min取樣150 mL,每次試驗在3套吹脫單元中同時進(jìn)行作為平行試驗。通過沼液氨氮和總氮(total nitrogen,TN)的濃度變化曲線分析不同惰性填料對氨的吹脫效果,研究加堿調(diào)節(jié)pH值對沼液COD、TS和VS的影響以及采用不同惰性填料吹脫后上述指標(biāo)的變化情況。選定氨吹脫的較優(yōu)填料后,在吸收罐中分別添加1 L 的1、1.5和2 mol/L硫酸吸收液,研究不同摩爾濃度的硫酸吸收液吸收吹脫尾氣中氨氣的效果。
表2 氨吹脫試驗用填料性能參數(shù)
對采集樣品的NH4+-N、TN、COD、pH值、TS和VS等主要水質(zhì)指標(biāo)進(jìn)行測定分析。NH4+-N、TN和COD分別采用水楊酸-次氯酸鈉分光光度法、過硫酸鉀氧化-紫外分光光度法和重鉻酸鉀法,測試儀器為HACH COD Reactor Model DR 6000(HACH Company,USA),pH值采用METTLER TOLEDO FiveGo F2-Standard便攜式pH計(METTLER TOLEDO Company,CH)測定,TS采用烘干稱質(zhì)量法測定,VS采用灼燒稱質(zhì)量法測定。
試驗數(shù)據(jù)采用 Microsoft Excel 2016處理,采用SAS 9.2統(tǒng)計軟件進(jìn)行顯著性分析。
吹脫塔中分別裝填空心多面球、鮑爾環(huán)和流化床 填料,試驗結(jié)果表明,經(jīng)過5 h吹脫,沼液氨氮的平均質(zhì)量濃度分別由(626.7±38.4)、(655.3±92.5)和(665.3± 12.5)mg/L降為(73.0±1.0)、(151.0±19.0)和(64.7± 18.9)mg/L(圖3a),平均去除率分別為88.4%、77.0%和90.3%(圖3b);總氮的平均質(zhì)量濃度分別由(660.0± 66.0)、(665.0± 15.0)和(766.7±61.8)mg/L降為(120.0± 12.0)、(160.0± 16.0)和(113.3±34.0)mg/L(圖3c),平均去除率分別為81.8%、75.9%和85.2%(圖3d)??招亩嗝媲蚝土骰蔡盍蠈φ右喊钡娜コ曙@著高于鮑爾環(huán)填料(<0.05),相比鮑爾環(huán),空心多面球和流化床填料的比表面積與堆積密度更大,從而增大吹脫塔中的氣液接觸面積和填充率,延長沼液的停留時間,提高氨氮的平均去除率。當(dāng)沼液吹脫2 h時,沼液氨氮的平均去除率已經(jīng)分別達(dá)到80.7%、59.0%和77.4%,總氮的平均去除率已經(jīng)分別達(dá)到78.3%、62.7%和72.2%。采用空心多面球和流化床填料吹脫150 min時,氨氮和總氮的平均質(zhì)量濃度高于120 min,采用空心多面球吹脫240和300 min時,總氮的平均質(zhì)量濃度分別高于210和270 min,相鄰取樣時間采集的樣品中氨氮和總氮的平均質(zhì)量濃度并不存在顯著差異(>0.05),可能是因為吹脫塔中氣液分布不均產(chǎn)生返混現(xiàn)象或者取樣不均勻等偶然因素造成。綜合考慮運(yùn)行能耗以及氨氮和總氮的去除效果,本試驗將空心多面球作為優(yōu)選的吹脫填料,吹脫時間控制在2 h以內(nèi)。本試驗結(jié)果與其他氨吹脫試驗結(jié)果具有可比性,龔川南[25]報道在溫度為30 ℃,氣液比為4 000,pH值分別為9、10和11的條件下吹脫奶牛養(yǎng)殖場沼液,吹脫柱中分別裝填直徑為25 mm,材質(zhì)為聚丙烯塑料的空心多面球和鮑爾環(huán)填料,裝填空心多面球填料的吹脫柱中沼液氨氮的平均去除率均高于鮑爾環(huán)填料,pH值為11時,采用空心多面球和鮑爾環(huán)填料吹脫后,沼液氨氮的平均去除率分別為88%和76%。
圖3 采用不同惰性填料沼液中氨氮和總氮的質(zhì)量濃度與去除率隨吹脫時間的變化
調(diào)節(jié)廢水pH值常用的堿有NaOH和Ca(OH)2等[12, 27],由于添加Ca(OH)2后廢水在吹脫過程中容易產(chǎn)生堵塞填料和設(shè)備管道的沉淀物,并且NaOH破壞廢水緩沖體系的能力更強(qiáng)[28],本試驗采用NaOH調(diào)節(jié)沼液的pH值。當(dāng)NaOH的平均投加量為3.7 g/L時,吹脫液原液的pH值平均由7.87升高到10.52。如表3所示,加堿調(diào)節(jié)pH值后,吹脫液原液的COD分別由(756.0±38.9)、(860.0±32.4)和(834.7±28.7)mg/L下降為(495.0±7.1)、(593.0±14.0)和(573.5±23.5)mg/L,平均去除率分別為34.5%、31.0%和31.3%。這可能是因為投加NaOH不僅使沼液中電解質(zhì)的濃度增大,膠體雙電層的厚度被壓縮,顆粒之間吸引聚集沉淀[29-30],還可以促進(jìn)沼液中的Ca+和Mg+形成CaCO3和Mg(OH)2[31],具有一定的混凝效果。Braz等[32]對釀酒廢水進(jìn)行混凝處理,在投加Ca(OH)2調(diào)節(jié)pH值為6.0時,COD的去除率為29.7%。龍瀟等[33]投加NaOH澄清電廠循環(huán)排污水,混凝澄清后出水中CODMn的去除率為50%~60%。隋倩雯等[23]向豬場厭氧消化液中投加5 g/L的Ca(OH)2時,COD的去除率最高為30.13%。
表3 加堿與吹脫后化學(xué)需氧量COD的變化
吹脫塔中分別裝填空心多面球、鮑爾環(huán)和流化床填料,試驗結(jié)果表明,經(jīng)過5 h吹脫,加堿后吹脫液的COD分別升高到(550.0±25.6)、(676.3±35.8)和(637.3± 7.1)mg/L,這可能是因為吹脫過程不斷消耗沼液中的NH4+和OH-形成NH3,沼液中電解質(zhì)的濃度降低,膠體雙電層的厚度增加,顆粒之間凝聚力減弱[30],混凝效果減弱。Raboni等[34]采用鮑爾環(huán)填料吹脫垃圾滲濾液,混凝階段加入質(zhì)量分?jǐn)?shù)35%的NaOH和41%的FeCl3溶液,COD的去除率達(dá)50%以上,吹脫階段COD的去除率繼續(xù)提高不足5%,與本試驗的結(jié)果不符,可能是因為垃圾滲濾液與本試驗吹脫的豬場沼液成分不同,F(xiàn)eCl3的加入也強(qiáng)化了混凝效果。最終,經(jīng)過加堿和吹脫后,沼液COD的平均去除率分別為27.2%、21.4%和23.6%。相比加堿,吹脫過程中沼液COD的平均去除率分別降低了7.3%、9.6%和7.6%,3種填料對于加堿與吹脫后沼液COD平均去除率的變化不存在顯著差異(>0.05)。投加NaOH可以降低沼液的部分COD,但吹脫過程又使沼液的COD有所提高。
吹脫塔中分別裝填空心多面球、鮑爾環(huán)和流化床填料,如表4所示,試驗結(jié)果表明,經(jīng)過5 h吹脫,沼液的pH值分別由(10.51±0.03)、(10.54±0.01)和(10.50±0.02)降為(10.17±0.03)、(10.27±0.05)和(10.01±0.04),平均降幅分別為0.34、0.27和0.49。流化床填料對于沼液吹脫后pH值的降幅極顯著高于空心多面球和鮑爾環(huán)填料(<0.01),空心多面球?qū)τ谡右捍得摵髉H值的降幅顯著高于鮑爾環(huán)填料(<0.05)。在吹脫過程中,吹脫塔形成的錯流環(huán)境使得氣液接觸時間依然較短,無法有效地去除沼液中含有的CO2和VFA等酸性物質(zhì)[25],隨著吹脫的持續(xù)進(jìn)行,NH3不斷逸出,沼液中氨氮的質(zhì)量濃度也不斷降低,導(dǎo)致吹脫后沼液的pH值有一定程度的降低,有利于后續(xù)沼液pH值的調(diào)節(jié)。
表4 吹脫前后沼液pH值、TS和VS的變化
吹脫塔中分別裝填空心多面球、鮑爾環(huán)和流化床填料,試驗結(jié)果表明,投加NaOH調(diào)節(jié)沼液pH值為10.5后,沼液TS的平均值分別由0.29%、0.36%和0.35%增加到0.76%、0.90%和0.92%,分別增加166%、153%和162%(表4)。沼液VS的平均值分別由0.24%、0.31%和0.29%增加到0.25%、0.32%和0.30%,這可能是因為大量的 OH-可以破壞沼液中微生物的細(xì)胞結(jié)構(gòu),使胞內(nèi)物質(zhì)釋放到胞外環(huán)境,同時水解沼液中纖維素等大分子物質(zhì),將部分有機(jī)物轉(zhuǎn)化為可溶性物質(zhì)[35]。Valo等[36]采用3.65 g/L的KOH溶液在170 ℃的條件下熱處理市政與釀酒廢水混合活性污泥,60 min后污泥中TS和VS的融出率分別為51%和94%。劉曉玲[35]用8 mol/L的NaOH調(diào)節(jié)城市污泥混合液pH值為12.0,堿處理后污泥中TS和VS的融出率分別高于37.0%和60.0%。
經(jīng)過5 h吹脫,沼液TS的平均值分別下降至0.70%、0.75%和0.73%,吹脫過程中TS的平均去除率分別為7.2%、16.3%和20.7%,流化床填料對沼液中TS的平均去除率顯著高于空心多面球填料(<0.05)。沼液VS的平均值分別下降至0.20%、0.20%和0.18%,吹脫過程中VS的平均去除率分別為20.5%、36.6%和41.5%,3種填料對沼液中VS的平均去除率不存在顯著差異(>0.05)。這可能是因為吹脫過程不斷消耗沼液中的OH-,部分固體沉淀脫穩(wěn)破壞,而且錯流環(huán)境也使部分有機(jī)物逸散,由于不同惰性填料的吹脫效果不同,導(dǎo)致沼液吹脫后TS和VS的去除率存在差異。Laureni等[37]發(fā)現(xiàn)硫酸吸收瓶前引入的一個pH值>12的基礎(chǔ)瓶可以截留豬場沼液氨吹脫尾氣中超過60%的有機(jī)質(zhì)和少于3%的氨氣。投加NaOH可以增加沼液的TS和VS,但吹脫過程又使沼液的TS和VS都降低。
選定空心多面球作為吹脫填料,吸收罐中分別添加1 L的1、1.5和2 mol/L硫酸吸收液,儲液池中添加20 L沼液,投加NaOH調(diào)節(jié)pH值為10.5,設(shè)定曝氣風(fēng)機(jī)頻率并調(diào)節(jié)沼液蠕動泵,保持氣液比為2 000,設(shè)定溫度均勻加熱至30 ℃。3次重復(fù)試驗結(jié)果表明,經(jīng)過2 h吹脫,沼液氨氮的平均質(zhì)量濃度分別由(566.0±16.0)、(599.3±25.8)和(578.7±59.9)mg/L降為(189.3±28.1)、(150.7±25.0)和(182.0±25.5)mg/L,平均減少的氨氮總質(zhì)量分別為7 533.3、8 973.3和7 933.3 mg,完成吸收后,1 mol/L的硫酸吸收液中氨氮的質(zhì)量分別為2 680.0、2 470.0和3 590.0 mg,1.5 mol/L的硫酸吸收液中氨氮的質(zhì)量分別為2 700.0、1 750.0和4 530.0 mg,2 mol/L的硫酸吸收液中氨氮的質(zhì)量分別為1 700.0、3 730.0、2 490.0 mg。如圖4所示,1、1.5和2 mol/L的硫酸吸收液對沼液吹脫尾氣中氨氣的平均吸收率分別為35.8%、36.7%和32.4%。3種摩爾濃度的硫酸吸收液對吹脫尾氣中氨氣的平均吸收率不存在顯著差異(>0.05),綜合考慮吸收效果和經(jīng)濟(jì)性,將1 mol/L的硫酸吸收液作為較優(yōu)吸收液。Jiang等[38]采用質(zhì)量分?jǐn)?shù)92.5%的硫酸吸收牛糞發(fā)酵沼液吹 脫氨氣,吸收液通過蠕動泵泵入吸收塔,進(jìn)酸量為 327 ml/min時,2 L硫酸對氨的吸收率為73.8%。龔川 南[25]以溫度40 ℃、氣液比50和pH值10.5的試驗參 數(shù)吹脫奶牛養(yǎng)殖場沼液,將一定量硫酸銨固體溶于 0.4 mol/L硫酸溶液中作為吸收液,氨回收率基本達(dá)到70%左右。本試驗硫酸吸收液對氨氣的平均吸收率不足40%,可能是因為吸收液體積不足或吹脫時氣液比較大,導(dǎo)致氨氣與吸收液接觸時間較短。針對不同氣液比下與不同體積硫酸吸收液對吹脫尾氣中氨氣的吸收效果可以進(jìn)一步開展研究。
圖4 不同摩爾濃度硫酸吸收液對吹脫氨氣的吸收率
本試驗以豬場沼液為原料,研究了不同惰性填料對氨的吹脫效果以及加堿和吹脫后沼液COD、TS和VS的變化情況,還研究了不同摩爾濃度的硫酸吸收液吸收空心多面球填料吹脫尾氣中氨氣的效果,主要結(jié)論如下:
1)空心多面球和流化床填料對氨氮的平均去除率顯著高于鮑爾環(huán)(<0.05),裝填空心多面球、鮑爾環(huán)和流化床填料吹脫2 h,氨氮的平均去除率分別為80.7%、59.0%和77.4%。選定空心多面球吹脫沼液2 h以內(nèi),氨氮的去除效果較好且能耗較低。
2)投加NaOH后,沼液的COD因壓縮雙電層和混凝作用而降低,吹脫后COD部分提高,3種填料對COD在加堿與吹脫后平均去除率的變化不存在顯著差異(>0.05)。OH-對微生物結(jié)構(gòu)的破壞和大分子物質(zhì)的水解作用使加堿后沼液的TS和VS增加,不同惰性填料的吹脫效果使TS和VS在吹脫后的平均去除率存在差異,流化床填料對TS的平均去除率顯著高于空心多面球(<0.05),但3種填料對VS的平均去除率差異不顯著(>0.05)。
3)1、1.5和2 mol/L的硫酸吸收液對氨氣的平均吸收率分別為35.8%、36.7%和32.4%,吸收效果不存在顯著差異(>0.05)。綜合考慮吸收效果和經(jīng)濟(jì)性,1 mol/L的硫酸吸收液為較優(yōu)選擇。
[1] Appels L, Lauwers J, Degrève J, et al. Anaerobic digestion in global bio-energy production: Potential and research challenges[J]. Renewable & Sustainable Energy Reviews, 2011, 15(9): 4295-4301.
[2] 陳玉成,楊志敏,陳慶華,等. 大中型沼氣工程厭氧發(fā)酵液的后處置技術(shù)[J]. 中國沼氣,2010,28(1):14-20. Chen Yucheng, Yang Zhimin, Chen Qinghua, et al. An overview on disposal of anaerobic digestate for large scale biogas engineering[J]. China Biogas, 2010, 28(1): 14-20. (in Chinese with English abstract)
[3] 李祎雯,曲英華,徐奕琳,等. 不同發(fā)酵原料沼液的養(yǎng)分含量及變化[J]. 中國沼氣,2012,30(3):17-20. Li Yiwen, Qu Yinghua, Xu Yilin, et al. Change of nutrition contents of biogas slurry with different fermentation raw materials[J]. China Biogas, 2012, 30(3): 17-20. (in Chinese with English abstract)
[4] 靳紅梅,付廣青,常志州,等. 豬、牛糞厭氧發(fā)酵中氮素形態(tài)轉(zhuǎn)化及其在沼液和沼渣中的分布[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(21):208-214.Jin Hongmei, Fu Guangqing, Chang Zhizhou, et al. Distribution of nitrogen in liquid and solid fraction of pig and dairy manure in anaerobic digestion reactor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 208-214. (in Chinese with English abstract)
[5] 于曉東. 發(fā)酵原料對沼渣、沼液成分的影響及沼液在番茄栽培中的作用[D]. 泰安:山東農(nóng)業(yè)大學(xué),2016. Yu Xiaodong. Effects of Fermentation Raw Material on Composition of Biogas Residue, Biogas Slurry and Effects of Biogas Slurry in Tomato Cultivation[D]. Tai’an: Shandong Agricultural University, 2016. (in Chinese with English abstract)
[6] 曹汝坤,陳灝,趙玉柱. 沼液資源化利用現(xiàn)狀與新技術(shù)展望[J]. 中國沼氣,2015,33(2):42-50. Cao Rukun, Chen Hao, Zhao Yuzhu. Resource utilization of biogas slurry: Current status and future prospects[J]. China Biogas, 2015, 33(2): 42-50. (in Chinese with English abstract)
[7] 馬艷茹,丁京濤,趙立欣,等. 沼液中氮的回收利用技術(shù)研究進(jìn)展[J]. 環(huán)境污染與防治,2018(3):339-344. Ma Yanru, Ding Jingtao, Zhao Lixin, et al. Advances in recycling and reuse of nitrogen from biogas slurry[J]. Environmental Pollution & Control, 2018(3):339-344. (in Chinese with English abstract)
[8] 韓敏,劉克鋒,王順利,等. 沼液的概念、成分和再利用途徑及風(fēng)險[J]. 農(nóng)學(xué)學(xué)報,2014,4(10):54-57. Han Min, Liu Kefeng, Wang Shunli, et al. Definition, ingredient, approaches and risks for reuse in biogas slurry[J]. Journal of Agriculture, 2014, 4(10): 54-57. (in Chinese with English abstract)
[9] Limoli A, Langone M, Andreottola G. Ammonia removal from raw manure digestate by means of a turbulent mixing stripping process[J]. Journal of Environmental Management, 2016, 176: 1-10.
[10] 吳海忠. 吹脫法處理高氨氮廢水關(guān)鍵因素研究進(jìn)展[J]. 綠色科技,2013(2):144-146.
[11] Gustin S, Marinsek-Logar R. Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent[J]. Process Safety & Environmental Protection, 2011, 89(1): 61-66.
[12] 奧斯曼·吐爾地,楊令,安迪,等. 吹脫法處理氨氮廢水的研究和應(yīng)用進(jìn)展[J]. 石油化工,2014,43(11):1348-1353.Aosiman·Tuerdi, Yang Ling, An Di, et al. Progresses in air stripping for treatment of ammonia wastewater[J]. Petrochemical Technology, 2014, 43(11): 1348-1353. (in Chinese with English abstract)
[13] 黃海明,肖賢明,晏波. 氨吹脫處理稀土分離廠中氨氮廢水試驗研究[J]. 環(huán)境工程學(xué)報,2008,2(8):1062-1065.Huang Haiming, Xiao Xianming, Yan Bo. Experimental research on treatment of ammonia nitrogen wastewater by ammonia stripping in a rare earths separation factory[J]. Chinese Journal of Environmental Engineering, 2008, 2(8): 1062-1065. (in Chinese with English abstract)
[14] 劉瓊霞. 氨吹脫–生物接觸氧化工藝處理垃圾滲濾液中試試驗研究[D]. 柳州:廣西科技大學(xué),2013. Liu Qiongxia. Pilot Study on Treatment of Landfill Leachate by Ammonia Stripping-Biological Contact Oxidation Process[D]. Liuzhou: Guangxi University of Technology, 2013. (in Chinese with English abstract)
[15] Ferraz F M, Povinelli J, Vieira E M. Ammonia removal from landfill leachate by air stripping and absorption[J]. Environmental Technology, 2013, 34(15): 2317-2326.
[16] Park S, Kim M. Innovative ammonia stripping with an electrolyzed water system as pretreatment of thermally hydrolyzed wasted sludge for anaerobic digestion[J]. Water Research, 2015, 68: 580-588.
[17] Liao P H, Chen A, Lo K V. Removal of nitrogen from swine manure wastewaters by ammonia stripping[J]. Bioresource Technology, 1995, 54(1): 17-20.
[18] Zhang L, Lee Y W, Jahng D. Ammonia stripping for enhanced biomethanization of piggery wastewater[J]. Journal of Hazardous Materials, 2012, 199(2): 36-42.
[19] 金要勇. 氨吹脫–混凝處理奶牛養(yǎng)殖廢水厭氧出水的試驗研究[D]. 馬鞍山:安徽工業(yè)大學(xué),2015. Jin Yaoyong. Experimental Study on the Treatment of Anaerobic Effluent of Dairy Wastewater by Ammonia Stripping and Coagulation[D]. Ma’anshan: Anhui University of Technology, 2015. (in Chinese with English abstract)
[20] 殷旭東,李德豪,毛玉鳳,等. 氨吹脫+鐵碳微電解/H2O2法聯(lián)合預(yù)處理高濃度焦化廢水[J]. 水處理技術(shù),2016(5):120-123.Yin Xudong, Li Dehao, Mao Yufeng, et al. Pretreatment of high concentration coking wastewater by ammonia stripping and Fe–C micro–electrolysis combined with H2O2[J]. Technology of Water Treatment, 2016(5):120–123. (in Chinese with English abstract)
[21] Bonmatí A, Flotats X. Air stripping of ammonia from pig slurry: Characterisation and feasibility as a pre– or post–treatment to mesophilic anaerobic digestion[J]. Waste Management, 2003, 23(3): 261-272.
[22] Lei X, Sugiura N, Feng C, et al. Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification[J]. Journal of Hazardous Materials, 2007, 145(3): 391-397.
[23] 隋倩雯,董紅敏,朱志平,等. 提高豬場沼液凈化處理效果的氨吹脫控制參數(shù)[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(11):205-211.Sui Qianwen, Dong Hongmin, Zhu Zhiping, et al. Ammonia stripping control parameters for improving effluent treatment effect in anaerobic digesters of piggery wastewater [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(11): 205-211. (in Chinese with English abstract)
[24] 李勇. Fenton-氨吹脫-SBR處理畜禽糞尿厭氧消化液的試驗研究[D]. 長沙:湖南農(nóng)業(yè)大學(xué),2012. Li Yong. Study on Fenton-ammonia Stripping-SBR Treatment of Anaerobic Digestion Water of Livestock Feces[D]. Changsha: Hunan Agricultural University, 2012. (in Chinese with English abstract)
[25] 龔川南. 氨吹脫對奶牛養(yǎng)殖場沼液脫氮與氮回收研究[D].重慶:西南大學(xué),2016. Gong Chuannan. Removal and Recovery of Nitrogen From Dairy Farm Biogas Slurry By Ammonia Stripping[D]. Chongqing: Southwest University, 2016. (in Chinese with English abstract)
[26] 王偉. 新型填料影響吹脫解吸法去除廢水中高濃度氨氮的研究[D]. 武漢:武漢科技大學(xué),2013. Wang Wei. Study on Influence of a New Packing on Ammonia Nitrogen Removal from High Strength Ammonia Wastewater by Gas Stripping and Desorption Method[D]. Wuhan: Wuhan University of Science and Technology, 2013. (in Chinese with English abstract)
[27] 陳建. 吹脫法處理垃圾滲濾液中高濃度氨氮的主要影響因素[J]. 環(huán)境科學(xué)與管理,2012,37(4):128-131.Chen Jian. Main disposal influencing factors of high concentration ammonia nitrogen in landfill leachate by air stripping method[J]. Environmental Science & Management, 2012, 37(4): 128-131. (in Chinese with English abstract)
[28] 李瑞華,韋朝海,吳超飛,等. 吹脫法預(yù)處理焦化廢水中氨氮的條件試驗與工程應(yīng)用[J]. 環(huán)境工程,2007,25(3):38-40.Li Ruihua, Wei Chaohai, Wu Chaofei, et al. The testing conditions of air stripping as a pretreatment for ammonia nitrogen in coke plant wastewater and project application[J]. Environmental Engineering, 2007, 25(3): 38-40. (in Chinese with English abstract)
[29] Quan X, Ye C, Xiong Y, et al. Simultaneous removal of ammonia, P and COD from anaerobically digested piggery wastewater using an integrated process of chemical precipitation and air stripping[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 326-332.
[30] 劉琪. 羥基鎂鋁復(fù)合物對水中重金屬及腐植酸的去除研究[D]. 西安:長安大學(xué),2012. Liu Qi. Removal Experimental Researching on Heavy Metal and Humic Acid in Water by Formation Compound Mg-Al Hydroxides[D]. Xi’an: Chang’an University, 2012. (in Chinese with English abstract)
[31] 陳穎敏,孫心利,吳靜然. 循環(huán)水排污水回用中磷系阻垢劑對混凝效果的影響及措施[J]. 熱力發(fā)電,2010,39(1):95-99.Chen Yingmin, Sun Xinli, Wu Jingran. Influence of phosphorous antiscalant used in recycling utilization system of blow–down water from circulating water upon the coagulation effect[J]. Thermal Power Generation, 2010, 39(1): 95-99. (in Chinese with English abstract)
[32] Braz R, Pirra A, Lucas M S, et al. Combination of long term aerated storage and chemical coagulation/flocculation to winery wastewater treatment[J]. Desalination, 2010, 263(1): 226-232.
[33] 龍瀟,劉托民,王平,等. NaOH在電廠循環(huán)排污水回用處理工程中的應(yīng)用[J]. 給水排水,2011,37(1):57-59.
[34] Raboni M, Viotti P. Predictive model of limestone scaling in ammonia stripping towers and its experimental validation on a treatment plant fed by MSW leachate-polluted groundwater[J]. Waste Management, 2017, 59: 537-544.
[35] 劉曉玲. 城市污泥厭氧發(fā)酵產(chǎn)酸條件優(yōu)化及其機(jī)理研究[D]. 無錫:江南大學(xué),2008. Liu Xiaoling. The Condition Optimization of Sewage Sludge for Producing Volatile Fatty Acids and the Investigation of Acidogenic Mechanism[D]. Wuxi: Jiangnan University, 2008. (in Chinese with English abstract)
[36] Valo A, Carrère H, Delgenès J P. Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion[J]. Journal of Chemical Technology & Biotechnology, 2004, 79(11): 1197-1203.
[37] Laureni M, Palatsi J, Llovera M, et al. Influence of pig slurry characteristics on ammonia stripping efficiencies and quality ofthe recovered ammonium–sulfate solution[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(9): 1654-1662.
[38] Jiang A, Zhang T, Zhao Q B, et al. Evaluation of an integrated ammonia stripping, recovery, and biogas scrubbing system for use with anaerobically digested dairy manure[J]. Biosystems Engineering, 2014, 119(4): 117-126.
Effect of different types of sluggishness packings on ammonia stripping of piggery biogas slurry
Zou Mengyuan, Dong Hongmin, Zhu Zhiping※, Zhan Yuanhang, Yin Fubin, Zhang Wanqin, Cao Qitao
(,,100081,)
The treatment effect of ammonia stripping which is a pretreatment method of piggery biogas slurry is affected by many factors including pH value, temperature, air liquid ratio and packings etc. On the basis of previous studies, ammonia stripping effects of piggery biogas slurry in polyhedral hollow ball, pall ring and fluidized bed packing were studied in this article. Effects of adding sodium hydroxide and stripping in different types of packings on chemical oxygen demand, total solid and volatile solid of biogas slurry were also discussed. 50 L piggery biogas slurry which had been pretreated by flocculation, solid-liquid separation and paper tape filtration in turn was added to each tank. The same volume of polyhedral hollow ball packing, pall ring packing and fluidized bed packing were loaded in the air stripping tower respectively. The packings material are polypropylene plastics, whose diameter are both 25 mm. Biogas slurry was stripped for 5 hours under the conditions with pH value of 10.5, air liquid ratio of 2 000 and temperature of 30 ℃. 150 mL sample was taken from the tank every half hour during the stripping process. The stripping effects in different types of packings were analyzed. The results showed that the ammonia nitrogen average removal rates in polyhedral hollow ball packing and fluidized bed packing were significantly higher than that of pall ring packing (<0.05) and the ammonia nitrogen average removal rates were 80.7%, 59.0% and 77.4%, respectively, when the air stripping tower ran for 2 hours. Considering the operational energy consumption and ammonia nitrogen and total nitrogen removal effects, polyhedral hollow ball packing was selected as the preferred material. The operation time should be controlled within 2 hours. The chemical oxygen demand of biogas slurry partial decreased on account of the compression of the twin electrical layer and coagulation after adding sodium hydroxide. The total solid and volatile solid of biogas slurry both increased because of the destruction of microorganism structure and the hydrolysis of macromolecular matters after adding sodium hydroxide. The chemical oxygen demand of biogas slurry partial increased, meanwhile, the total solid and volatile solid both decreased after ammonia stripping. The variations of chemical oxygen demand average removal rates and volatile solid average removal rates were different as a result of the differences in performance parameters of three types of packings, but they had no significant differences in three types of packings (>0.05). The total solid average removal rate in fluidized bed packing was significantly higher than that of polyhedral hollow ball packing (<0.05). 20 L piggery biogas slurry was stripped for 2 hours under the conditions with pH value of 10.5, air liquid ratio of 2 000 and temperature of 30 ℃ in polyhedral hollow ball packing and stripped ammonia was absorbed by 1 L sulfuric acid of 1, 1.5 and 2 mol/L, respectively. The average absorption rates were 35.8%, 36.7% and 32.4%, respectively, and they had no significant differences (>0.05). Considering the absorption effect and economy, 1 mol/L sulfuric acid was selected as the preferred absorbent to absorb stripped ammonia.
ammonia; removal efficiency; biogas slurry; fluidized bed packing; polyhedral hollow ball packing; pall ring packing
鄒夢圓,董紅敏,朱志平,占源航,尹福斌,張萬欽,曹起濤.惰性填料種類對豬場沼液氨吹脫效果的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(23):186-192. doi:10.11975/j.issn.1002-6819.2018.23.023 http://www.tcsae.org
Zou Mengyuan, Dong Hongmin, Zhu Zhiping, Zhan Yuanhang, Yin Fubin, Zhang Wanqin, Cao Qitao. Effect of different types of sluggishness packings on ammonia stripping of piggery biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 186-192. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.23.023 http://www.tcsae.org
2018-09-10
2018-10-22
農(nóng)業(yè)廢棄物厭氧發(fā)酵及資源化成套技術(shù)與設(shè)備研發(fā)項目(2017YFD0800804)資助
鄒夢圓,研究方向:農(nóng)業(yè)廢棄物處理與利用。 Email:zoumengyuan1228@sina.com
朱志平,博士,研究員,研究方向:畜禽環(huán)境效用機(jī)理及調(diào)控方法。Email:zhuzhiping@caas.cn
10.11975/j.issn.1002-6819.2018.23.023
X713
A
1002-6819(2018)-23-0186-07