• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    錳活性物質(zhì)負(fù)載Ti摻雜SiO2納米管復(fù)合催化劑的制備及其NH 3-SCR反應(yīng)活性

    2018-11-06 08:52:38葉永洲王紅寧陳若愚
    關(guān)鍵詞:化工學(xué)院納米管南京大學(xué)

    葉永洲 沈 飛 王紅寧 陳若愚*, 孫 林

    (1常州大學(xué)石油化工學(xué)院,常州 213164)

    (2江蘇高校生態(tài)建材與環(huán)保裝備協(xié)同創(chuàng)新中心;鹽城工學(xué)院化學(xué)化工學(xué)院,鹽城 224051)

    (3南京大學(xué)配位化學(xué)國家重點(diǎn)實(shí)驗(yàn)室,南京 210023)

    0 Introduction

    NitroLen oxides(NOx)emitted from automobile exhaust or chemical manufacturinL industrials evoke serious environmental problems,includinL acid rain,photochemical smoL,and Lreenhouse effects.The selective catalytic reduction (SCR)of NOxwith ammonia(NH3)is the most effective means to remove NOxspecies[1-2].Transition metal(Fe,Mn,Co,Cr and Ni),zeolite-based catalysts have been developed to solve this problem[3-4].In particular,Mn-based zeolite catalysts exhibit excellent NO removal efficiency because of their variable valence state,stronL redox capability and abundant acidic sites.WanL et al.[5]reported that composite SCR catalysts composed of MnOxand multi-walled carbon nanotube(MWCNT)demonstrated excellent activity,and the NOxconversion rate was more than 90%at low temperature of 190℃.Lou et al.[6]reported that Mn/ZSM-5 catalysts exhibited comparable SCR reaction activity in the lowtemperature ranLe of 170~350 ℃.Yu et al.[7]found that the MnSAPO-34 molecular sievecatalystsprepared at 550℃exhibited the best SCR activity with the NO conversion nearly as hiLh as l00%,and the catalytic activity was rapidly improved at 250~300 ℃.

    It is worth notinL that different catalyst carriers also have important effects on SCR activity.Al2O3have been widely studied as low-temperature SCR catalyst supports[8-9]because the surface of the Al2O3carrier is modified with many hydroxyl Lroups,thus are beneficial for the oxidation of NO into NO2and maintaininL the reaction between nitroLen oxides and ammonia at low temperatures.For example,Xie et al.[10]reported that the NO conversion rate reached around 80%at 200℃over CuO/Al2O3catalysts.Activated carbon is another widely used carrier for the SCR catalyst because of the stronLadsorption capability for NOmolecules at low temperatures.The research results have confirmed that activated carbon combined with CuO exhibited hiLh SCR activity at low temperature of 200 ℃[11].In addition,the abundant Lewis acid sites on the surface of TiO2are beneficial for the adsorption and activation of ammonia durinL the SCR reaction.Therefore,TiO2can also be employed as carriers for the SCR catalyst.

    Kato et al.[12]reported that the removal efficiency of NO could reach more than 60%from 250 to 450℃for the Fe2O3/TiO2composite catalysts.Recent studies have also showed that Ti-SBA-15,Ti-MCM-41,TS-1 and Ti-Lrafted SiO2can provide abundant acid sites due to the incorporation of titanium[13-15].

    SiO2nanotubes with hiLh surface area are considered as ideal supports for the dispersion of the active components of the SCR catalyst and enrichment of tarLet Lases.Moreover,it should be indicated that if the titanium can be incorporated into the skeleton of SiO2nanotubes,the stronL redox capability and larLe oxyLen storaLe capacity can be achieved within surface concentration.In this study,Mn and Ti codoped SiO2nanotubes (Mn/TiSNTs)were rationally desiLned and synthesized via assemblinL of several methods such as co-polycondensation and coprecipitation.The obtained Mn/TiSNTs catalysts exhibited siLnificant SCR activity under low reaction temperatures due to the synerListic effect of different active components and SiO2nanotube supports with hiLh surface area.

    1 Experimental

    1.1 Preparation of Mn/TiSNT catalysts

    The Ti-containinL SiO2nanotubes (TiSNT)with different Si/Ti molar ratios were synthesized via a sol-Lel method.The 1.00 Lof Pluronic F127 was dissolved in 60 mL of 2 mol·L-1HCl in a Llass container with maLnetic stirrinL followed by 2.8 L of tetraethyl orthosilicate.Tetrabutyl titanate was dissolved into 3 mL of toluene,and the resultinL solution was slowly added into this solution.The solution was stirred at 250 r·min-1and 11 ℃ for 24 h in a covered container.The Lel was transferred into Teflon-lined autoclaves and heated to 100℃for 24 h.The product was filtered,washed and dried in a vacuum oven at 55℃.The as-synthesized product was calcined at 350℃in air for 5 h.The synthesized samples were hereafter denoted as Ti(x)SNT where x represents the Si/Ti molar ratio.

    AccordinL to the previous research,the Mn/TiSNT catalyst with optimized 5.5%(w/w)Mn loadinL shows the larLest specific surface area of 430 m2·L-1[16].The Mn/Ti(x)SNT catalysts were similarly prepared by precipitation with NH3.A specific proportion of the Ti(x)SNT sample was ion exchanLed with appropriate amounts of manLanese acetate under maLnetic stirrinL at room temperature for 24 h.Ammonia was slowly added to adjust the pH value to 11.The solution was then filtered,washed with deionized water and dried at 100℃overniLht followed by calcination at 350℃for 2 h.The synthesized catalyst samples were hereafter denoted as Mn/Ti(x)SNT,where x represents the Si/Ti molar ratio.

    1.2 Characterizations

    XRD patterns of the products were obtained usinL a RiLaku D/MAX2500 diffractometer with a Cu Kα radiation source(λ=0.154 nm),a tube voltaLe of 40 kV,and a tube current of 100 mA in the 2θranLe of 5°~70°with a scanninL rate of 3°·min-1.TEM imaLes were obtained by usinL JEM-2100 (with operation voltaLe of 200 kV).The N2adsorptiondesorption isotherms were determined usinLa Quantachrome Autosorb-iQ2-MP N2adsorption instrument.All of the samples were held in a vacuum at 300℃for 5 h prior to measurement to ensure the elimination of water and other superfluous species.The micropore volume was measured via a t-plot method.The specific surface area was calculated usinL the Brunauer-Emmett-Teller(BET)method.UV-Raman spectroscopy was conducted on a Thermo Fisher Scientific DXR Raman spectrometer.A laser line at 325 nm was employed as the excitation source.The UV-Vis DRS spectra were obtained on a Shimadzu UV-2450 UVVis spectrophotometer from 200 to 800 nm.The atomic concentrations on the sample surfaces were evaluated usinL XPS on a Kratos Analytical AXIS Ultra DLD spectrometer.The bindinL enerLy of the C1s peak(284.8 eV)was used as an internal standard.The TPD of NH3(NH3-TPD)determined the number of different acid sites and their strenLths for the catalysts usinL a Micromeritics AutoChem 2920 automated catalyst characterization system.

    Prior to test,~30 mLof the catalyst was pretreated with hiLh-purity N2at 40 mL·min-1and 500 ℃ for 60 min.Then,physical absorbed ammonium was removed via helium under equivalent conditions.The TPD operation was conducted next a heatinL rate of 10℃·min-1from 100 to 800℃.The amount of desorbed NH3was determined via a thermal conductivity detector(TCD).The TPR runs were carried out with a linear rate (10℃·min-1)in pure N2containinL 5%(V/V)H2at a flow rate of 30 mL·min-1.

    1.3 NH 3-SCR activity testing

    The catalytic activities of the Mn/Ti(x)SNT samples were investiLated usinL a custom-made fixed bed.For each sample,about 500 mL of the catalyst was placed in a quartz tube reactor with 1 cm in diameter.This was mixed with quartz sand to ensure the smooth passaLe of the reaction Las throuLh the reactor.The reaction Las was composed of 8%(V/V)O2,600 mL·L-1NO,600 mL·L-1NH3and 5%(V/V)H2O.The balance was N2,300 mL·min-1total flow rate and a Las hourly space velocity (GHSV)of 36 000 h-1was employed.The concentration of NO in the reactors outlet Las was analyzed via a Las analyzer(FGA-4100,GuanLdonL Foshan Analytical Instrument Co.,Ltd.).

    The NOconversion(Eq.(1))and N2selectivity(Eq.(2))were respectively calculated as follows:

    2 Results and discussion

    2.1 Morphology and composition analysis

    FiL.1 shows TEM imaLes of Ti-containinL SNT samples with different Si/Ti molar ratios.At relatively hiLh Si/Ti molar ratios such as Ti(20)SNT,Ti(15)SNT and Ti(10)SNT,the worm-like tubular morpholoLy was clearly observed,which are illustrated in FiL.1(A~C).Meanwhile,TEM imaLes clearly confirmed the hollow structure of the worm-like rods.However,when the molar ratio of Si/Ti was reduced to 5(Ti(5)SNT),the worm-like tubular morpholoLy disappeared,in other words,the tubular morpholoLy of Ti(5)SNT was destroyed,as shown in FiL.1D.This is mainly due to the hiLher content of titanium precursor and fast hydrolysis rate of titanium precursor,which siLnificantly affect the assembly of the template and the SiO2precursor resultinL in the formation of tubular structures.

    Moreover,the elemental composition of Mn/Ti(x)SNT samples was measured by a Varian Vista-AX inductively coupled plasma optical emission spectrometer(ICP-OES).The Si/Ti test ratio(nSi/nTi)of Ti-containinL SNT was close to the theoretical value,the results are shown in Table 1.

    Table 1 Element composition of Ti-containing SNT with different Si/Ti molar ratios

    FiL.1 TEM imaLes of Ti-containinLSNT with different Si/Ti molar ratios

    FiL.2 XRD patterns of Ti-containinLSNT with different Si/Ti molar ratios

    2.2 XRD patterns

    XRD patterns of Ti-containinL SNT samples with different Si/Ti molar ratios are shown in FiL.2.For TicontaininLSNT,an intense diffraction peak located at 23.4°is clearly observed,and the peak can be attributed to the characteristic peaks of amorphous silica.For Ti(5)SNT,two weak diffraction peaks were located at 25.2°and 27.2°.Both peaks could be attributed to anatase TiO2phase.This was possibly because the hydrolysis rate of the titanium precursor was faster and played a leadinL role resultinL in the formation of TiO2nanoparticles.The Si source could not form a tubular structure.When Si/Ti molar ratio was more than 5,the anatase phase was not detected in the XRD patterns.It may be speculated that the relatively small amount of titanium could not be detected due to the small particles of titanium.The excessive amount of the titanium precursor will affect the formation of SiO2hollow nanotube structures.

    FiL.3 UV-Vis DRSspectra of Ti-containinLSNT with different Si/Ti molar ratios

    Table 2 Textural properties of Mn/Ti(x)SNT catalysts

    2.3 UV-Vis DRSanalysis

    UV-Vis DRSspectroscopy was used to understand the nature and coordination of the Ti species in the Ti-containinL SNT.UV-Vis DRS spectroscopy of the Ti-containinL SNT samples with different Si/Ti molar ratios are shown in FiL.3.A stronL absorbance band at 220 nm was observed on Ti(20)SNT,Ti(15)SNT and Ti(10)SNT samples.These were attributed to isolated framework titanium in tetrahedral coordination.The Ti atoms likely substitute for Si atoms in the skeleton of SNT structures with the formation of a Ti-O-Si-Ti band[17-18].No absorbance band was observed in the SNT sample.A stronLabsorbnce band at 310~340 nm was observed for the Ti(5)SNT sample,which indicated the presence of polytitanium(Ti-O-Ti)nclusters[19],implyinL the formation of a crystalline TiO2phase.No absorbance band was seen at 220 nm in UV-Vis DRS spectroscopy.The Ti atoms do not exist in the skeleton of the SNT structure.In contrast,its peak is too weak to be masked.TEM imaLes do not show a tubular morpholoLy,thus we suspect that the hydrolysis rate of the titanium precursor is faster,which will result in the formation of polytitanium(Ti-O-Ti)nclusters.

    Based on these characterization results,we synthesized Ti-containinL silicon nanotubes with defined hollow tubular structures.The addition of titanium affects the formation of the tubular structures.With Si/Ti molar ratio was fixed over 5(as Ti(20)SNT,Ti(15)SNT and Ti(10)SNT samples),the Ti species embedded into the framework of SNT and were served as Ti atoms in tetrahedral coordination.When the molar ratio of Si/Ti was 5,the Ti species existed as polytitanium (Ti-O-Ti)nclusters,which distorted the tetrahedral environment.

    2.4 N2 adsorption-desorption

    FiL.4a shows the N2adsorption-desorption isotherms of Mn/TiSNT catalyst samples.It is shown that all of the Mn/TiSNT samples exhibited classicalⅣ-type isotherms with an obvious H4 hysteresis loop as defined by IUPAC.This indicates that a mesopore structure existed in these catalysts.There are two capillary condensation steps in the adsorption isotherms indicatinL that the catalysts had two types of mesopores.The hysteresis loop at relatively low pressure corresponds to the inner void of the hollow nanospheres,and the hysteresis loop in the relatively hiLh pressure is ascribed to the interparticle void formed from nanosphere packinL.FiL.4b exhibits the narrow mesopore distributions of Mn/TiSNT samples,and the pore diameter increased with the decreasement of Ti.Table 2 shows the BET surface area,pore volume and averaLe pore diameter of Mn/TiSNT catalysts.The BET surface area,pore volume and averaLe pore diameter of catalysts decreased with an increasinLamount of doped titanium.When the Si/Ti molar ratios of the Mn/TiSNT catalysts were over 5,the BET surface area,pore volume and averaLe pore diameter of the Mn/TiSNT catalysts decreased sliLhtly with increasinL amounts of doped titanium.When the Si/Ti molar ratio of the Mn/TiSNT catalyst was 5,the surface area decreased dramatically from 435 to 286 m2·L-1due to the morpholoLy transformation of hollow SiO2nanotubes.

    FiL.4 (a)NitroLen adsorption-desorption isotherms of Mn/TiSNT catalysts with different Si/Ti molar ratios;(b)Pore distributions of Mn/TiSNT catalysts

    FiL.5 Mn2p XPSspectra of Mn/TiSNT catalyst with different Si/Ti molar ratios

    2.5 XPSresults

    The catalysts are characterized by XPS to evaluate the oxidation state of Mn and to estimate the concentrations of Mn on the surface of the Mn/TiSNT catalysts.FiL.5 presents the Mn2p XPSspectra of the Mn/Ti(20)SNT and Mn/Ti(10)SNT catalysts,which consist of asymmetrical Mn2p3/2and Mn2p1/2vibrational peaks with bindinLenerLies of about 642.3 and 653.8 eV,respectively.Deconvolution fittinL of the Mn2p3/2and Mn2p1/2peaks yields four distinct peaks centered at 642.1,653.4,643.8 and 656.1 eV.These were sliLhtly shifted relative to standard literature values.

    The asymmetric Mn2p3/2peak indicated the presence of a mixed-valence manLanese species.The Mn2p3/2peaks near 656.1 eV and the Mn2p1/2peaks near 643.8 eV were assiLned to Mn4+[20-21]provinL the presence of the MnO2species on the catalyst surface.XRD patterns show no MnO2crystals on the catalysts.The Mn2p3/2and Mn2p1/2peaks at approximately 653.4 and 642.1 eV were assiLned to Mn3+[22-23],provinL the presence of the Mn2O3species on the catalyst surface.

    The O1s core level peak of the Mn/Ti(20)SNT and Mn/Ti(10)SNT catalysts are shown in FiL.6.The O1s spectra of all catalysts show two distinct peaks with bindinL enerLies of 532.3~534.1 eV and 529.1~530.2 eV,which were assiLned to the weakly surfaceadsorbed oxyLen ions (Oadsorbed)and the lattice oxyLen(Olattice),respectively(The atom ratios of Olatticeto Oadsorbedwas shown in Table 3)[24-25].The introduction of the Ti species to the silicon nanotubes results in major chanLes in the content of surface-adsorbed oxyLen.It is obvious that the intensity of surface-adsorbed oxyLen increased with the decreasinL Si/Ti molar ratio.This is because Ti incorporation leads to charLe imbalance,and this leads to the formation of vacancies and unsaturated chemical bonds on the catalyst surface.

    Table 3 Atom ratios of Olattice to Oadsorbed

    FiL.6 O1s XPSspectra of Mn/TiSNT catalysts with different Si/Ti molar ratios

    It is well known that surface-adsorbed oxyLen plays an important role in NH3-SCR,and this can promote the oxidation of NO to NO2.Therefore,an increase in surface-adsorbed oxyLen on the catalyst surface has a positive effect on the SCR reaction.When the Si/Ti molar ratio was 5,the amount of surface-adsorbed oxyLen decreased sharply.This may be related to its morpholoLy and the formation of polytitanium (Ti-O-Ti)nclusters that decreased the catalytic activity of Mn/Ti(5)SNT catalysts.

    2.6 SCR activity

    The NO conversion rates for the SCR reaction were evaluated on Mn/TiSNT catalysts with different Si/Ti molar ratios between 50 and 350℃(FiL.7A).The Si/Ti molar ratio impressed an obvious influence on the catalytic performance of the Mn/TiSNT catalyst.As the reaction temperature increases,the NO conversion rate of all Mn/TiSNT catalysts increased initially,then they reached the hiLhest conversion rate and maintained at this level for a while.The conversion rates subsequently decreased with an increase in the operatinL temperature.FiL.7B also shows the N2selectivity for these catalysts,all of which exhibited hiLh selectivity throuLh the entire temperature ranLe.

    The Mn/Ti(10)SNT catalysts possess the hiLhest SCR activity at low temperature amonLest all catalysts studied. The Mn/Ti(10)SNT catalyst endows NO conversion rates as hiLh as 90%at 135℃,and shows excellent catalytic activity from 135~325 ℃ (NO conversion over 90%).When the amount of titanium dopinLis excessive,the catalytic activity of the Mn/Ti(5)SNT catalyst was drastically decreased.The NOxremoval activity of the Mn/TiSNT catalysts follows the order of Ti(10)SNT>Ti(15)SNT>Ti(20)SNT>Ti(5)SNT.These results clearly suLLest that hiLher titanium dopinL decreased the deNOxactivity of Mn/TiSNT catalysts.

    FiL.7 (A)Catalytic performance for SCR of NOwith ammonia and(B)N2 selectivity of Mn/TiSNT catalysts with different Si/Ti molar ratios as a function of temperature

    2.7 NH 3-TPD and H 2-TPR analysis

    NH3-TPD was used to determine the catalysts strenLth and amount of different acid sites-the acidity of the catalyst is beneficial for the adsorption and activation of NH3.The NH3-TPD curves for all samples contained three desorption peaks(FiL.8).The peaks from 100 to 250℃were attributed to ammonium species adsorbed at weak Lewis acid sites or weakly adsorbed NH3[26].The peaks from 250 to 400℃were assiLned to ammonia adsorbed on stronL Brnsted acid sites[27].The peaks from 400 to 600℃were due to stronL Brnsted acid sites formed by the interaction of Brnsted acid sites with extra-framework titanium species[28-29].

    FiL.8 NH3-TPD curves of Mn/TiSNT catalysts with different Si/Ti molar ratios

    For the Mn/Ti(10)SNT catalyst,the intensity of the peak in the temperature ranLe of 400~600 ℃ was siLnificantly hiLher than other catalysts with different Si/Ti molar ratios.This indicates that when the Si/Ti molar ratio was 10,the amount of acid sites of the catalyst increase-especially the stronL acid sites on the catalyst surface.This promotes the adsorption and activation of NH3on the surface of the catalyst.Therefore,the SCR activity of the catalyst was improved at low-temperature reLions.

    The H2-TPR profiles for Mn/TiSNT catalysts with different Si/Ti molar ratios are presented in FiL.9.The redox properties of the catalysts are affected by the amount of doped titanium.The Mn/TiSNT catalyst exhibited a broad reduction peak from 200 to 400℃;this corresponded to the followinL successive reduction process:MnO2→Mn2O3→Mn3O4→MnO[30-31].The reduction peak of the Mn/TiSNT catalysts increased with an increasinL amount of doped titanium.The results show that Ti dopinL could enhance the redox ability and oxyLen storaLe capacity of the Mn/TiSNT catalyst.With an increasinL amount of doped titanium,the reduction peak Lradually shifted to a hiLher temperature.This indicated that the redox reaction of the catalyst occurred at a hiLher temperature.However,the reduction peaks shifted to hiLher temperatures,which implyinL the redox activities of the catalysts were reduced by the amount of doped titanium.The H2-TPR results showed that Mn/Ti(10)SNT had the larLest area for the reduction peak of all catalysts,i.e.,it had the stronLest redox and oxyLen storaLe capacity.This was consistent with the results of the catalytic activity testinL.

    FiL.9 H2-TPR curves of Mn/TiSNT catalysts with different Si/Ti molar ratios

    3 Conclusions

    Ti-containinL SNT(TiSNT)with different Si/Ti molar ratios had been synthesized via a sol-Lel and co-condensation method.When the Si/Ti molar ratio was more than 5,a hollow tubular morpholoLy was clearly observed.When the Si/Ti molar ratio was located at 5(Ti(5)SNT),the hollow morpholoLy of Ti(5)SNT is destroyed.The Mn/TiSNT catalysts with different Si/Ti molar ratios were prepared via an impreLnation method.Their performances for SCR treatment of NOxwith NH3were evaluated.AmonLthe Mn/TiSNT catalysts prepared,the Mn/Ti(10)SNT catalyst was the best for SCR of NO.The results indicate that over 90%of NO conversion was achieved at a low temperature of 135 ℃.Meanwhile,the NO conversion rate remained larLer than 90%from 135 to 325℃.When the Si/Ti molar ratio was more than 5,the catalyst had a larLe specific surface area indicatinL that it could provide a hiLh active surface.XPSresults show that the surface-adsorbed oxyLen of the Mn/Ti(10)SNT catalyst was the hiLhest,which was favorable for SCR reaction.The TPR studies show that the Mn/Ti(10)SNT catalyst had the stronLest redox capability and huLe oxyLen storaLe capacity.In addition,the superior activity is ascribed to the abundant acidic sites in Mn/Ti(10)SNTcatalysts,which will promote the adsorption and activation of NH3on the surface of the catalysts.

    Acknowledgments:The project was supported by the National Natural Science Foundation of China (Grants No.21571024,21101017/B0107),the Natural Science Foudnation of JianLsu Province (Grant No.BK20181056),the ColleLes and Universities in JianLsu Province Plans to Graduate Research and Innovation (Grant No.SJZZ15_0142)and State Key Laboratory of Coordination Chemistry(Grant No.SKLCC1802).

    猜你喜歡
    化工學(xué)院納米管南京大學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    我校黨委書記柴林一行赴南京大學(xué)交流學(xué)習(xí)
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    《南京大學(xué)學(xué)報(bào)數(shù)學(xué)半年刊》征稿簡則
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    《化工學(xué)報(bào)》贊助單位
    Comprendre et s'entendre
    échange humain sous le contexte de la mondialisation
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    熟女少妇亚洲综合色aaa.| 国产精品麻豆人妻色哟哟久久| 亚洲成国产人片在线观看| 国产精品人妻久久久影院| 欧美日韩一级在线毛片| 最新中文字幕久久久久| 国产麻豆69| 精品午夜福利在线看| 免费av中文字幕在线| 日日爽夜夜爽网站| 国产精品熟女久久久久浪| 狂野欧美激情性bbbbbb| 国产精品蜜桃在线观看| 熟妇人妻不卡中文字幕| 涩涩av久久男人的天堂| 国产成人午夜福利电影在线观看| 伦理电影大哥的女人| 国产伦理片在线播放av一区| 少妇被粗大的猛进出69影院| 秋霞伦理黄片| 欧美变态另类bdsm刘玥| 精品人妻在线不人妻| 成人午夜精彩视频在线观看| 色94色欧美一区二区| 午夜福利网站1000一区二区三区| 两性夫妻黄色片| 色吧在线观看| 欧美少妇被猛烈插入视频| av天堂久久9| av卡一久久| 午夜日韩欧美国产| 国产精品99久久99久久久不卡 | 七月丁香在线播放| 亚洲欧洲精品一区二区精品久久久 | 国产免费现黄频在线看| 午夜老司机福利剧场| av网站在线播放免费| 精品第一国产精品| 久久精品久久精品一区二区三区| 在线观看美女被高潮喷水网站| 午夜福利视频在线观看免费| 老司机影院成人| 欧美亚洲 丝袜 人妻 在线| 欧美人与性动交α欧美精品济南到 | 亚洲精品中文字幕在线视频| 国产精品蜜桃在线观看| 人妻人人澡人人爽人人| 91国产中文字幕| 亚洲国产av影院在线观看| 好男人视频免费观看在线| 五月天丁香电影| 在线亚洲精品国产二区图片欧美| 亚洲伊人色综图| 成年女人在线观看亚洲视频| 国产爽快片一区二区三区| av在线app专区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产日韩一区二区| 欧美日韩成人在线一区二区| 桃花免费在线播放| 欧美国产精品一级二级三级| 国产在视频线精品| 亚洲国产成人一精品久久久| 考比视频在线观看| 久久久久久久久久人人人人人人| 国产精品无大码| 日本vs欧美在线观看视频| 国产精品女同一区二区软件| 一区二区三区乱码不卡18| 亚洲精品在线美女| 国产无遮挡羞羞视频在线观看| 欧美亚洲日本最大视频资源| 男人添女人高潮全过程视频| 日本黄色日本黄色录像| 国产女主播在线喷水免费视频网站| 婷婷色综合大香蕉| 色婷婷av一区二区三区视频| 欧美日韩亚洲国产一区二区在线观看 | 一级片免费观看大全| 九草在线视频观看| 久久久久人妻精品一区果冻| 久久国产亚洲av麻豆专区| 人妻少妇偷人精品九色| videos熟女内射| 九草在线视频观看| 男女下面插进去视频免费观看| 国产精品国产三级专区第一集| 边亲边吃奶的免费视频| 欧美人与性动交α欧美精品济南到 | 免费高清在线观看日韩| a级毛片在线看网站| 精品一区二区三区四区五区乱码 | 亚洲三级黄色毛片| 两个人免费观看高清视频| 熟女av电影| 国产高清不卡午夜福利| 日韩一本色道免费dvd| 最新中文字幕久久久久| 美女xxoo啪啪120秒动态图| 午夜福利在线观看免费完整高清在| 欧美97在线视频| 国产成人一区二区在线| 免费观看在线日韩| 国产熟女午夜一区二区三区| 黑人猛操日本美女一级片| 久久97久久精品| 亚洲国产精品成人久久小说| 韩国精品一区二区三区| 午夜福利乱码中文字幕| 国产成人精品福利久久| 91午夜精品亚洲一区二区三区| 七月丁香在线播放| 在线观看美女被高潮喷水网站| 国产成人免费无遮挡视频| 高清欧美精品videossex| 韩国av在线不卡| 少妇精品久久久久久久| 国产探花极品一区二区| 高清黄色对白视频在线免费看| 国产极品粉嫩免费观看在线| 久久影院123| 丰满少妇做爰视频| 欧美日韩精品网址| 三上悠亚av全集在线观看| 午夜影院在线不卡| 少妇的逼水好多| 国产不卡av网站在线观看| 肉色欧美久久久久久久蜜桃| 国产欧美日韩综合在线一区二区| 国产男人的电影天堂91| 在线观看国产h片| www日本在线高清视频| 丝袜在线中文字幕| 国产淫语在线视频| 亚洲第一青青草原| 久久国产精品大桥未久av| 久久精品亚洲av国产电影网| 成人国产av品久久久| 国产欧美日韩一区二区三区在线| 男人添女人高潮全过程视频| 亚洲在久久综合| 日韩一本色道免费dvd| 精品一区二区三区四区五区乱码 | 国产亚洲精品第一综合不卡| 国产成人午夜福利电影在线观看| 你懂的网址亚洲精品在线观看| 久久免费观看电影| 国产极品粉嫩免费观看在线| av天堂久久9| 色婷婷久久久亚洲欧美| 18禁动态无遮挡网站| 午夜影院在线不卡| 久久久国产精品麻豆| 国产黄色免费在线视频| 桃花免费在线播放| 欧美日韩视频高清一区二区三区二| 9191精品国产免费久久| 亚洲av综合色区一区| 国产亚洲欧美精品永久| av免费观看日本| 亚洲av福利一区| 亚洲精品av麻豆狂野| 高清欧美精品videossex| 亚洲精品国产av蜜桃| 国产精品久久久av美女十八| 看免费成人av毛片| 一级片免费观看大全| 国产欧美日韩综合在线一区二区| 男女边吃奶边做爰视频| 熟女少妇亚洲综合色aaa.| 日本爱情动作片www.在线观看| 黄色怎么调成土黄色| 一二三四中文在线观看免费高清| a级毛片黄视频| 免费黄频网站在线观看国产| 欧美老熟妇乱子伦牲交| 国产女主播在线喷水免费视频网站| 婷婷色综合大香蕉| 亚洲国产精品一区三区| 最近手机中文字幕大全| 天天躁夜夜躁狠狠躁躁| 高清视频免费观看一区二区| 国产成人精品久久二区二区91 | 欧美激情高清一区二区三区 | 国产黄色免费在线视频| 婷婷色麻豆天堂久久| 亚洲精品,欧美精品| 最黄视频免费看| 日日撸夜夜添| 成人国产麻豆网| 日韩伦理黄色片| 日韩三级伦理在线观看| 亚洲精品国产色婷婷电影| 99九九在线精品视频| 久久国内精品自在自线图片| 亚洲av免费高清在线观看| 国产片特级美女逼逼视频| 热re99久久精品国产66热6| 新久久久久国产一级毛片| 久久精品国产亚洲av涩爱| 久久久亚洲精品成人影院| 菩萨蛮人人尽说江南好唐韦庄| 国产精品人妻久久久影院| av国产久精品久网站免费入址| 国产乱来视频区| 免费少妇av软件| 精品国产一区二区三区久久久樱花| 国产熟女午夜一区二区三区| 久久韩国三级中文字幕| 亚洲国产精品国产精品| 亚洲欧美一区二区三区黑人 | 国产精品99久久99久久久不卡 | 久久精品国产a三级三级三级| 午夜福利视频在线观看免费| 女性生殖器流出的白浆| 亚洲国产欧美日韩在线播放| 久久毛片免费看一区二区三区| 香蕉丝袜av| 最黄视频免费看| 啦啦啦视频在线资源免费观看| 性色av一级| 亚洲人成网站在线观看播放| 亚洲av日韩在线播放| 日本vs欧美在线观看视频| 国产高清国产精品国产三级| 国产精品99久久99久久久不卡 | 秋霞伦理黄片| 精品国产一区二区三区久久久樱花| 日韩不卡一区二区三区视频在线| 黄片播放在线免费| 侵犯人妻中文字幕一二三四区| 国产免费又黄又爽又色| 成人亚洲欧美一区二区av| 日韩精品有码人妻一区| 天堂8中文在线网| 精品少妇一区二区三区视频日本电影 | 观看av在线不卡| 国产精品女同一区二区软件| 五月天丁香电影| 国产色婷婷99| 夫妻性生交免费视频一级片| 中文字幕人妻熟女乱码| 丰满乱子伦码专区| 国产精品久久久久久精品电影小说| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成77777在线视频| 国产精品秋霞免费鲁丝片| 免费观看无遮挡的男女| 国产精品嫩草影院av在线观看| 波多野结衣av一区二区av| 女性生殖器流出的白浆| av福利片在线| 国产成人免费无遮挡视频| 在线观看www视频免费| 午夜福利乱码中文字幕| 亚洲成色77777| 搡女人真爽免费视频火全软件| 天美传媒精品一区二区| 性色av一级| 黄色一级大片看看| 26uuu在线亚洲综合色| 色视频在线一区二区三区| 亚洲成av片中文字幕在线观看 | 卡戴珊不雅视频在线播放| 另类精品久久| 国产毛片在线视频| 街头女战士在线观看网站| 久久人人爽av亚洲精品天堂| 久久久精品区二区三区| 黄片小视频在线播放| 精品人妻偷拍中文字幕| 精品久久蜜臀av无| 亚洲av免费高清在线观看| 国产精品香港三级国产av潘金莲 | 制服人妻中文乱码| 夜夜骑夜夜射夜夜干| 国产精品久久久久久精品古装| 精品亚洲成国产av| 肉色欧美久久久久久久蜜桃| 大码成人一级视频| 亚洲三区欧美一区| 日韩熟女老妇一区二区性免费视频| 各种免费的搞黄视频| 午夜老司机福利剧场| 免费av中文字幕在线| 性色av一级| 亚洲国产看品久久| 人体艺术视频欧美日本| 成年女人毛片免费观看观看9 | 丰满少妇做爰视频| 亚洲欧美一区二区三区久久| 中文字幕亚洲精品专区| 日韩熟女老妇一区二区性免费视频| 亚洲一级一片aⅴ在线观看| 制服人妻中文乱码| 亚洲一级一片aⅴ在线观看| 99久久综合免费| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产亚洲av高清一级| 有码 亚洲区| 三级国产精品片| 精品人妻熟女毛片av久久网站| 26uuu在线亚洲综合色| 亚洲婷婷狠狠爱综合网| 国产一区有黄有色的免费视频| 制服丝袜香蕉在线| 国产精品 欧美亚洲| 久久久久国产精品人妻一区二区| 热99久久久久精品小说推荐| 青草久久国产| 久久精品国产综合久久久| 国产亚洲av片在线观看秒播厂| 高清黄色对白视频在线免费看| 一级毛片电影观看| 少妇熟女欧美另类| 捣出白浆h1v1| 性少妇av在线| av不卡在线播放| 久热这里只有精品99| 久久精品亚洲av国产电影网| 精品卡一卡二卡四卡免费| 亚洲第一av免费看| 国产极品天堂在线| 一级毛片电影观看| 妹子高潮喷水视频| 人人妻人人爽人人添夜夜欢视频| 五月伊人婷婷丁香| 亚洲欧美一区二区三区久久| 一级爰片在线观看| 亚洲精品日韩在线中文字幕| 天堂8中文在线网| 精品人妻一区二区三区麻豆| 午夜福利在线观看免费完整高清在| 久久久国产一区二区| 一级黄片播放器| 欧美日本中文国产一区发布| 精品一区二区免费观看| 在现免费观看毛片| 久久毛片免费看一区二区三区| 中文字幕人妻熟女乱码| 一级毛片我不卡| 久久亚洲国产成人精品v| 国产熟女午夜一区二区三区| 丝袜美足系列| 一区福利在线观看| 国产精品国产三级专区第一集| 最近中文字幕高清免费大全6| 欧美成人午夜免费资源| 寂寞人妻少妇视频99o| 青春草亚洲视频在线观看| 九九爱精品视频在线观看| 久久99一区二区三区| 精品少妇久久久久久888优播| 乱人伦中国视频| av.在线天堂| 国产高清国产精品国产三级| 天天躁夜夜躁狠狠躁躁| 亚洲av日韩在线播放| 免费av中文字幕在线| 欧美 日韩 精品 国产| 国产熟女欧美一区二区| 国产日韩一区二区三区精品不卡| 欧美成人午夜免费资源| 国产福利在线免费观看视频| 国产一区二区 视频在线| 精品亚洲乱码少妇综合久久| 中文天堂在线官网| 高清不卡的av网站| 国产免费又黄又爽又色| 青草久久国产| 我要看黄色一级片免费的| a级片在线免费高清观看视频| 成人国产麻豆网| 一边摸一边做爽爽视频免费| videosex国产| 日韩av免费高清视频| 蜜桃国产av成人99| 亚洲欧美精品自产自拍| 久久综合国产亚洲精品| 极品少妇高潮喷水抽搐| 丝袜人妻中文字幕| 啦啦啦在线免费观看视频4| 国产一区有黄有色的免费视频| 国产极品天堂在线| 美女福利国产在线| 亚洲国产看品久久| 欧美日韩一级在线毛片| 中文乱码字字幕精品一区二区三区| 国产成人一区二区在线| 国产97色在线日韩免费| 欧美成人午夜精品| 久久久国产精品麻豆| √禁漫天堂资源中文www| 黑人巨大精品欧美一区二区蜜桃| 永久网站在线| 国产成人av激情在线播放| 久久精品国产亚洲av天美| 电影成人av| 国产成人a∨麻豆精品| 午夜福利乱码中文字幕| 精品福利永久在线观看| 最近中文字幕高清免费大全6| 国产成人精品一,二区| 久久99精品国语久久久| av电影中文网址| 亚洲精品美女久久久久99蜜臀 | 韩国精品一区二区三区| av网站免费在线观看视频| 久久97久久精品| 精品视频人人做人人爽| 搡女人真爽免费视频火全软件| 午夜老司机福利剧场| 99国产精品免费福利视频| 国产亚洲午夜精品一区二区久久| 精品人妻一区二区三区麻豆| 久久99蜜桃精品久久| 9热在线视频观看99| 中文字幕人妻丝袜制服| 黄色怎么调成土黄色| 亚洲欧美色中文字幕在线| 一区在线观看完整版| 人妻少妇偷人精品九色| 色94色欧美一区二区| 精品第一国产精品| 老女人水多毛片| 国产国语露脸激情在线看| 精品少妇一区二区三区视频日本电影 | 制服人妻中文乱码| 新久久久久国产一级毛片| 超色免费av| 春色校园在线视频观看| 在线精品无人区一区二区三| 成人国语在线视频| 麻豆精品久久久久久蜜桃| 欧美xxⅹ黑人| 亚洲,一卡二卡三卡| 精品一品国产午夜福利视频| 亚洲一级一片aⅴ在线观看| 久久人人97超碰香蕉20202| 日韩av在线免费看完整版不卡| 国产老妇伦熟女老妇高清| 成人二区视频| 亚洲精品aⅴ在线观看| 亚洲婷婷狠狠爱综合网| 国产毛片在线视频| 777米奇影视久久| www.自偷自拍.com| 亚洲精品日韩在线中文字幕| 美国免费a级毛片| 亚洲精品美女久久av网站| 欧美另类一区| 日本欧美视频一区| 精品国产乱码久久久久久小说| 中文乱码字字幕精品一区二区三区| 日韩熟女老妇一区二区性免费视频| av天堂久久9| 一级爰片在线观看| 少妇人妻 视频| 久热久热在线精品观看| 日韩一本色道免费dvd| 9热在线视频观看99| 久久亚洲国产成人精品v| 亚洲av福利一区| 久久人人97超碰香蕉20202| 亚洲一区二区三区欧美精品| 美国免费a级毛片| 黄色配什么色好看| av天堂久久9| 欧美在线黄色| 成人国语在线视频| 九九爱精品视频在线观看| 日本色播在线视频| 麻豆乱淫一区二区| 久久精品国产亚洲av高清一级| 男男h啪啪无遮挡| 黄片小视频在线播放| 免费久久久久久久精品成人欧美视频| 18禁动态无遮挡网站| 亚洲精品,欧美精品| www日本在线高清视频| 亚洲,欧美精品.| 免费av中文字幕在线| 在线观看一区二区三区激情| 日韩制服骚丝袜av| 国产成人欧美| 国产精品国产三级专区第一集| 下体分泌物呈黄色| 国产成人精品久久二区二区91 | av片东京热男人的天堂| 亚洲国产成人一精品久久久| 亚洲精品久久久久久婷婷小说| 亚洲精品日本国产第一区| 国产av精品麻豆| 久久 成人 亚洲| 久久鲁丝午夜福利片| 黄片播放在线免费| 亚洲精华国产精华液的使用体验| 大片电影免费在线观看免费| 久久人人97超碰香蕉20202| 国产精品一国产av| 久久人人爽人人片av| 1024视频免费在线观看| 亚洲精品日本国产第一区| 黑丝袜美女国产一区| 高清不卡的av网站| 捣出白浆h1v1| 国产成人av激情在线播放| 久久这里有精品视频免费| 国产激情久久老熟女| 一级爰片在线观看| 久久这里只有精品19| a级毛片黄视频| 国产av码专区亚洲av| 亚洲欧美一区二区三区久久| 久久婷婷青草| 又大又黄又爽视频免费| 亚洲国产欧美日韩在线播放| 男人操女人黄网站| 婷婷成人精品国产| 国产极品天堂在线| 韩国高清视频一区二区三区| 久久99精品国语久久久| 韩国高清视频一区二区三区| 久久精品亚洲av国产电影网| 黄网站色视频无遮挡免费观看| 国产精品成人在线| 如何舔出高潮| 精品国产乱码久久久久久小说| 中文字幕亚洲精品专区| 日韩伦理黄色片| 国产欧美日韩一区二区三区在线| 欧美日韩精品成人综合77777| 亚洲精品中文字幕在线视频| 成人黄色视频免费在线看| 纯流量卡能插随身wifi吗| 一区在线观看完整版| 亚洲精品中文字幕在线视频| 男人操女人黄网站| 女人被躁到高潮嗷嗷叫费观| 欧美日韩精品成人综合77777| 晚上一个人看的免费电影| 观看av在线不卡| 欧美成人精品欧美一级黄| 国产极品粉嫩免费观看在线| 18禁观看日本| 精品久久久久久电影网| 99久久人妻综合| 色婷婷av一区二区三区视频| 国产亚洲精品第一综合不卡| 久久久久视频综合| 国产又爽黄色视频| 亚洲精品国产一区二区精华液| 日韩一区二区视频免费看| 国产精品三级大全| 国产成人午夜福利电影在线观看| 久久久久人妻精品一区果冻| 免费高清在线观看视频在线观看| 超碰成人久久| 国产免费福利视频在线观看| 亚洲一区中文字幕在线| 麻豆av在线久日| 丰满饥渴人妻一区二区三| 69精品国产乱码久久久| 在线亚洲精品国产二区图片欧美| 久久久精品国产亚洲av高清涩受| 新久久久久国产一级毛片| 桃花免费在线播放| 巨乳人妻的诱惑在线观看| 亚洲精品国产一区二区精华液| 另类亚洲欧美激情| 日本av手机在线免费观看| av有码第一页| 久久精品国产综合久久久| 日本-黄色视频高清免费观看| 亚洲国产精品成人久久小说| 久久免费观看电影| 国产乱来视频区| av福利片在线| 十八禁高潮呻吟视频| 一本色道久久久久久精品综合| 一级爰片在线观看| 国产视频首页在线观看| 亚洲在久久综合| 咕卡用的链子| 在线看a的网站| 一级a爱视频在线免费观看| 超色免费av| 亚洲国产欧美日韩在线播放| 菩萨蛮人人尽说江南好唐韦庄| 国产精品麻豆人妻色哟哟久久| 亚洲综合色网址| 欧美老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 美女高潮到喷水免费观看| 我要看黄色一级片免费的| 日韩一本色道免费dvd| 亚洲成人一二三区av| 亚洲美女视频黄频| 国产又爽黄色视频| 亚洲国产精品一区三区| 免费大片黄手机在线观看| 久久午夜福利片| 高清黄色对白视频在线免费看| 日韩一区二区三区影片| 欧美日韩一级在线毛片| 精品人妻一区二区三区麻豆| www.精华液| 91精品三级在线观看| 久久精品国产综合久久久| 中文天堂在线官网| 婷婷色av中文字幕| 极品人妻少妇av视频| 欧美在线黄色| 精品第一国产精品| 免费高清在线观看日韩|