漆棟良,胡田田,宋 雪
?
適宜灌水施氮方式提高制種玉米產(chǎn)量及水氮利用效率
漆棟良1,2,胡田田1※,宋 雪3
(1. 西北農(nóng)林科技大學(xué)旱區(qū)農(nóng)業(yè)水土工程教育部重點(diǎn)實(shí)驗(yàn)室,楊凌 712100;2. 長(zhǎng)江大學(xué)農(nóng)學(xué)院,荊州 434025; 3. 鄭州大學(xué)綜合設(shè)計(jì)研究院有限公司,鄭州 450002)
為通過不同灌水施氮方式調(diào)控干旱區(qū)作物收獲指數(shù)提高資源利用效率,以制種玉米“金西北22號(hào)”為供試材料,進(jìn)行了為期2 a的田間試驗(yàn)。試驗(yàn)采用灌水方式(交替灌水、固定灌水、均勻灌水)與施氮方式(交替施氮、固定施氮、均勻施氮)完全隨機(jī)組合設(shè)計(jì),測(cè)定生育期內(nèi)作物耗水量(evapotranspiration,ET)和成熟期植株的生物量、籽粒產(chǎn)量及其構(gòu)成(穗長(zhǎng)、穗粗、行粒數(shù)和千粒質(zhì)量等)和作物吸氮量,折算收獲指數(shù)(harvest index,HI)、水分利用效率(water use efficiency,WUE)和氮利用效率(nitrogen use efficiency,NUE)。結(jié)果表明,灌水施氮方式只對(duì)行粒數(shù)有顯著影響。ET只受灌水方式影響,交替灌水較其他灌水方式顯著減小ET。WUE表現(xiàn)為:灌水方式相同時(shí),交替施氮和均勻施氮大于固定施氮;施氮方式相同時(shí),交替灌水>均勻灌水>固定灌水。玉米的吸氮量、HI和NUE與WUE表現(xiàn)出相似的規(guī)律。2013年交替灌水均勻施氮下制種玉米的HI、WUE和NUE最大,較均勻灌水均勻施氮分別增加5.46%、11.41%和19.73%。交替灌水交替施氮(水氮同區(qū))的表現(xiàn)與交替灌水均勻施氮相似。2014年的結(jié)果與2013年一致。綜上,交替隔溝灌溉均勻施氮和交替隔溝灌溉交替施氮(水氮同區(qū))有利于提高制種玉米的產(chǎn)量和水氮利用效率。
灌水;氮;生物量;產(chǎn)量;收獲指數(shù);水氮利用效率;制種玉米
2010年中國農(nóng)田灌溉水利用系數(shù)為0.5左右,而發(fā)達(dá)國家已經(jīng)達(dá)到0.7~0.9,農(nóng)業(yè)生產(chǎn)用水浪費(fèi)現(xiàn)象嚴(yán)重[1]。中國化肥利用率低下,2000年氮肥當(dāng)季利用率不足30%[2]。這不僅造成農(nóng)業(yè)資源的極大浪費(fèi),而且嚴(yán)重污染環(huán)境。如何通過水肥聯(lián)合調(diào)控充分挖掘作物自身對(duì)水分、養(yǎng)分等環(huán)境因子的適應(yīng)潛力,實(shí)現(xiàn)產(chǎn)量和資源利用效率的同步提升成為大家關(guān)注的焦點(diǎn)問題[3-6]。
近年來提出的根區(qū)局部灌溉高效節(jié)水技術(shù),是植物補(bǔ)償生長(zhǎng)理論在實(shí)踐中的應(yīng)用和擴(kuò)展[7]。局部灌溉可以調(diào)控作物根系形態(tài)建成,以彌補(bǔ)非灌溉區(qū)水分虧缺對(duì)植物生長(zhǎng)的影響,達(dá)到維持甚至增加作物產(chǎn)量的目的[8-9]。此外,局部灌溉可以抑制作物的冗余生長(zhǎng)[10]并且提高品 質(zhì)[11]。其中,分根區(qū)交替灌溉技術(shù)(alternate partial root zone irrigation,APRI)在干旱、半干旱地區(qū)得到了廣泛的應(yīng)用,取得了良好的節(jié)水效益[12-13]。
研究發(fā)現(xiàn),作物水分利用效率的高低除與作物需水量、灌水量和灌水方式等因素有密切關(guān)系外,同時(shí)還受土壤養(yǎng)分狀況和施肥方式的影響[14]。同樣,氮肥利用率也與灌水方式密切相關(guān)[15]。若采用高效節(jié)水灌溉技術(shù)(如間歇灌溉),原有長(zhǎng)期灌溉條件下的施肥方式(均勻撒施)不變會(huì)導(dǎo)致氮肥的揮發(fā)損失大量增加,多年后導(dǎo)致土壤肥力下降,不利于農(nóng)業(yè)可持續(xù)發(fā)展[16]。但是局部灌溉下,特別是APRI下的施氮方式較少受到關(guān)注。鑒于以上考慮,應(yīng)對(duì)局部灌溉下養(yǎng)分供應(yīng)方式進(jìn)行深入研究,以充分發(fā)揮水氮協(xié)同效應(yīng)。
前人研究了不同灌水方式與基追肥比例對(duì)玉米產(chǎn)量和水肥利用的影響[17],但未涉及與不同根區(qū)的肥料供應(yīng)方式的耦合效應(yīng)。筆者在大田條件下分別研究了不同灌水施氮方式對(duì)玉米根系生長(zhǎng)分布的影響[18]和土壤硝態(tài)氮時(shí)空分布的影響[19],但未涉及二者對(duì)收獲指數(shù)、產(chǎn)量構(gòu)成和水氮利用效率的影響。因此,本文探討不同灌水施氮方式條件下玉米產(chǎn)量構(gòu)成、收獲指數(shù)和水氮利用規(guī)律,以期為通過適宜施氮方式提高局部灌溉下作物收獲指數(shù)和水氮利用效率提供理論依據(jù)。
試驗(yàn)于2013年和2014年在農(nóng)業(yè)部作物高效用水武威科學(xué)觀測(cè)試驗(yàn)站(37°57¢202N、102°50¢502E)進(jìn)行。試驗(yàn)地概況見文獻(xiàn)[18]。
試驗(yàn)設(shè)施氮方式和灌水方式2個(gè)因素,2013年各設(shè)3種不同方式,即灌水方式包括交替灌水(AI)、均勻灌水(CI)和固定灌水(FI);施氮方式包括交替施氮(AN)、均勻施氮(CN)和固定施氮(FN),與筆者文獻(xiàn)[18]的設(shè)計(jì)一致。不同的是固定灌水固定施氮處理又分為水氮同區(qū)(FIFNT)和水氮異區(qū)(FIFNY)2種情況,共10個(gè)處理。進(jìn)行均勻施氮、均勻灌水、交替施氮和交替灌水時(shí),涉及玉米行的2個(gè)溝;進(jìn)行固定施氮、固定灌水時(shí)固定在1個(gè)溝中操作。根據(jù)2013年的試驗(yàn)結(jié)果,2014年對(duì)AI和CI 2種灌水方式及AN和CN 2 種施氮方式進(jìn)行研究。其中,交替灌水交替施氮處理分為水氮同步交替(灌水和施氮在同一溝內(nèi),AIANT)和水氮異步交替(灌水溝和施氮溝相反,AIANY),共5個(gè)處理。各處理重復(fù)3次。具體處理見表1。
表1 2013年和2014年試驗(yàn)設(shè)計(jì)
注:AIANT和FIFNT代表灌水和施氮在同一溝內(nèi),AIANY和FIFNY指灌水溝和施氮溝相反。
Note: AIANT and FIFNT represent irrigation and N fertilization within a same furrow, AIANY and FIFNY represent irrigation furrow and N fertilization furrow was reversed.
供試作物為當(dāng)?shù)胤N植的制種玉米,品種是金西北22號(hào)。2013年于4月19日播種,9月20日收獲。2014年于4月20日壟上點(diǎn)播,9月22日收獲。2013年和2014年玉米生育期內(nèi)的降雨量分別是123.6和178.5 mm。
各處理灌水和施氮量相同。施氮量采用當(dāng)?shù)剡m宜的施氮水平200 kg /hm2(以純N計(jì))[20]。氮肥選用尿素,分3次施入,基施50%,大喇叭口期和抽雄期各追施25%。2013年,灌溉定額和灌溉時(shí)間采用當(dāng)?shù)爻R?guī)溝灌的經(jīng)驗(yàn)值,灌溉定額為3 750 m3/hm2,灌水定額為750 m3/hm2。2014年,根據(jù)同地區(qū)APRI下大田玉米的經(jīng)濟(jì)灌溉制度[21],灌溉定額降低到2 700 m3/hm2,灌水定額為450 m3/hm2,并增加乳熟期灌水。溝壟設(shè)置、底肥實(shí)施同文獻(xiàn)[18]。氮肥施在溝中(壟上不施),開溝施肥,施后覆土。氮肥基施時(shí),固定施氮在南側(cè)(FIFNT)或北側(cè)溝(FIFNY),交替施氮在南側(cè)溝;追肥時(shí),固定施氮位置不變,交替施氮在南、北側(cè)溝交替進(jìn)行。均勻施氮始終在南、北兩側(cè)溝同時(shí)施用,且兩側(cè)施氮量相等。追施氮肥時(shí),施肥、灌水在同一天內(nèi)完成,先施肥后灌水。具體實(shí)施見表2。
表2 2013年和2014年灌水與施氮的時(shí)期與位置
注:固定灌水條件下,對(duì)FIFNY,施氮位置為北側(cè)溝,對(duì)FIFNT為南側(cè)溝;對(duì)AIANY,拔節(jié)期灌北側(cè)溝。
Note: Under fixed furrow irrigation, position of N fertilizer application is in north of furrow for FIFNY treatment and in south of furrow for FIFNT treatment; Irrigation at jointing stage is in north furrow for AIANY treatment.
降雨量:通過距離試驗(yàn)地50 m的自動(dòng)氣象站獲得。
土壤指標(biāo):播前和收獲后,每小區(qū)隨機(jī)選取3個(gè)采樣點(diǎn),取樣至100 cm土層,每20 cm為一層,用烘干法測(cè)定土壤質(zhì)量含水率,用AA3 (3)型流動(dòng)分析儀(德國SEAL公司)測(cè)定播前土壤NO3--N和NH4+-N含量。
地上部指標(biāo):成熟期各小區(qū)中間,選取有代表性的植株5株,將植株分剪,105 ℃殺青,然后75 ℃烘干至恒質(zhì)量測(cè)得其生物量;取10株進(jìn)行考種,考種指標(biāo)包括制種玉米穗長(zhǎng)、穗粗、禿尖長(zhǎng)、行粒數(shù)和千粒質(zhì)量;選取2行玉米進(jìn)行測(cè)產(chǎn),果穗風(fēng)干、脫粒、稱質(zhì)量,得到籽粒產(chǎn)量;取有代表性的植株3株,分莖稈和苞葉、葉片、籽粒、穗軸,烘干,稱質(zhì)量,粉碎過篩后用H2SO4-H2O2消煮,用AA3(3)型流動(dòng)分析儀測(cè)定植物全N含量。
耗水量(evapotranspiration,ET)由水量平衡公式計(jì)算:
式中為時(shí)段內(nèi)的灌水量(mm);P為時(shí)段內(nèi)的降雨量(mm);為時(shí)段內(nèi)的地下水補(bǔ)給量(mm);為時(shí)段內(nèi)的排水量(mm),可忽略不計(jì),=0;D為時(shí)段內(nèi)土壤儲(chǔ)水量的變化。地下水埋深在40 m以下,可忽略不計(jì),=0;為地表徑流量,考慮到試驗(yàn)制種玉米試驗(yàn)期間無地表徑流發(fā)生,=0。
水分利用效率(water use efficiency,WUE)和灌溉水利用效率(irrigation water use efficiency,IWUE):分別為籽粒產(chǎn)量與生育期內(nèi)耗水量的比值和籽粒產(chǎn)量與生育期內(nèi)灌水量的比值。
氮素利用效率(nitrogen use efficiency,NUE)=籽粒產(chǎn)量/(施氮量+0~100 cm土層播前土壤礦質(zhì)氮儲(chǔ)量)。土壤礦質(zhì)氮儲(chǔ)量為土壤NO3--N和土壤NH4+-N儲(chǔ)量之和。
收獲指數(shù)(harvest index,HI)=籽粒產(chǎn)量/生物量。
氮收獲指數(shù)(nitrogen harvest index,NHI)=籽粒吸氮量/秸稈吸氮量。
0~100 cm土層土壤儲(chǔ)水的消耗量(soil water depletion,mm)=播種時(shí)0~100 cm土層土壤的儲(chǔ)水量-收獲時(shí)0~100 cm土層土壤的儲(chǔ)水量。其中,土壤儲(chǔ)水量(mm)=土壤容重(g/cm3)×土層厚度(cm)×土壤質(zhì)量含水率(%)×10。
試驗(yàn)數(shù)據(jù)用Sigma plot軟件繪圖,SPSS12.0統(tǒng)計(jì)分析軟件進(jìn)行方差分析與多重比較,方差分析用one-way ANOVA,多重比較用Duncan法。
由表3可以看出,不同灌水施氮方式間玉米的穗長(zhǎng)、穗粗和禿尖長(zhǎng)差異不具有統(tǒng)計(jì)學(xué)意義(>0.05)。2013年行粒數(shù)表現(xiàn)為:任一灌水方式下,交替施氮(AN)與均勻施氮(CN)無顯著差異,但顯著大于固定施氮(FN)處理。任一施氮方式下,行粒數(shù)表現(xiàn)為交替灌水(AI)>均勻灌水(CI)>固定灌水(FI)。AIANT和AICN處理的行粒數(shù)最大。千粒質(zhì)量只受灌水方式影響,表現(xiàn)為AI處理大于CI與FI處理。不同處理(AIANT處理除外)的產(chǎn)量與行粒數(shù)表現(xiàn)出相似的規(guī)律。相同灌水施氮方式下2014年的籽粒產(chǎn)量較2013年減少19.5%~35.31%。2014年,千粒質(zhì)量只受灌水方式影響,表現(xiàn)為AI處理>CI處理。行粒數(shù)和產(chǎn)量均表現(xiàn)為AICN與AIANT處理>AIANY處理> CIAN與CICN處理。說明灌水施氮方式只對(duì)制種玉米行粒數(shù)產(chǎn)生影響,交替隔溝灌溉均勻施氮或交替隔溝灌溉交替施氮(水氮同區(qū))有利于增加制種玉米的行粒數(shù)。
表3 不同灌水施氮方式下玉米產(chǎn)量及其構(gòu)成因素
注:相同年份同列數(shù)字后不同字母表示差異性達(dá)0.05顯著水平;下同。
Note: Different letters after data in same column mean significant difference at 0.05 level within a same year;The same as below.
由表3可知,2013年,AIANT、AICN、CIAN和CICN處理的生物量最大,F(xiàn)IFNY處理的生物量最小,其他處理間生物量差異不顯著;不同處理收獲指數(shù)與行粒數(shù)表現(xiàn)出相似的規(guī)律。其中,AICN的收獲指數(shù)較CICN增加5.46%(<0.05)。2014年,與CICN和CIAN處理相比,AIANT、AIANY和AICN處理的生物量和收獲指數(shù)均明顯增大(<0.05)。說明交替隔溝灌溉均勻施氮或交替隔溝灌溉交替施氮(水氮同區(qū)或異區(qū))有利于增加制種玉米生物量和收獲指數(shù)。
由表4可以看出,不同處理下土壤水分利用表現(xiàn)不同:2013年0~100 cm土層土壤儲(chǔ)水的消耗量在AIANT、AICN和AIFN處理下最大,F(xiàn)IFNT和FIFNY處理下最小,其他處理間差異不顯著。制種玉米生育期內(nèi)耗水量(ET)僅受灌水方式影響,AI處理明顯小于CI與FI處理。WUE和IWUE均表現(xiàn)為:灌水方式相同時(shí),CN與AN處理>FN處理;施氮方式相同時(shí),AI處理>CI處理>FI處理。AIANT與AICN處理最大,F(xiàn)IFNY和FIFNT處理最小。其中,AICN的WUE較CICN增加11.41%(<0.05)。2014年,與CIAN和CICN處理相比,AIANT、AIANY和AICN處理下0~100 cm土層土壤儲(chǔ)水的消耗量明顯增加,ET明顯減小。WUE和IWUE均表現(xiàn)為AIANT與AICN處理>AIANY處理>AICN與CICN 處理。說明交替隔溝灌溉均勻施氮或交替隔溝灌溉交替施氮(水氮同區(qū))有利于增加0~100 cm土層土壤儲(chǔ)水的消耗量、制種玉米生育期內(nèi)耗水量、水分利用效率和灌溉水利用效率。
表4 不同處理的水分消耗與利用
注:ET為蒸發(fā)蒸騰量;WUE為水分利用效率;IWUE為灌溉水利用效率。
Note: ET, WUE and IWUE represent evapotranspiration, water use efficiency and irrigation water use efficiency respectively.
灌水施氮方式對(duì)玉米氮素吸收和利用的影響如表5所示。由表5可知,秸稈吸氮量、籽粒吸氮量和氮利用效率均表現(xiàn)為:2013年,任一灌水方式下,AN與CN處理間無顯著差異,但顯著大于FN處理。任一施氮方式下,AI處理>CI處理>FI處理,差異達(dá)顯著水平。AICN與AIANT處理的吸氮量最大,F(xiàn)IFNY處理的吸氮量最小。其中,AICN的NUE較CICN增加19.73%(<0.05)。2014年,AIANT與AICN處理大于AIANY、CIAN和CICN處理,AIANY、CIAN和CICN處理間差異不顯著。氮收獲指數(shù)(NHI)表現(xiàn)為:2013年,AIANT與AICN處理最大,F(xiàn)IFNY處理最小,其他處理間差異不顯著;2014年,不同處理間NHI的差異同籽粒吸氮量。說明交替隔溝灌溉均勻施氮或交替隔溝灌溉交替施氮(水氮同區(qū))有利于提高制種玉米的吸氮量、氮收獲指數(shù)和氮素利用效率。
表5 不同處理下制種玉米的吸氮量、氮收獲指數(shù)和氮素利用效率
本研究發(fā)現(xiàn),較均勻灌水均勻施氮,交替灌水交替施氮(水氮同區(qū))和交替灌水均勻施氮下玉米收獲指數(shù)明顯增大(表3)??赡艿脑蚴牵夯谏L(zhǎng)冗余和超補(bǔ)償理論,交替隔溝灌溉使同化產(chǎn)物在作物不同器官間得以最優(yōu)分配,把生長(zhǎng)冗余減至最低限度[22]。作物生長(zhǎng)冗余是指作物在株高、葉面積、分枝或分蘗數(shù)、繁殖器官數(shù)量、生長(zhǎng)期長(zhǎng)度及生物產(chǎn)量對(duì)經(jīng)濟(jì)產(chǎn)量的比例等方面存在大量冗余[23]。這在大豆[24]和棉花[25]等作物中也得到證實(shí)。此外,不同施氮方式影響干物質(zhì)的轉(zhuǎn)移量和轉(zhuǎn)移率,采用優(yōu)化施氮管理措施可以使干物質(zhì)較多地分配到經(jīng)濟(jì)器官,是獲得高產(chǎn)的重要途徑[26]。說明當(dāng)交替灌水與均勻施氮或交替施氮相結(jié)合時(shí),可以進(jìn)一步減少作物生長(zhǎng)的冗余效應(yīng)。
大量研究證實(shí)了交替隔溝灌溉的節(jié)水效應(yīng),有學(xué)者對(duì)其機(jī)理做了詳細(xì)闡述[7,13]。但是之前關(guān)于交替隔溝灌溉較均勻隔溝灌溉大幅提高WUE的報(bào)道多在前者的灌水量較后者的灌水量明顯降低的情況下,如有研究表明與均勻隔溝灌溉相比,交替隔溝灌溉在灌水量減少50%的情況下可以維持玉米籽粒產(chǎn)量不變[27]。對(duì)此,Sadras[28]批判性地指出,交替隔溝灌溉提高WUE不是源于其技術(shù)本身,而是減少了供水量。本研究中,相同灌水量下,APRI下制種玉米的籽粒產(chǎn)量增加(表3)而全生育期ET減少(表4),使APRI的WUE顯著大于其他灌水處理(表4)。產(chǎn)量增加的原因可能是:與均勻隔溝灌溉相比,交替隔溝灌溉可以促進(jìn)根系生長(zhǎng)、優(yōu)化氣孔行為和提高收獲指數(shù)等[13]。本研究中交替灌水均勻施氮較均勻灌水均勻施氮的收獲指數(shù)明顯增大驗(yàn)證了這一點(diǎn)(表3)。ET減少的原因可能在于:一方面,APRI可以減少深層土壤滲漏量、植株蒸騰量[29]和土壤蒸發(fā)量[30],本研究中表現(xiàn)為交替隔溝灌溉減小60~100 cm土層的土壤含水率(綜合不同施氮方式,收獲時(shí)交替隔溝灌溉下60~100 cm土層的平均土壤質(zhì)量含水率為13.1%,均勻隔溝灌溉和固定隔溝灌溉的相應(yīng)值分別為14.9%和15.7%)。供試地區(qū)蒸發(fā)量很大(年均2 000 mm以上),交替隔溝灌溉每次只給根系一半?yún)^(qū)域供水,另一半維持干燥狀態(tài),使土壤蒸發(fā)損失量降低。另一方面,交替隔溝灌溉使0~100 cm土層土壤儲(chǔ)水的消耗量增加(表4)。這與文獻(xiàn)[29]的研究結(jié)果一致。交替隔溝灌溉下根量增加(綜合不同施氮方式,成熟期交替隔溝灌溉下單株根干質(zhì)量為12.4 g,均勻隔溝灌溉和固定隔溝灌溉的相應(yīng)值分別為11.4和10.3 g)和根系導(dǎo)水率增強(qiáng)[31]或許可以解釋這一現(xiàn)象。進(jìn)一步地,本試驗(yàn)條件下交替隔溝灌溉與均勻施氮或交替施氮的WUE較均勻灌水均勻施氮或交替施氮明顯增大(表4)。這可能與二者結(jié)合時(shí)進(jìn)一步促進(jìn)根系生長(zhǎng)[18]密切相關(guān)。說明采用均勻施氮或交替施氮,可以使交替隔溝灌溉的節(jié)水效益得到更好的發(fā)揮。
本研究表明,交替隔溝灌溉可明顯增加制種玉米的吸氮量,而且這一效應(yīng)在交替施氮或均勻施氮下更加明顯,而固定施氮表現(xiàn)相反(表5)??赡艿脑蚴牵褐仓陱耐寥牢盏氐哪芰εc根系的表面積和土壤中可利用氮素的多少緊密相連[32]。一方面,交替灌水通過補(bǔ)償作用可明顯促進(jìn)根系生長(zhǎng)[13],植株吸氮量與根長(zhǎng)密度呈顯著性正相關(guān)[33],而且交替灌溉可促進(jìn)土壤有機(jī)氮轉(zhuǎn)化為礦物質(zhì)氮,使更多的礦物質(zhì)氮被植物利用[34]。更為重要的是,由于干濕交替出現(xiàn),交替隔溝灌溉保持了良好的通氣和土壤水分條件,從而增加了土壤微生物的活性并促進(jìn)氮素吸收[35];另一方面,均勻施氮或交替施氮下植株兩側(cè)土壤NO3--N分布均勻且在根際周圍較高[19],與交替灌水結(jié)合可促進(jìn)根系生長(zhǎng)[18]和有利于實(shí)現(xiàn)水氮的協(xié)同供應(yīng),從而增加氮素被吸收的概率。與之相對(duì)應(yīng)的是,固定施氮處理施氮側(cè)的土壤NO3-N濃度長(zhǎng)期處于較高水平[19],高濃度的土壤NO3-N對(duì)整個(gè)根系系統(tǒng)有抑制作用,不利于根系生長(zhǎng)和水氮的協(xié)同供應(yīng)[36]。
需要注意的是,2014年制種玉米生育期內(nèi)的降雨量較2013年增加54.9 mm,但是相同灌水施氮方式下2014年的籽粒產(chǎn)量較2013年減少19.5%~35.31%(表3)。可能的原因是:1)2014年制種玉米的灌溉定額只占2013的72%;2)試驗(yàn)實(shí)施2 a內(nèi),制種玉米苗期至灌漿期的降雨量大小及頻率相差不大。2014年玉米乳熟期出現(xiàn)一次大的降雨,降雨量達(dá)69.4 mm,但此時(shí)制種玉米需水量較小[37],而且2014年還增加了乳熟期灌水,因此該次強(qiáng)降雨對(duì)制種玉米產(chǎn)量的影響非常有限。具體原因需要進(jìn)一步研究。
大田條件下,對(duì)不同灌水施氮方式下制種玉米的產(chǎn)量和水氮利用效率進(jìn)行為期2 a的研究,結(jié)果表明:任一施氮方式下,交替隔溝灌溉下制種玉米的收獲指數(shù)、水分利用效率(water use efficiency,WUE)和氮利用效率(nitrogen use efficiency,NUE)最大,均勻隔溝灌溉次之,固定隔溝灌溉最小;任一灌水方式下,交替施氮和均勻施氮的收獲指數(shù)、WUE和NUE較固定施氮增加。交替灌水均勻施氮和交替灌水交替施氮(水氮同區(qū))下制種玉米的收獲指數(shù)、WUE和NUE最大;其中,較均勻灌水均勻施氮,2013年交替灌水均勻施氮下上述指標(biāo)分別增加5.46%、11.41%和19.73%。2014年的結(jié)果與之相似??梢?,交替隔溝灌溉交替施氮(水氮同區(qū))或交替隔溝灌溉均勻施氮有利于提高制種玉米的產(chǎn)量及水氮利用效率。
[1] 王震,吳穎超,張娜娜,等. 我國糧食主產(chǎn)區(qū)農(nóng)業(yè)水資源利用效率評(píng)價(jià)[J]. 水土保持通報(bào),2015,35(2):292-296. Wang Zhen, Wu Yingchao, Zhang Na’na, et al. Evaluation on agricultural major grain water utilization efficiency in producting Areas[J]. Bulletin of Soil and Water Conservation, 2015, 35(2): 292-296. (in Chinese with English abstract)
[2] 吳建富,施翔,肖青亮,等. 我國肥料利用現(xiàn)狀及發(fā)展對(duì)策[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2003,5(25):725-727. Wu Jianfu, Shi Xiang, Xiao Qingliang, et al. Present situation of utilization of fertilizers in China and development strategy for fertilizers[J]. Acta Agriculturae Universitatis Jiangxiensis, 2003, 5(25): 725-727. (in Chinese with English abstract)
[3] Eck H V. Irrigated corn yield response to nitrogen and water[J]. Agronomy Journal, 1984, 76(3): 421-428.
[4] Li Shengxiu, Wang Zhaohui, Malhi S S, et al. Nutrient and water management effect on crop production, and nutrient and water use efficiency in dryland areas of China[J]. Advance in Agronomy, 2009, 102(9): 223-265.
[5] 杜紅霞,馮浩,吳普特,等. 水、氮調(diào)控對(duì)夏玉米根系特性的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2013,1(31):189-100. Du Hongxia, Feng Hao, Wu Pute, et al. Influence of water and N fertilization regulation on root growth characteristics of summer maize[J]. Agricultural Research in the Arid Areas, 2013, 1(31): 189-100. (in Chinese with English abstract)
[6] Wang Yaosheng, Janz B, Engedal T, et al. Effect of irrigation regimes and nitrogen rates on water use efficiency and nitrogen uptake in maize[J]. Agricultural Water Management, 2017, 179: 271-276.
[7] Kang S Z, Zhang J H. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency[J]. Journal of Experimental Botany, 2004, 55(407): 2437-2446.
[8] Niu X, Hu T, Zhang F, et al. Severity and duration of osmotic stress on partial root system: Effects on root hydraulic conductance and root growth[J]. Plant Growth Regulation, 2016, 79(2): 177-186.
[9] de Lima R S N, de Assis Figueiredo F A M M, Martins A O, et al. Partial root zone drying (PRD) and regulated deficit irrigation (RDI) effects on stomatal conductance, growth, photosynthetic capacity, and water-use efficiency of papaya [J]. Scientia Horticulturae, 2015, 183: 13-22.
[10] Dry P R, Loveys B R. Factors influencing grapevine vigour and the potential for control with partial root zone drying[J]. Australian Journal of Grape and Wine Research. 1998, 4(3): 140-148.
[11] Loveys B R, Stoll M, Dry P R, et al. Using plant physiology to improve the water use efficiency of horticultural crops[J]. Acta Horticulturae, 2000, 537(537): 187-197.
[12] Sepaskhah A R, Ahmadi S H. A review on partial root-zone drying irrigation[J]. International Journal of Plant Production, 2010, 4(4): 241-258.
[13] Du T S, Kang S Z, Zhang J H, et al. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security[J]. Journal of Experimental Botany, 2015, 66: 2253-2269.
[14] 穆興民. 水肥耦合效應(yīng)與協(xié)同管理[M]. 北京:中國林業(yè)出版社,1999.
[15] Li F S, Liang J H, Kang S Z, et al. Benefits of alternate partial root-zone irrigation on growth, water and nitrogen use efficiencies modified by fertilization and soil water status in maize[J]. Plant Soil, 2007, 295(2): 279-291.
[16] 茆智,崔遠(yuǎn)來,董斌,等. 水稻高效節(jié)水與持續(xù)高產(chǎn)的灌排技術(shù)[J]. 水利水電技術(shù),2002,33(2):65-67. Mao Zhi, Cui Yuanlai, Dong Bin, et al. Irrigation and drainage technology of high efficient saving water and continue high yield for rice production[J]. Water Resources and Hydropower Engineering, 2002, 33(2): 65-67. (in Chinese with English abstract)
[17] 農(nóng)夢(mèng)玲,謝振興,李伏生. 灌水方式和水平與施肥方式對(duì)糯玉米產(chǎn)量和水肥利用的影響[J]. 節(jié)水灌溉,2014(4): 22-26. Nong Mengling, Xie Zhenxing, Li Fusheng. Effect of irrigation method & level and fertilization method on yield, water& fertilizer use of pot-grown sticky maize[J]. Water Saving Irrigation, 2014(4): 22-26. (in Chinese with English abstract)
[18] 漆棟良,胡田田,吳雪,等. 適宜灌水施氮方式利于玉米根系生長(zhǎng)提高產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(11):144-149. Qi Dongliang, Hu Tiantian, Wu Xue, et al. Rational irrigation and nitrogen supply methods improving root growth and yield of maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 144-149. (in Chinese with English abstract)
[19] 漆棟良,胡田田. 灌水施氮方式對(duì)玉米生育期土壤NO3-N時(shí)空分布的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(2):279-287. Qi Dongliang, Hu Tiantian. Effects of different nitrogen supply and irrigation methods on dynamics and distribution of soil nitrate N for maize grown duration[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2): 279-287. (in Chinese with English abstract)
[20] 楊榮,蘇永中. 水氮配合對(duì)綠洲沙地農(nóng)田玉米產(chǎn)量、土壤硝態(tài)氮和氮平衡的影響[J]. 生態(tài)學(xué)報(bào),2009,28(3): 1460-1469. Yang Rong, Su Yongzhong. Effects of nitrogen fertilization and irrigation rate on grain yield, nitrate accumulation and nitrogen balance on sandy farmland in the marginal oasis in the middle of Heihe River basin[J]. Acta Ecologica Sinica, 2009, 28(3): 1460-1469. (in Chinese with English abstract)
[21] 楊秀英,杜太生,潘英華,等. 沙漠綠洲區(qū)不同灌水方式條件下玉米灌溉制度研究[J]. 灌溉排水學(xué)報(bào),2003,22(3):22-24. Yang Xiuying, Du Taisheng, Pan Yinghua, et al. Scheduling irrigation for maize under different irrigation methods in Minqin Oasis[J]. Journal of Irrigation and Drainage, 2003, 22(3): 22-24. (in Chinese with English abstract)
[22] 孫景生,康紹忠,蔡煥杰,等. 交替隔溝灌溉提高農(nóng)田水分利用效率的節(jié)水機(jī)理[J]. 水利學(xué)報(bào),2002,33(3):64-68. Sun Jingsheng, Kang Shaozhong, Cai Huanjie, et al. Water saving mechanism for promoting water use efficiency by using alternate furrow irrigation techniques[J]. Journal of Hydraulic Engineering, 2002, 33(3): 64-68. (in Chinese with English abstract)
[23] 趙發(fā)清,朱必鳳,馬海燕. 作物的生長(zhǎng)冗余和生命體的節(jié)約原則[J]. 生態(tài)學(xué)雜志,1996,15(1):32-34. Zhao Faqing, Zhu Bifeng, Ma Haiyan. The uninteresting growth of crops and economical principle of living beings[J]. Chinese Journal of Ecology, 1996, 15(1): 32-34. (in Chinese with English abstract)
[24] Graterol Y E, Eisenhauer D E, Elmore R W. Alternate- furrow irrigation for soybean production[J]. Agricultural Water Management, 1993, 24(2): 133-145.
[25] 杜太生,康紹忠,張建華. 不同局部根區(qū)供水對(duì)棉花生長(zhǎng)與水分利用過程的調(diào)控效應(yīng)[J]. 中國農(nóng)業(yè)科學(xué),2007,40(11):2546-2555. Du Taisheng, Kang Shaozhong, Zhang Jianhua. Response of cotton Growth and water use to different partial root zone irrigation[J]. Scientia Agricultura Sinica, 2007, 40(11): 2546-2555. (in Chinese with English abstract)
[26] 張瑞富,楊恒山,畢文博,等. 超高產(chǎn)栽培下氮肥運(yùn)籌對(duì)春玉米干物質(zhì)積累及轉(zhuǎn)運(yùn)的影響[J]. 作物雜志,2011(1):41-44. Zhang Ruifu, Yang Hengshan, Bi Wenbo, et al. Effects of nitrogen application on dry matter accumulation and transport of spring maize under super-high yield cultivation[J]. Crops, 2011(1): 41-44. (in Chinese with English abstract)
[27] Kang S Z, Liang Z S, Pan Y H, et al. Alternate furrow irrigation for maize production in arid area[J]. Agricultural Water Management, 2000, 45(3): 267-274.
[28] Sadras V O, Does partial root-zone drying improve irrigation water productivity in the field? A meta-analysis[J]. Irrigation Science, 2009, 27(3): 183-190.
[29] Jia D Y, Dai X L, Men H W, et al. Assessment of winter wheat grown under alternate furrow irrigation in northern China: Grain yield and water use efficiency[J]. Canadian Journal of Plant Science, 2014, 94: 349-359.
[30] Tang L S, Li Y, Zhang J H. Partial root zone irrigation increase water use efficiency, maintains yield and enhance economic profit of cotton in arid area[J]. Agricultural Water Management, 2010, 97(10): 1527-1533.
[31] Hu T T, Kang S Z, Li F S, et al. Effects of partial root-zone irrigation on hydraulic conductivity in the soil–root system of maize plants [J]. Journal of Experimental Botany, 2011, 62(12): 4163-4172.
[32] Wang Huiqun, Liu Fulai, Andersen M N, et al. Comparative effects of partial root-zone drying and deficit irrigation on nitrogen uptake in potatoes (L.)[J]. Irrigation Science, 2009, 27(6): 443-447.
[33] 馬存金,劉鵬,趙秉強(qiáng),等. 施氮量對(duì)不同氮素效率玉米品種根系時(shí)空分布及氮素吸收的調(diào)控[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2014,20(4):845-859. Ma Cunjin, Liu Peng, Zhao Bingqiang, et al. Regulation of nitrogen application rate on temporal and spatialdistribution of roots and nitrogen uptake in different N use efficiency maize cultivars[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 845-859. (in Chinese with English abstract)
[34] Wang Y S, Liu F L, Neergaard A D, et al. Alternate partial root-zone irrigation induced dry/wet cycles of soils stimulate N mineralization and improve N nutrition in tomatoes[J]. Plant and Soil, 2010, 337(1/2): 167-177.
[35] Wang J F, Kang S Z, Li F L, et al. Effects of alternate partial root-zone irrigation on soil microorganism and maize growth [J]. Plant and Soil, 2008, 302(1/2): 45-52.
[36] Zhang H, Andrea J, Peter W, et al. Dual pathways for regulation of root branching by nitrate[J]. Plant Biology,1999, 96(11): 6529-6534
[37] 張芮,成自勇,李有先. 水分虧缺對(duì)膜下滴灌制種玉米生長(zhǎng)及產(chǎn)量的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2009,27(2): 125-128. Zhang Rui, Cheng Ziyong, Li Youxian. Effect of regulated defici t drip irrigation oil growth characteristic and yield of plastic-film. mulched corn for seed[J]. Agricultural Research in the Arid Areas, 2009, 27(2): 125-128. (in Chinese with English abstract)
Rational irrigation and nitrogen supply methods improving grain yield and water-nitrogen use efficiency of seed maize
Qi Dongliang1,2, Hu Tiantian1※, Song Xue3
(1,,712100,;2,,434025,; 3450002,)
Ridge planting-furrow irrigation has been widely used, but information on rational irrigation and nitrogen (N) supply methods under ridge planting-furrow irrigation has received only limited attention. To improve harvest index (HI) and resource use efficiency of crop through different irrigation and N supply methods in arid areas, we carried out field experiments to investigate the effect of different irrigation and N supply methods on HI and water-nitrogen use efficiency of seed maize (, Gold northwestern 22) grown in the arid area of northwest China in 2013 and 2014. All experimental ridges were built in a west-east direction. The experiment was comprised of 3 irrigation methods and 3 N supply methods in 2013. The 3 irrigation treatments included alternate furrow irrigation (AI), fixed furrow irrigation (FI) and conventional furrow irrigation (CI). In the CI treatment, all the furrows were irrigated for every irrigation event. In the AI treatment, the 2 neighboring furrows were alternately irrigated during consecutive watering events. In the FI treatment, only 1 (south furrow) of the furrows was irrigated. At each irrigation treatment, the 3 N supply treatments were used and they included alternate N supply (AN), fixed N supply (FN) and conventional N supply (CN). In the CN treatment, N fertilizer was applied to all furrows. In the AN treatment, N fertilizer was alternately applied to 1 of the neighboring 2 furrows in consecutive fertilization. In the FN treatment, N fertilizer was only supplied to 1 of every 2 furrows. Evapotranspiration (ET) during maize grown season, and biomass, grain yield and its components as well as nitrogen uptake at maturity stage of maize were measured. The HI, water use efficiency (WUE) and nitrogen use efficiency (NUE) were calculated. Based on the results of 2013, the fixed treatments (fixed furrow irrigation and fixed nitrogen supply) were excluded in 2014. The results showed that, the grains per row per plant were greatly affected by irrigation and nitrogen supply methods. Thousand seed weight was only influenced by irrigation method. The ET during maize grown season was only influenced by irrigation method, and AI significantly reduced ET compared to the other irrigation methods. The WUE of maize for AN and CN was higher than that for FN in any irrigation method; AI had the highest WUE, followed by CI and FI in any nitrogen supply method. Nitrogen uptake, HI and NUE of maize showed similar results compared to WUE. AI coupled with CN achieved the highest HI, WUE and NUE in 2013, and these increased by 5.46%, 11.41% and 19.73%, respectively if compared with CI coupled with CN. AI coupled with AN (irrigation and N fertilization were conducted within a same furrow) showed a similar result compared to AI coupled with CN. The 2014 experiment verified the above results. Therefore, alternate furrow irrigation coupled with conventional nitrogen supply and alternate furrow irrigation coupled with alternate nitrogen supply (irrigation and N fertilization were conducted within a same furrow) are useful to improve grain yield and water-nitrogen use efficiency of seed maize.
irrigation; nitrogen; biomass; yield; harvest index; water-nitrogen use efficiency; seed maize
10.11975/j.issn.1002-6819.2018.21.012
S275.3;S147.2
A
1002-6819(2018)-21-0098-07
2018-06-22
2018-10-10
國家自然科學(xué)基金項(xiàng)目(51079124);國家“十二五”863計(jì)劃項(xiàng)目(2011AA100504)
漆棟良,甘肅渭源人,博士,主要從事農(nóng)業(yè)水土環(huán)境調(diào)控及水肥資源高效利用研究。Email:qdl198799@126.com
胡田田,陜西禮泉人,博士生導(dǎo)師,主要從事農(nóng)業(yè)水土資源高效利用研究。Email:hutiant@nwsuaf.edu.cn
漆棟良,胡田田,宋 雪.適宜灌水施氮方式提高制種玉米產(chǎn)量及水氮利用效率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(21):98-104. doi:10.11975/j.issn.1002-6819.2018.21.012 http://www.tcsae.org
Qi Dongliang, Hu Tiantian, Song Xue. Rational irrigation and nitrogen supply methods improving grain yield and water-nitrogen use efficiency of seed maize [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 98-104. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.21.012 http://www.tcsae.org