徐曼 劉祥
摘要:以呼和浩特市章蓋營污水處理廠二沉池回流污泥為接種污泥,用模擬酸性礦山廢水馴化后獲得含硫酸鹽還原菌(Sulfate-Reducing Bacterium,SRB)的厭氧污泥,將Cu2+、Zn2+、Ni2+和Cr6+四種重金屬離子設(shè)定為UASB的主要處理污染物。在UASB裝置底部側(cè)管用離心管取污泥樣品少許,經(jīng)過離心,固定等前處理程序之后,利用掃描電鏡觀察并拍照、沉積污泥XRD分析和PCR-DGGE及測序分析方法對污泥菌種進(jìn)行分析。實驗結(jié)果表明,活性污泥中SRB呈桿狀和球狀,菌體外部大部分被白色沉淀覆蓋;HRT 31 h出水pH 5時,群落的生物多樣性高于活性恢復(fù)后狀態(tài);發(fā)酵產(chǎn)酸菌得以大量富集,UASB反應(yīng)器處理效果恢復(fù)后,發(fā)酵產(chǎn)酸菌優(yōu)勢度降低,而脫硫弧菌屬5,7(Desulfovibrio sp.)得以大量富集。
關(guān)鍵詞:環(huán)境工程;硫酸鹽還原菌;酸性礦山廢水;SEM;DGGE
中圖分類號:X703 文獻(xiàn)標(biāo)志碼: A 文章編號:2095-672X(2018)07-0110-02
DOI:10.16647/j.cnki.cn15-1369/X.2018.07.064
Analysis of sludge strains after UASB treatment of simulated acid mine wastewater
Xu Man1, Liu Xiang2
(1. Inner Mongolia Environmental Monitoring Center Station, Hohhot Inner Mongolia 010011, China;
2. Inner Mongolia energy construction environmental monitoring co. LTD, Hohhot Inner Mongolia 010010, China)
Abstract:The recycling sludge in secondary sedimentation tank from Zhanggaiying (Huhhot) wastewater treatment plant was used as cultivated sludge to foster anaerobic sludge containing sulfate reducing bacteria (SRB) in a UASB reactor. Then the effect of heavy metal ions loading (Cu2+, Zn2+, Ni2+ and Cr6+) was investigated. At the bottom of the UASB device, getting a small number of sludge samples w from the centrifuge tube, after centrifugation,fixation and other pre-treatment procedures, The sludge strains were analyzed by SEM, XRD analysis, PCR-DGGE analysis and sequencing analysis. Results showed that In activated sludge, SRB is a rod and ball, and most of the outside of the bacteria is covered by white precipitation. When the pH was 5 and HRT was 31h, the biodiversity of the community was higher than that after the restoration of activity. The acid bacteria produced by fermentation were enriched in large amounts. After the treatment effect of the UASB reactor was restored, the advantage of the acid bacteria produced by fermentation was reduced, while the Desulfovibrio sp. was enriched in large amounts.
Key Words: environmental engineering; sulfate-Reducing bacteria; acid mine drainage; SEM; DGGE
酸性礦山廢水(Acidic Mine Drainage,AMD)具有低pH值、含高濃度的硫酸鹽和可溶性的重金屬離子,pH值是水體中重金屬離子含量的決定因素之一[1]。AMD在采礦工作完成之后仍能持續(xù)存在數(shù)百年,這使得其成為世界上眾多的環(huán)境負(fù)債之一。應(yīng)用化學(xué)中和法處理AMD耗資大并產(chǎn)生大量剩余污泥須通過垃圾填埋場進(jìn)一步處理[2]。
硫酸鹽還原菌(Sulfate Reducing Bacteria, SRB)是自然界中廣泛存在的一類原核微生物,它們以硫酸鹽為電子受體[3-5],消耗有機(jī)酸,生成的硫化物可與重金屬生產(chǎn)不溶性沉淀,SRB處理AMD[6]可同時達(dá)到還原SO42-、提高廢水pH及去除重金屬的目的。
升流式厭氧污泥床(Up-flow Anaerobic Sludge Blanket,UASB)反應(yīng)器利用生物凝聚作用和結(jié)塊的結(jié)合機(jī)能,形成具有優(yōu)良性能的顆粒狀污泥,提高了污泥濃度,從而提高反應(yīng)器的處理負(fù)荷和效率[7]。Rodriguez等[8](2012)利用UASB反應(yīng)器研究酸性礦山廢水中硫酸根的去除情況,在COD/SO42-=1,pH 3.87-4.01的條件下,硫酸根去除率為85.6%,COD去除率不大于68%。本研究重點考察重金屬負(fù)荷對應(yīng)用UASB反應(yīng)器脫除有機(jī)物及硫酸根的影響規(guī)律,為含重金屬離子的酸性礦山廢水處理工藝參數(shù)選擇和設(shè)計提供參考。
1 材料與方法
1.1 實驗裝置及操作條件
本實驗所使用的UASB 反應(yīng)器采用管徑為80 mm,有效高度500 mm的有機(jī)玻璃管制成,有效容積約為2.5 L。UASB反應(yīng)器溫度通過恒溫加熱棒控制在(34±2) ℃。廢水通過蠕動泵(保定蘭格,BT-100)從UASB底部進(jìn)水,流量1.6 L/d,產(chǎn)生的氣體通過反應(yīng)器內(nèi)的三相分離器分離,出水經(jīng)反應(yīng)器頂部溢流。為提高傳質(zhì)效果使用蠕動泵(保定蘭格,BT-100)從UASB反應(yīng)器頂部到底部增加外回流,回流流量設(shè)定為273 L /d。反應(yīng)階段的運(yùn)行參數(shù)見表1。
1.2 模擬廢水和接種污泥
SRB需要有機(jī)物提供營養(yǎng),肖利萍等[9](2014)研究表明,SRB最適宜的C/S值為1.5-2,酸性礦山廢水有機(jī)物含量較低,因此需外加有機(jī)物,有機(jī)物可來自于高濃有機(jī)廢水或者垃圾滲瀝液或者剩余污泥發(fā)酵等。實驗?zāi)M進(jìn)水COD/SO42-=1.85,模擬酸性廢水組成:乳酸鈉5 ml/L,Na2SO4 1.775 g/L,KH2PO4 0.044 g/L,NH4Cl 0.19 g/L,用分析純濃鹽酸調(diào)節(jié)進(jìn)水pH。N、P 按照m(COD): m(N): m(P)=200:5:1的比例配置,配水中另加入適量微量元素以滿足微生物細(xì)胞合成的需要,分別為FeSO4·7H2O800mg/L、CuSO4·7H2O 20mg/L、CoCl2·6H2O 2mg/L、Na2MoO4·2H2O100 mg/L、ZnSO4·7H2O 80mg/L、MnCl2·4H2O 400mg/L。
反應(yīng)器接種污泥取自呼和浩特市章蓋營污水處理廠二沉池回流污泥,試驗接種污泥量為1.25 L,占反應(yīng)器容積的50%,接種污泥(MLSS)濃度為2.5 g/L,MLVSS=1.9 g/L,MLVSS/ MLSS=0.76。污泥呈土黃色。初始無檢測連續(xù)運(yùn)行半個月,初始進(jìn)水pH值為6,后續(xù)逐漸降低至4,與實際酸性礦山廢水pH值接近。
1.3 實驗的設(shè)計運(yùn)行
由于酸性礦山廢水的pH值基本在5以下,UASB系統(tǒng)在pH=4穩(wěn)定運(yùn)行
1.4 分析項目及方法
在UASB裝置底部側(cè)管用離心管取污泥樣品少許,經(jīng)過離心,固定,脫水,干燥以及離子濺射金前處理程序之后,利用掃描電鏡觀察并拍照。
沉積污泥XRD分析采用荷蘭Panalytical公司生產(chǎn)的Empyream型X-射線粉末衍射儀。分析條件如下:Cu靶Ka能級,掃描范圍2θ=10°-80°,溫度為室溫(25℃),電流為100 mA,加速的電壓50 KV,采用連續(xù)掃描,掃描速度為5°/min。
污泥樣品PCR-DGGE及測序分析,引物為細(xì)菌16SrDNA V3高變區(qū)F357和R518,反應(yīng)體系為50ml總體積,ddH2O 41.25 μL,10×Buffer(含2.0 mmol MgCl2)5μL,dNTP(10mmol)1mL,F(xiàn)357-GC(10mmol)1mL,R518(10 mmol)1mL,Taq酶(5U/mL)0.25mL,模板DNA 0.5 mL。反應(yīng)程序:94℃ 4 min預(yù)變性;94℃ 0.5 min;56℃ 1min;72℃ 0.5 min;30 Cycles,72℃延伸7min。取PCR產(chǎn)物各3mL,1.5%瓊脂糖凝膠電泳,1×TAE緩沖液,120V穩(wěn)壓電泳30min,成像儀拍照。 選擇有代表性的條帶切膠測序(上海,生工)。
2 結(jié)果與討論
SEM、XRD及功能菌種分析:
將HRT=31h的污泥樣品經(jīng)過處理后利用掃描電鏡儀器拍照,結(jié)果如圖1a所示,活性污泥中SRB呈桿狀和球狀,菌體外部大部分被白色沉淀覆蓋。已報道的硫酸鹽還原菌還原去除重金屬的途徑主要有SRB 利用S2?完成對重金屬的還原或直接沉淀;利用表面的胞外聚合物 (EPS)直接對重金屬的吸附,XRD分析表明,Cu2+絕大部分以硫化物的形式存在,即以CuS的形式存在;Zn2+以ZnS和Zn(OH)2的形式存在;Ni2+以NiS和Ni2S3的形式存在;Cr6+主要以Cr2S3的形式存在,即Cr6+通過S2?還原而脫除[10]。
圖1 厭氧污泥SEM分析及DGGE分析HRT=31h
對HRT 31 h的出水pH 5時及活性恢復(fù)后的污泥樣品進(jìn)行DGGE及測序分析,結(jié)果表明(見表2),HRT 31 h出水pH 5時,群落的生物多樣性高于活性恢復(fù)后狀態(tài)(圖1b), 出水pH 5時UASB厭氧污泥以類桿菌屬2(Bacteroides)、綠膿假單胞菌3(pseudomonas aeruginosa)、韋榮球菌4(Veillonella)及梭狀芽胞桿菌8(Clostridium sensu stricto )為優(yōu)勢菌,其中,韋榮球菌4(Veillonella)利用乳酸產(chǎn)生乙酸、丙酸、不發(fā)酵碳水化合物和多元醇[11];厭氧梭狀芽孢桿菌8(Clostridium sensu stricto)是典型的發(fā)酵產(chǎn)酸菌,在厭氧產(chǎn)氣反應(yīng)器中大量存在[12],結(jié)果表明,酸性條件下,發(fā)酵產(chǎn)酸菌得以大量富集。UASB反應(yīng)器處理效果恢復(fù)后,發(fā)酵產(chǎn)酸菌優(yōu)勢度降低,而脫硫弧菌屬5,7(Desulfovibrio sp.)得以大量富集。
3 結(jié)論
本文研究利用掃描電鏡觀察并拍照、沉積污泥XRD分析和PCR-DGGE及測序分析方法對UASB法處理模擬酸性礦山廢水之后的污泥中的功能菌種進(jìn)行分析。結(jié)果表明,活性污泥中SRB呈桿狀和球狀,菌體外部大部分被白色沉淀覆蓋;當(dāng)HRT=31h、出水 pH= 5時,群落的生物多樣性高于活性恢復(fù)后狀態(tài);發(fā)酵產(chǎn)酸菌得以大量富集,UASB反應(yīng)器處理效果恢復(fù)后,發(fā)酵產(chǎn)酸菌優(yōu)勢度降低,而脫硫弧菌屬5,7(Desulfovibrio sp.)得以大量富集。
參考文獻(xiàn)
[1]Sánchez-Andrea I, Sanz J L, Bijmans M F M, et al. Sulfate reduction at low pH to remediate acid mine drainage[J]. Journal of Hazardous Materials, 2014(269): 98-109.
[2]Luptakova A, Ubaldini S, Macingova E, et al. Application of physica-chemical and biological-chemical methods for heavy metals removal from acid mine drainage[J]. Process Biochemistry, 2012, 47(11): 1633-1639.
[3]Bai H., Kang Y., Quan H., et al. Treatment of acid mine sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate[J]. Bioresource Technology, 2013(137): 349-357.
[4]Cappitelli F, Zanardini E, Ranalli G, et al. Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria[J]. Applied and environmental microbiology, 2006, 72(5): 3733-3737.
[5]Martins M, Pereira I A C. Sulfate-reducing bacteria as new microorganisms for biological hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(28): 12294-12301.
[6]Sahinkaya E, Yurtsever A, Toker Y, et al. Biotreatment of As-containing simulated acid mine drainage using laboratory scale sulfate reducing upflow anaerobic sludge blanket reactor[J]. Minerals Engineering, 2015(75): 133-139
[7]Jing Z, Hu Y, Niu Q, et al. UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate[J]. Bioresource Technology, 2013(137): 349-357.
[8]Rodriguez R P, Oliveira G H D, Raimundi I M, et al. Assessment of a UASB reactor for the removal of sulfate from acid mine water[J]. International Biodeterioration and Biodegradation, 2012(74): 48-53.
[9]肖利萍, 汪兵兵, 魏芳等. 新型碳源馴化的SRB去除酸性礦山廢水中SO42-最佳反應(yīng)條件[J]. 環(huán)境工程學(xué)報, 2014, 8(05): 1705-1710.
[10]Xiao Li-ping, Wang Bing-bing, Wei Fang, Pei Ge. Optimum reaction conditions for removing sulfate in acid mine drainage by SRB domesticated with new organic carbon sources[J]. Chinese Journal of Environmental Engineering, 2014, 8(05): 1705-1710.
[11]馬小珍, 費(fèi)保進(jìn), 金楠等. 2009. 脫弧硫菌SRB7對重金屬鉻Cr(VI) 的還原特性[J]. 微生物學(xué)通報, 36(9): 1324-1328.
[12]Ma Xiaozhen, Fei Baojin Jin Nan, Zhao Rui, Lan Guihong, Chen Tao, Qiao Dairong Characteristics of Reduce Cr(VI) by Desulfovibrio SRB7[J]. Microbiology, 2009, 36(9): 1324-1328. [13]Stams A J, Huisman J, Garcia E P A, et al. 2009. Citric acid waste water as electron donor for biological sulfate reduction[J]. Appllied Microbiology Biotechnology, 83(5): 957-963
[14]芮俊鵬, 李吉進(jìn), 李家寶等. 2014.豬糞原料沼氣工程系統(tǒng)中的原核微生物群落結(jié)構(gòu)[J]. 化工學(xué)報, 65(5): 1868-1875
[15]Rui Jun-peng,Li Ji-jin,Li Jiabao,Wang Yuan-peng,Ke Lan-ting,Zhang Shi-heng,Li Xiang-zhen. Prokaryotic community structures in biogas plants with swine manure[J]. CIESC Journal,2014, 65(5): 1868-1875.
收稿日期:2018-06-05
作者簡介:徐曼(1990-), 女, 助理工程師, 碩士, 研究方向為污水生物處理技術(shù)研究和環(huán)境監(jiān)測。
劉祥(1989-),男,助理工程師,碩士,研究方向為環(huán)境政策研究及環(huán)境監(jiān)測技術(shù)研究。