李浩川,曲彥志,楊繼偉,崔麗洋,毛熙嵐,劉宗華
?
基于核磁共振的玉米不同籽粒類型單粒質(zhì)量和含油率分析
李浩川,曲彥志,楊繼偉,崔麗洋,毛熙嵐,劉宗華※
(河南農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/河南省糧食作物協(xié)同創(chuàng)新中心/小麥玉米作物學(xué)國家重點(diǎn)實(shí)驗(yàn)室,鄭州 450002)
針對(duì)現(xiàn)有玉米單倍體核磁共振分選系統(tǒng)基于一個(gè)含油率閾值,無法對(duì)胚敗育籽粒和單倍體籽粒正確分選的問題,分別對(duì)玉米生物誘導(dǎo)產(chǎn)生的二倍體、單倍體和胚敗育3種不同籽粒類型的單粒質(zhì)量和含油率進(jìn)行分析,提出了利用籽粒含油率雙閾值提高單倍體正確識(shí)別率的分選方法。該研究以2個(gè)普通玉米雜交種和3個(gè)自交系為母本,以高油型誘導(dǎo)系為父本,進(jìn)行生物誘導(dǎo)產(chǎn)生的3種不同類型籽粒為研究對(duì)象,利用核磁共振分選系統(tǒng)分別對(duì)不同類型籽粒的單粒質(zhì)量和含油率進(jìn)行測定,結(jié)果表明:單粒質(zhì)量整體表現(xiàn)為單倍體>二倍體>胚敗育,除二倍體籽粒與胚敗育籽粒間存在極顯著差異外,其他籽粒類型間差異不顯著;不同類型籽粒的單粒質(zhì)量平均變異系數(shù)為16.62%,并且每個(gè)材料的3種籽粒類型間出現(xiàn)較大的重疊區(qū)域。而不同類型籽粒含油率整體表現(xiàn)為二倍體>單倍體>胚敗育,變異性以二倍體最小,平均變異系數(shù)僅為12.52%,其次是單倍體,而胚敗育籽粒最高(34.14%),但其含油率最低且均≤2%;每個(gè)材料各自的3種類型籽粒間含油率呈現(xiàn)梯度分布,存在較明顯的界限。由此可見,利用籽粒含油率能夠區(qū)分玉米生物誘導(dǎo)的3種不同籽粒類型,而單粒質(zhì)量則不能;通過設(shè)置二倍體籽粒的最小含油率為上限,胚敗育籽粒的最大含油率為下限,利用含油率的雙閾值可提高單倍體的正確識(shí)別率,為玉米生物誘導(dǎo)單倍體高效自動(dòng)化分選提供依據(jù)。
核磁共振;作物;玉米;單倍體;單粒質(zhì)量;油分含量
自交系選育是培育玉米新品種的核心環(huán)節(jié),常規(guī)選系的方法需要至少7代連續(xù)自交才能達(dá)到99%以上的純合率,選育周期長,效率低,難以滿足玉米商業(yè)化育種的需求。而單倍體育種技術(shù)只需2代就可獲得100%的純系,顯著縮短了育種周期,提高了育種效率,已成為現(xiàn)代玉米育種的三大核心技術(shù)之一[1]。單倍體的產(chǎn)生、加倍及雙單倍體(doubled haploid,DH)的應(yīng)用是單倍體育種技術(shù)的3個(gè)關(guān)鍵環(huán)節(jié),而單倍體的產(chǎn)生是單倍體育種技術(shù)利用的前提。產(chǎn)生單倍體的途徑較多,可以通過花藥離體培養(yǎng)、未授粉子房、花粉輻射等方法,但這些方法不僅受基因型的依賴性較強(qiáng)而且操作也比較繁瑣,因此生物誘導(dǎo)的方法備受青睞。生物誘導(dǎo)單倍體包括孤雄生殖和孤雌生殖2種方式,最早在不定配子體突變體W23()中發(fā)現(xiàn),以該材料做母本可誘導(dǎo)產(chǎn)生1%~2%的孤雄生殖單倍體[2],由于純合體表現(xiàn)出雄性不育,必須在雜合狀態(tài)下才能保持,而雜合體自交只能產(chǎn)生1/4的純合體,導(dǎo)致其繁殖困難,因此無法進(jìn)行規(guī)?;瘧?yīng)用。目前,生產(chǎn)上利用單倍體產(chǎn)生的主要途徑是生物誘導(dǎo)孤雌生殖,其基本過程是以期望獲得單倍體的材料為母本,以誘導(dǎo)系為父本進(jìn)行雜交,在雜交當(dāng)代的果穗上就會(huì)產(chǎn)生一定比例的單倍體。單倍體籽??焖贉?zhǔn)確的挑選是單倍體育種技術(shù)的先決條件,也是單倍體工程化育種的重要環(huán)節(jié)。因此,如何從大批量雜交果穗中將單倍體高效地挑選出來已是生物誘導(dǎo)孤雌生殖單倍體利用面臨的重要問題。單倍體鑒定常用方法主要是利用遺傳標(biāo)記基因能在籽粒頂部及胚部產(chǎn)生的Navajo紫色標(biāo)記性狀進(jìn)行人工鑒定,也有利用形態(tài)學(xué)、細(xì)胞學(xué)、分子標(biāo)記、射線照射、質(zhì)量鑒定等方法進(jìn)行田間或室內(nèi)鑒定[3-4],但是這些方法成本較高,且效率低。為了提高單倍體挑選的效率,初步實(shí)現(xiàn)了單倍體的自動(dòng)化分選。目前,玉米生物誘導(dǎo)孤雌生殖單倍體的自動(dòng)化分選主要是基于光譜信息[5-6]、成像識(shí)別[7]及籽粒成分[1]等方法對(duì)籽粒進(jìn)行鑒定分選。宋鵬等[7]利用計(jì)算機(jī)視覺系統(tǒng)基于胚部是否有表達(dá)的色素標(biāo)記進(jìn)行單倍體分選,對(duì)于胚面朝上的籽粒正確識(shí)別率可達(dá)90%,分選成功率可達(dá)80%,但對(duì)于胚面朝下的籽粒,成像后就無法進(jìn)行識(shí)別,為了解決這個(gè)問題,李衛(wèi)軍等[8]基于計(jì)算機(jī)視覺加上斜面翻滾部件,利用高速照相機(jī),實(shí)現(xiàn)籽粒多次信息獲取,單倍體正確識(shí)別率可達(dá)95%;除此之外,劉金等[9]利用可見光漫透射光譜以及Brett等[10]利用顏色標(biāo)記與熒光顯微光譜學(xué)結(jié)合的方法對(duì)單倍體與二倍體進(jìn)行識(shí)別,單倍體的正確分選率均在80%以上。盡管這些方法得到了一定改進(jìn),但仍受基因表達(dá)的限制,尤其是存在抑制基因的硬粒玉米材料中,Navajo標(biāo)記的表達(dá)受到抑制,因此很難利用上述方法實(shí)現(xiàn)分選?;诖?,中國農(nóng)業(yè)大學(xué)率先開展了基于籽粒含油率的單倍體自動(dòng)化分選研究,成功選育出第一個(gè)高油型誘導(dǎo)系農(nóng)大高油高誘1號(hào)的基礎(chǔ)上并首次提出利用高油誘導(dǎo)系花粉的直感效應(yīng)進(jìn)行單倍體鑒定[11-13],這一方法的可行性也進(jìn)一步得到證實(shí)[14],通過籽粒含油率利用核磁共振實(shí)現(xiàn)了單倍體的自動(dòng)化分選[15],這種簡單可靠的識(shí)別方法大大提高了單倍體的分選效率[16],并已在育種中應(yīng)用。確定含油率閾值是利用油分含量進(jìn)行單倍體鑒定的一個(gè)關(guān)鍵環(huán)節(jié),將直接影響到單倍體分選的正確識(shí)別率。研究結(jié)果表明含油率閾值應(yīng)由單倍體漏選率、誤選率和值3種因素共同決定[17]。李浩光等[18]也提出了基于最小平方誤差的方法進(jìn)行單倍體分選,只需對(duì)少量的單倍體和二倍體籽粒含油率進(jìn)行測定,然后通過構(gòu)建鑒別單倍體模型就能迅速確定含油率閾值,二倍體正確拒識(shí)率及單倍體正確識(shí)別率的均值達(dá)到90%以上。這些基于油分利用核磁共振進(jìn)行單倍體分選的研究僅設(shè)置一個(gè)含油率閾值進(jìn)行單倍體分選。然而,利用誘導(dǎo)系進(jìn)行雜交誘導(dǎo)時(shí),在誘導(dǎo)果穗上均會(huì)產(chǎn)生胚乳敗育和胚敗育的籽粒[19],且父本誘導(dǎo)系的誘導(dǎo)能力與籽粒敗育程度存在高度相關(guān)[20],因此,在嚴(yán)格授粉條件下,誘導(dǎo)當(dāng)代的果穗上有正常雜交的二倍體籽粒、單倍體籽粒、胚敗育籽粒和胚乳敗育籽粒4種類型。胚乳敗育籽粒由于生長發(fā)育過程中停滯,胚乳中積累的有機(jī)物較少,表現(xiàn)出小而輕的籽粒,通過篩子即可篩出;而胚敗育籽粒,由于胚發(fā)育不正常,胚乳能正常發(fā)育,從而引起籽粒油分含量極低,在機(jī)械分選過程中胚敗育籽粒常常與單倍體籽粒混在一起,導(dǎo)致單倍體的誤選率較高,需要進(jìn)行人工二次分選,增加了分選成本。因此,進(jìn)行單倍體與胚敗育籽粒和二倍體的識(shí)別是單倍體自動(dòng)化分選的一個(gè)重要內(nèi)容。本研究以高油型誘導(dǎo)系為父本,普通玉米為母本,通過分析生物誘導(dǎo)孤雌生殖過程中二倍體籽粒、單倍體籽粒和胚敗育籽粒3種不同類型籽粒的單粒質(zhì)量和含油率,以期為單倍體準(zhǔn)確識(shí)別提供理論依據(jù),提高核磁共振分選單倍體的準(zhǔn)確率,進(jìn)而促進(jìn)單倍體育種技術(shù)的工程化進(jìn)程。
試驗(yàn)于2016年冬在海南河南農(nóng)業(yè)大學(xué)試驗(yàn)基地以高油誘導(dǎo)系CHOI2(含油率為9.21%)和 CHOI2/CAUHOI (含油率為8.02%)為父本,以普通玉米雜交種LN16841(C521×L56M,含油率為3.24%)和LN16842(L217×LHC1,含油率為3.09%)以及自交系E28(含油率為3.92%)、鄭22(含油率為3.46%)和鐵C8605-2(含油率為3.88%)為母本,進(jìn)行人工授粉(如表1)。成熟后收獲誘導(dǎo)果穗10穗以上,分別按材料混合脫粒。依據(jù)標(biāo)記性狀進(jìn)行二倍體、單倍體和胚敗育3種不同類型籽粒的挑選,籽粒頂部和胚均有紫色的籽粒為二倍體籽粒;籽粒頂部有紫色標(biāo)記,胚部無色的籽粒為單倍體籽粒[21];胚乳正常,籽粒頂部糊粉層有紫色標(biāo)記,胚部凹陷沒有規(guī)則形狀胚的籽粒為胚敗育籽粒(圖1)。利用上海紐邁科技有限公司的核磁共振分選系統(tǒng)(型號(hào):OnlineMR20-015V)對(duì)3種不同類型的籽粒分別進(jìn)行單粒質(zhì)量和含油率測定。利用 SPSS19.0進(jìn)行統(tǒng)計(jì)分析。
表1 雜交組合來源
圖1 生物誘導(dǎo)產(chǎn)生的3種不同籽粒類型
不同遺傳背景材料誘導(dǎo)后各自不同類型籽粒的單粒質(zhì)量和含油率的均值見表2。不同類型籽粒的平均質(zhì)量相差不大,對(duì)于正常受精的二倍體來說,單交種LN16841的單粒質(zhì)量為0.25 g,單交種LN16842和自交系鐵C8605-2的二倍體單粒平均質(zhì)量均為0.26 g,最大的為E28,其單粒質(zhì)量為0.30 g;不同材料單倍體籽粒的單粒質(zhì)量以鐵C8605-2最小,僅為0.23g,E28最大,高達(dá)0.29 g;而胚敗育籽粒的單粒質(zhì)量的變異范圍為0.22~0.27 g。二倍體籽粒、單倍體籽粒和胚敗育籽粒3種類型的單粒質(zhì)量均值分別為0.26、0.27和0.24 g,整體表現(xiàn)為單倍體>二倍體>胚敗育;測驗(yàn)結(jié)果表明(表3),只有二倍體與胚敗育兩者之間單粒質(zhì)量達(dá)極顯著水平,而二倍體與單倍體間、單倍體與胚敗育籽粒間差異均不顯著。但雜交種LN16841、LN16842及自交系鄭22的單倍體籽粒平均單粒質(zhì)量比二倍體籽粒高0.01~0.02 g。這可能是因?yàn)閱伪扼w籽粒由于胚體積較小,相應(yīng)胚乳庫容變大,有利于更多淀粉的積累[22-23];而二倍體籽粒的胚,由于受高油父本的花粉直感效應(yīng)影響,誘導(dǎo)當(dāng)代籽粒胚較大,油分含量增多,胚乳體積變小,淀粉積累較少[24],從而導(dǎo)致單倍體籽粒質(zhì)量略高于二倍體。
表2 不同材料不同籽粒類型單粒質(zhì)量與油分平均值
3種不同類型籽粒油分含量中以二倍體籽粒油分含量最高,平均含油率高達(dá)5.93%,其次是單倍體,含油率為3.37%,而胚敗育籽粒含油率僅為0.89%;經(jīng)過測驗(yàn)(表3),三者之間均存在極顯著差異。不同材料間二倍體籽粒油分含量的變異較大,以自交系鐵C8605-2的二倍體籽粒油分含量最高,含油率為6.52%,雜交種LN16841最低,其二倍體含油率僅為5.19%;單倍體籽粒油分含量變異較小,以E28油分最高(3.79%),LN16842最低(3.04%)。全部籽粒中均以胚敗育籽粒的油分含量最低,變異幅度也最小,LN16842的胚敗育籽粒含油率最高,僅為1.04%。由此可見,普通玉米與高油誘導(dǎo)系雜交后由于花粉直感效應(yīng)可以提高雜交當(dāng)代籽粒含油量,不同類型籽粒油分含量差異均在2個(gè)百分點(diǎn)以上,因此,設(shè)置合理的含油率參數(shù)比設(shè)置單粒質(zhì)量參數(shù)實(shí)現(xiàn)單倍體的自動(dòng)化分選更可靠。
表3 不同籽粒類型間單粒質(zhì)量與含油率均值t測驗(yàn)
注:**代表在0.01水平上差異顯著。
Note: ** represents significant difference at 0.01 level.
不同材料經(jīng)過高油誘導(dǎo)系誘導(dǎo)產(chǎn)生的二倍體籽粒、單倍體籽粒和胚敗育籽粒3種類型單粒質(zhì)量和含油率變異系數(shù)如表4。結(jié)果表明:不同遺傳背景材料的變異性較大,來自LN16841不同類型籽粒的單粒質(zhì)量平均差異最大,為19.76%,其次是鄭22和LN16842,為19.60%左右,而E28的變異最小,僅為11.29%;不同類型籽粒間的單粒質(zhì)量平均變異系數(shù)以胚敗育籽粒為最高,達(dá)17.85%,其次是單倍體籽粒,而二倍體籽粒的單粒質(zhì)量變異系數(shù)最小,僅為15.82%。對(duì)含油率而言,不同材料間籽粒含油率的平均變異均在20%左右;不同籽粒類型間變異性較大,胚敗育籽粒的含油率平均變異系數(shù)高達(dá)34.14%,單倍體籽粒的平均變異系數(shù)為16.02%,而二倍體籽粒的最小,僅為12.52%;由此可推斷胚的敗育過程各籽粒并非同步,可能在胚發(fā)育過程中的任何時(shí)期均可發(fā)生敗育,敗育早的籽粒,含油率較低,敗育晚的籽粒含油率較高;整體而言,盡管單粒質(zhì)量的平均變異系數(shù)(16.62%)小于含油率的平均變異系數(shù)(20.90%),且每兩類籽粒間的平均變異系數(shù)差值也小于對(duì)應(yīng)材料含油率平均變異系數(shù)的差值,但對(duì)于每個(gè)不同遺傳背景材料的不同類型籽粒變異范圍而言,各個(gè)材料在單粒質(zhì)量上均存在較大的重疊區(qū)域(圖2),而含油率在每個(gè)材料的3類不同籽粒間存在較明顯的界限(圖3),由此可知,利用籽粒油分含量作為判斷二倍體籽粒、單倍體籽粒和胚敗育籽粒是可行的。
表4 不同籽粒類型的單粒質(zhì)量和含油率變異性分析
圖2 不同材料間3種類型籽粒單粒質(zhì)量變異范圍
圖3 不同材料間3種類型籽粒含油率變異范圍
不同基因型材料所產(chǎn)生的二倍體籽粒、單倍體籽粒和胚敗育籽粒含油率呈明顯的梯度分布(圖4)。正常雜交的二倍體籽粒位于最上部,單倍體籽粒位于中間,而敗育籽粒位于最下方,很容易劃分出3個(gè)不同的類別。而單粒質(zhì)量呈現(xiàn)連續(xù)分布,且3類籽粒間沒有明顯的特征分布。由此可見,籽粒含油率是進(jìn)行雜交二倍體籽粒、單倍體籽粒和胚敗育籽粒區(qū)分的更好指標(biāo),而單粒質(zhì)量只有二倍體與胚敗育籽粒間存在顯著差異,但是由于其在任兩類籽粒間的分布出現(xiàn)嚴(yán)重交叉,不能對(duì)生物誘導(dǎo)的3種不同籽粒類型進(jìn)行準(zhǔn)確分選。因此,基于籽粒含油率可利用核磁共振將生物誘導(dǎo)的3種不同類型籽粒進(jìn)行識(shí)別和區(qū)分,不受基因表達(dá)和籽粒胚面朝向的影響。由于3類籽粒間含油率呈明顯的梯度分布且有較清晰的界限,可設(shè)二倍體籽粒含油率的最小值為上限,胚敗育籽粒含油率的最大值為下限進(jìn)行單倍體識(shí)別,只要在這2個(gè)閾值之間就可判定為單倍體;由于一些母本材料的單倍體籽粒和二倍體籽粒之間以及單倍體籽粒和胚敗育籽粒之間也存在一定的重疊區(qū)域,可取重疊區(qū)域的均值作為上限閾值和下限閾值,以適當(dāng)減小單倍體的漏選率和誤選率。根據(jù)本研究結(jié)果,通過設(shè)置合適的上限與下限雙閾值,利用核磁共振就可以有效地從3類不同籽粒中分選單倍體,降低單倍體的誤選率,減少人工二次分選單倍體中混入胚敗育籽粒的工作量。
圖4 不同籽粒類型含油率和單粒質(zhì)量的分布
本研究基于核磁共振分選系統(tǒng),利用玉米高油型誘導(dǎo)系和不同遺傳背景的普通玉米材料進(jìn)行雜交所產(chǎn)生的正常受精二倍體籽粒、單倍體籽粒和胚敗育籽粒3種籽粒類型進(jìn)行單粒質(zhì)量和含油率的分析,主要結(jié)論如下:
1)玉米不同遺傳背景材料經(jīng)過高油誘導(dǎo)系誘導(dǎo)后所產(chǎn)生的3種不同籽粒類型,單粒質(zhì)量只在二倍體與胚敗育2種籽粒類型間存在極顯著差異,二倍體與單倍體之間以及單倍體與胚敗育籽粒間的單粒質(zhì)量差異均不顯著;而含油率在任2種不同類型籽粒間均存在顯著差異。
2)單粒質(zhì)量呈現(xiàn)連續(xù)分布,3類籽粒間沒有明顯的界限且存在較大的重疊區(qū)域;而油分的分布呈現(xiàn)階梯狀,正常雜交的二倍體位于最上部,單倍體籽粒位于中間,敗育籽粒位于最下方,不同籽粒類型間存在較明顯的界限,很容易將3種不同類型籽粒進(jìn)行識(shí)別。
3)籽粒含油率是區(qū)分二倍體籽粒、單倍體籽粒和胚敗育籽粒的更好指標(biāo)。以二倍體籽粒含油率的最小值為上限,以胚敗育籽粒含油率的最大值為下限,利用含油率的雙閾值可提高單倍體的正確識(shí)別率,可準(zhǔn)確地分選出胚敗育籽粒,極大地減少人工二次分選的工作量,為基于核磁共振系統(tǒng)進(jìn)行單倍體自動(dòng)化分選提供理論支撐。
[1] 陳紹江,黎亮,李浩川. 玉米單倍體育種技術(shù)[M]. 第二版. 北京:中國農(nóng)業(yè)大學(xué)出版社,2012.
[2] Kermicle J L. Androgenesis conditioned by a mutation in maize[J]. Science, 1969, 166(3911): 1422-1424.
[3] 張瑞平,周聯(lián)東,王文潔. 玉米單倍體鑒定方法研究進(jìn)展[J]. 現(xiàn)代農(nóng)業(yè)科技,2017(20):24-25.
Zhang Ruiping, Zhou Liandong, Wang Wenjie. Research progress on identifying method of maize haploid[J]. Modern Agricultural Sciences and Technology, 2017(20): 24-25. (in Chinese with English abstract)
[4] Andrew S, Michael B, Thomas L, et al. Weighing in on a method to discriminate maize haploid from hybrid seed[J]. Plant Breeding, 2015, 134(3): 283-285.
[5] 劉文杰,李衛(wèi)軍,李浩光,等. 基于KPCA和近紅外光譜的鑒別玉米單倍體方法研究[J]. 光譜學(xué)與光譜分析,2017,37(7):2024-2027.
Liu Wenjie, Li Weijun, Li Haoguang, et al. Research on the method of identifying maize haploid based on KPCA and near infrared spectrum[J]. Spectroscopy and Spectral Analysis, 2017, 37(7): 2024-2027. (in Chinese with English abstract)
[6] 覃鴻,馬競一,陳紹江,等. 基于近紅外漫反射與漫透射光譜的玉米單倍體鑒別比較研究[J]. 光譜學(xué)與光譜分析,2016,36(1):292-297.
Qin Hong, Ma Jingyi, Chen Shaojiang, et al. Identification of haploid maize kernel using NIR spectroscopy in reflectance and transmittance modes: A Comparative study[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 292-297. (in Chinese with English abstract)
[7] 宋鵬,吳科斌,張俊厚,等. 基于計(jì)算機(jī)視覺的玉米單倍體自動(dòng)分選系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(增刊):249-252.
Song Peng, Wu Kebin, Zhang Junhou, et al. Sorting system of maize haploid kernels based on computer vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(Supp): 249-252. (in Chinese with English abstract)
[8] 李衛(wèi)軍,劉玉梅,陳紹江,等. 基于機(jī)器視覺的玉米單倍體自動(dòng)分選系統(tǒng)[J]. 農(nóng)機(jī)化研究,2016,1(1):81-84.
Li Weijun, Liu Yumei, Chen Shaojiang, et al. Automatic separating system of maize haploid based on machine vision[J]. Journal of Agricultural Mechanization Research, 2016, 1(1): 81-84. (in Chinese with English abstract)
[9] 劉金,郭婷婷,李浩川,等. 基于可見光光譜高效鑒別玉米單倍體籽粒[J]. 光譜學(xué)與光譜分析,2015,35(11):3268-3274.
Liu Jin, Guo Tingting, Li Haochuan, et al. Discrimination of maize haploid seeds from hybrid seeds using vis spectroscopy and support vector machine method[J]. Spectroscopy and Spectral Analysis, 2015, 35(11): 3268-3274. (in Chinese with English abstract)
[10] Brett B, Freppon D, G De La Fuente, et al. Haploid differentiation in maize kernels based on fluorescence imaging[J]. Plant Breeding, 2016, 135(4): 439-445.
[11] 劉志增,宋同明. 玉米高頻率孤雌生殖單倍體誘導(dǎo)系的選育與鑒定[J]. 作物學(xué)報(bào),2000,26(5): 570-574.
Liu Zhizheng, Song Tongming. The breeding and identification of haploid inducer with high frequency parthenogenesis in maize[J]. Acta Agronomica Sinica, 2000, 26(5): 570-574. (in Chinese with English abstract)
[12] Li Liang, Xu Xiaowei, Jin Weiwei, et al. Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize [J]. Planta, 2009, 230(2): 367-376.
[13] 陳紹江,宋同明. 利用高油分的花粉直感效應(yīng)鑒別玉米單倍體[J]. 作物學(xué)報(bào),2003,29(4):587-590.
Chen Shaojiang, Song Tongming. Identification haploid with high oil xenia effect in maize[J]. Acta Agronomica Sinica, 2003, 29(4): 587-590. (in Chinese with English abstract)
[14] Melchinger A E, Schippr W, ack Friedrich Utz H, et al. In vivo haploid induction in maize: Identification of haploid seeds by their oil content [J]. Crop Science, 2014, 54(4): 1497-1504.
[15] Liu Jin, Guo Tingting, Yang Peiqing, et al. Development of automatic nuclear magnetic resonance screening system for haploid Kernel in maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the TCSAE), 2012, 28(2): 233-238.
劉金,郭婷婷,楊培強(qiáng),等. 玉米單倍體核磁共振自動(dòng)分揀系統(tǒng)的開發(fā)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(2):233-238. (in English with Chinese abstract)
[16] Melchinger A E, Winter M, Mi X F, et al. Controlling misclassification rates in identification of haploid seeds from induction crosses in maize with high-oil inducers[J]. Crop Science, 2015, 55(3): 1076-1086.
[17] Melchinger A E, Schipprack W, Wurschum X, et al. Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize[J]. Scientific Reports, 2013, 3(3): 2129-2133.
[18] 李浩光,李衛(wèi)軍,覃鴻,等. 基于最小平方誤差的單倍體和二倍體分類方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(6):259-264.
Li Haoguang, Li Weijun, Qin Hong, et al. Research on haploid and diploid classifying method based on least square error[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 259-264. (in Chinese with English abstract)
[19] Liu Chenxu, Li Xiang, Meng Dexuan, et al. A 4-bp insertion at ZmPLA1 Encoding a putative phospholipase a generates haploid induction in maize[J]. Molecular Plant, 2017, 10(3): 520-522.
[20] 董昕. 玉米單倍體誘導(dǎo)基因qhirl精細(xì)定位與新型誘導(dǎo)系選育研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2014.
Dong Xin. Fine Mapping Haploid Induction Rate Geneand Marker Assisted Selection of
[21] 李浩川,楊繼偉,曲彥志,等. 玉米不同基礎(chǔ)群體孤雌生殖誘導(dǎo)系誘導(dǎo)能力評(píng)價(jià)[J]. 玉米科學(xué),2015,23(1):73-77.
Li Haochuan, Yang Jiwei, Qu Yanzhi, et al. Evaluation for inducing parthenogenesis ability of different inducers from different basic populations in maize[J]. Journal of Maize Sciences, 2015, 23(1): 73-77. (in Chinese with English abstract)
[22] 秦營營,董樹亭,魏珊珊,等. 去苞葉對(duì)夏玉米籽粒灌漿 特性和產(chǎn)量的影響[J]. 中國農(nóng)業(yè)科學(xué),2015,48(11):2118-2126.
Qin Yingying, Dong Shuting, Wei Shanshan, et al. Effects of dislodging subtending leaf on grain filling and yield of summer maize[J]. Scientia Agricultura Sinica, 2015, 48(11): 2118-2126. (in Chinese with English abstract)
[23] 董浩,張芳,夏光利,等.高油玉米花粉對(duì)普通玉米籽粒性狀和含油量的影響[J]. 華北農(nóng)學(xué)報(bào),2014,29(增刊):188-192.
Dong Hao, Zhang Fang, Xia Guangli, et al. The influence of high-oil maize pollen to common maize kernel traits and oil content[J]. Acta Agriculturae Boreali Sinica, 2014, 29(Supp.): 188-192. (in Chinese with English abstract)
[24] 宋同明. 高油玉米[M]. 北京:北京農(nóng)業(yè)大學(xué)出版社,1992.
Analysis on single kernel weight and oil content of different grain types in maize based on NMR
Li Haochuan, Qu Yanzhi, Yang Jiwei, Cui Liyang, Mao Xilan, Liu Zonghua※
(,//,450002,)
Maize haploid breeding as an important technology of modern breeding programs can shorten breeding cycles and enhance the breeding efficiency. The method of haploid produced by in vivo has become a routine process and has been adopted widely in maize breeding. The rapid and accurate recognition of haploid kernels is a prerequisite for in vivo haploid breeding technology. Therefore, how to efficiently select haploid seeds from mass hybridization kernels has been an issue during the use of parthenogenetic haploid. At present, spectral information and image recognition based on the geneexpressing Navajo marker in kernels were usually used to automatically sort haploids in maize, but the expression of genewere significantly depended on the maternal genetic backgrounds, it is unavailable for some flint germplasms with the presence of a supressor. With the development of inducers with high oil and high inducing rate, the automatic sorting of maize haploid kernels become a reality based on nuclear magnetic resonance (NMR). The embryo of haploid only developed from female gamete without the fusion of the sperm cell, so the oil content of haploid kernels is usually lower than that of diploid kernels because of xenia effect. Presently, most studies only set one threshold of oil content to identify haploid and diploid kernels based on NMR. However, there are some embryo abortion kernels with very lower oil content during the process of haploid induction, it is difficult to make distinction among diploid, haploid and embryo abortion kernels based on one threshold of oil content using NMRsorting system. In this paper, the single kernel weight and oil content of diploid, haploid and embryo abortion kernels by in vivo induction were analyzed, respectively, a new concept of increasing the correct discrimination rate of haploid based on two thresholds of oil content was developed. Three different types of kernels were produced by in vivo induction using two common maize hybrids and three inbred lines as females and inducers with high oil content as the males. The measurement of single kernel weight and oil content for three types of kernels were carried out by NMR sorting system. The result showed that the rank of the single kernel weight of different grain types was haploid > diploid > embryo abortion kernels, the highly significant difference existed between diploid and embryo abortion kernels, but there was no difference between diploid and haploid kernels, haploid and embryo abortion kernels.The variation coefficient of the average performance of single kernel weight was 16.62%, lager overlaps appeared among three different types of kernels. The oil content showed that the diploid > haploid > embryo abortion kernels. The coefficient of variation of oil content for diploid kernels was the lowest with only 12.52%, followed by haploid kernels, the highest was embryo abortion kernels with 34.14%, but the oil content was not more than 2% for all the embryo abortion kernels. The step distribution with obvious boundaries for oil content among the three different grain types was found. It indicated that the oil content can be used to recognize among three different types of kernels, but the single kernel weight cannot be as a sorting standard. According to the oil content, minimum of diploid and maximum of embryo abortion kernels were set respectively as the upper and lower limit value to form double thresholds, which could improvethe rate of correct discrimination for haploid and provide a reference during the process of automatically sorting haploid kernels with high efficiency.
nuclear magnetic resonance; crops; maize; haploid; single kernel weight; oil content
10.11975/j.issn.1002-6819.2018.20.023
S24
A
1002-6819(2018)-20-0183-06
2018-04-23
2018-08-01
國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0101205)資助
李浩川,博士,副教授,主要從事玉米遺傳育種研究。Email:lihaochuan1220@163.com
劉宗華,博士,教授,主要從事玉米遺傳育種研究。Email:zhliu100@163.com
李浩川,曲彥志,楊繼偉,崔麗洋,毛熙嵐,劉宗華. 基于核磁共振的玉米不同籽粒類型單粒質(zhì)量和含油率分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):183-188. doi:10.11975/j.issn.1002-6819.2018.20.023 http://www.tcsae.org
Li Haochuan, Qu Yanzhi, Yang Jiwei, Cui Liyang, Mao Xilan, Liu Zonghua. Analysis on single kernel weight and oil content of different grain types in maize based on NMR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 183-188. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.20.023 http://www.tcsae.org