張 川,張亨年,閆浩芳,Samuel Joe Acquah,邢德科
?
微噴灌結(jié)合滴灌對(duì)溫室高溫環(huán)境和作物生長(zhǎng)生理特性的影響
張 川1,張亨年1,閆浩芳2,Samuel Joe Acquah2,邢德科1
(1. 江蘇大學(xué)農(nóng)業(yè)裝備工程學(xué)院,鎮(zhèn)江 212013; 2. 江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心,鎮(zhèn)江 212013)
微噴灌結(jié)合滴灌是指在作物根區(qū)滴灌的基礎(chǔ)上對(duì)作物冠層進(jìn)行微噴灌來(lái)改善作物生長(zhǎng)環(huán)境的一種灌水方式。為了探明微噴灌結(jié)合滴灌(micro-sprinkler irrigation combined with drip irrigation,MSDI)和地表滴灌(surface drip irrigation,SDI)2種灌水方式下溫室高溫環(huán)境及作物生長(zhǎng)生理特性的差異及響應(yīng)規(guī)律,該研究以黃瓜為試驗(yàn)對(duì)象,于2017年2-6月開(kāi)展了2種灌水方式下溫室環(huán)境及黃瓜生長(zhǎng)生理特性的觀測(cè)試驗(yàn)。結(jié)果表明:在改變溫室環(huán)境方面,MSDI灌水方式較SDI可增加溫室內(nèi)相對(duì)濕度,降低氣溫,同時(shí)降低葉片溫度約4℃;在作物生長(zhǎng)生理特性方面,采用MSDI可增加黃瓜株高與莖粗,降低作物莖流速率,促進(jìn)黃瓜生長(zhǎng);2種灌水方式下黃瓜最大光合效率幾乎一致,分別為0.74和0.77,但日平均實(shí)際光合效率差異明顯,分別為0.57和0.47,MSDI灌水方式下黃瓜葉片日平均氣孔導(dǎo)度和光合速率比SDI方式分別高182.8%和92.4%。該研究成果對(duì)于合理調(diào)控溫室高溫環(huán)境、提高溫室作物產(chǎn)量具有重要的指導(dǎo)意義。
灌溉;溫室;作物;微噴灌;地表滴灌;莖流速率;光合速率;光合效率
在人口增長(zhǎng)和環(huán)境變化對(duì)傳統(tǒng)種植業(yè)的沖擊下,發(fā)展設(shè)施農(nóng)業(yè)勢(shì)在必行,中國(guó)設(shè)施面積目前超過(guò)400萬(wàn)hm2,是世界上設(shè)施栽培面積最大的國(guó)家[1-2]。主流溫室在設(shè)計(jì)和建造的過(guò)程中更多地強(qiáng)調(diào)了采光、蓄熱和保溫,因此,溫室內(nèi)極易形成高溫環(huán)境[3],特別是在南方夏季高溫地區(qū),溫室內(nèi)氣溫常達(dá)40 ℃以上,許多大型溫室在7-9月份的高溫季節(jié)處于“停產(chǎn)”狀態(tài),嚴(yán)重影響了溫室的利用效率,夏季溫室的降溫問(wèn)題成為困擾現(xiàn)代大型溫室發(fā)展和應(yīng)用的技術(shù)難題[4]。目前主要采用遮陽(yáng)和濕簾風(fēng)機(jī)系統(tǒng)兩種方法進(jìn)行降溫,但是,在遮陽(yáng)降溫的同時(shí),也降低了光照強(qiáng)度,縮短了有效光合時(shí)間,影響蔬菜的生長(zhǎng)發(fā)育和光合作用,如果遮陰時(shí)間過(guò)長(zhǎng),會(huì)嚴(yán)重影響果類蔬菜的開(kāi)花坐果和產(chǎn)量的形成[5];濕簾-風(fēng)機(jī)降溫系統(tǒng)雖然在中國(guó)北方地區(qū)有較好的效果,但該系統(tǒng)在潮濕的南方地區(qū)應(yīng)用效果并不理想[6],并且在運(yùn)行過(guò)程中存在能耗較高等問(wèn)題[7]。
目前,科學(xué)合理的灌水方式逐漸成為改善作物生長(zhǎng)環(huán)境和提高作物光合效率的重要手段,對(duì)于促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展具有重要意義[8-10],而微噴灌和滴灌作為設(shè)施農(nóng)業(yè)中較為先進(jìn)的2種灌水方式,受到較多學(xué)者的關(guān)注和研究[11-12]。劉海軍等[13-14]研究表明微噴灌可降低作物冠層周圍的溫度,改善作物生長(zhǎng)環(huán)境,從而縮短作物葉片在高溫的中午發(fā)生光合“午休”現(xiàn)象的時(shí)間,實(shí)現(xiàn)作物快速生長(zhǎng)[15-17],但僅采用微噴灌進(jìn)行灌溉往往會(huì)造成溫室持續(xù)處于高濕的狀態(tài),作物易受病菌感染[18]。滴灌因其不發(fā)生土壤深層滲漏和土壤表層溢水,較其他灌水方式可節(jié)約用水50%以上[19],Hebbar等[20-21]發(fā)現(xiàn)滴灌能顯著增加作物干物質(zhì)積累,有利于作物的生長(zhǎng)發(fā)育,但對(duì)于改善作物生長(zhǎng)環(huán)境較為有限,難以解決夏季溫室高溫危害作物生長(zhǎng)的問(wèn)題。
因此,本研究以黃瓜為研究對(duì)象開(kāi)展溫室試驗(yàn),通過(guò)觀測(cè)及對(duì)比分析微噴灌結(jié)合滴灌和地表滴灌2種灌溉方式下的溫室氣象環(huán)境(空氣溫度、相對(duì)濕度和葉溫)及黃瓜生長(zhǎng)生理特性(株高、莖粗、莖流速率和光合速率等)的變化規(guī)律及差異,探討微噴灌結(jié)合滴灌對(duì)溫室高溫環(huán)境及黃瓜生長(zhǎng)生理特性的影響機(jī)制。該研究成果不僅可以作為指導(dǎo)溫室黃瓜準(zhǔn)確灌溉的依據(jù),而且對(duì)于實(shí)現(xiàn)溫室高溫環(huán)境的合理調(diào)控具有重要意義。
試驗(yàn)于2017年2-6月在江蘇大學(xué)Venlo型玻璃溫室內(nèi)進(jìn)行,試驗(yàn)地位于江蘇省鎮(zhèn)江市(32°11′N、119°25′E,海拔23 m),溫室屋脊南北走向,長(zhǎng)20 m,天溝高3.8 m,檐高4.4 m,跨度6.4 m,共兩跨,每跨2個(gè)小屋頂,覆蓋材料為4 mm厚的浮法玻璃,東北兩側(cè)設(shè)有側(cè)窗,高溫時(shí)開(kāi)窗通風(fēng)。土壤容重為1.35 g/cm3,表層土壤田間持水率為41.1%,土壤孔隙度為57.9%。
供試黃瓜為密刺黃瓜,品種為油亮3-2,采用土槽種植,土槽長(zhǎng)65 cm,寬45 cm,深30 cm,南北走向,土槽四周均用水泥澆筑。試驗(yàn)期為2017年2月21日-6月29日。黃瓜于2017年2月21日播種,4月6日移栽,移栽前施復(fù)合肥料(高濃度硫酸鉀型)作為底肥,種植密度為3.3株/m2。黃瓜生育期分為:苗期(4月6日-5月5日)、開(kāi)花坐果期(5月6日-5月22日)及成熟采摘期(5月23日-6月29日)。試驗(yàn)設(shè)置微噴灌結(jié)合滴灌(micro-sprinkler irrigation combined with drip irrigation,MSDI)和地表滴灌(surface drip irrigation,SDI)2種灌水方式,其中MSDI灌水方式是指在SDI基礎(chǔ)上結(jié)合倒掛式作物冠層微噴灌(噴頭與土槽一一對(duì)應(yīng),倒立懸掛于土槽上方,高2 m),每種灌水方式設(shè)置8個(gè)土槽作為重復(fù)。苗期由于溫室內(nèi)氣溫適宜黃瓜生長(zhǎng),暫未開(kāi)啟微噴灌,2種灌水方式均只采用滴灌進(jìn)行灌水,灌水時(shí)間為每天早晨06:00,滴頭流量為140 mL/min,每株灌水5 min。5月6日黃瓜進(jìn)入開(kāi)花坐果期,溫室內(nèi)最高溫度達(dá)到33℃,為降低作物冠層周圍空氣溫度和葉片溫度,提供適宜的生長(zhǎng)環(huán)境,MSDI灌水方式為在滴灌的基礎(chǔ)上開(kāi)啟微噴灌(陰雨天關(guān)閉),微噴灌時(shí)間為每日09:00、10:00、11:00和12:00,每次持續(xù)2 min。
1.3.1 氣象數(shù)據(jù)
溫室中安裝一套自動(dòng)氣象監(jiān)測(cè)系統(tǒng),該系統(tǒng)包括溫濕度傳感器(HMP45C,Campbell)、太陽(yáng)凈輻射儀(NR Lite2,Kipp&Zonen,Netherlands)、全球太陽(yáng)短波輻射表(Decagon,USA)、長(zhǎng)波輻射表(PRI-01,Prede,Japan)和風(fēng)速儀(Wind Sonic,Gill)。所有數(shù)據(jù)均由CR1000數(shù)據(jù)采集系統(tǒng)(Campbell,USA)每10 min自動(dòng)采集。另外,在作物冠層不同高度安裝3個(gè)溫濕度傳感器(U23-002,HOBO),安裝高度分別為0.8、1.3和1.8 m,探頭朝南,精度為±0.1 ℃。
1.3.2 株高及莖粗
每種灌水方式隨機(jī)挑選10株長(zhǎng)勢(shì)良好無(wú)病害的植株進(jìn)行標(biāo)記,分別在黃瓜苗期、開(kāi)花坐果期和成熟采摘期進(jìn)行株高和莖粗的測(cè)定。株高采用直尺測(cè)量莖基部到莖尖端的高度,莖粗采用游標(biāo)卡尺測(cè)量莖稈基部的直徑。
1.3.3 蒸騰速率
測(cè)定植株莖稈液流是獲取作物蒸騰速率的有效方法之一[22],采用包裹式莖流計(jì)(Flow32-1k system,Dynamax,USA)在黃瓜成熟采摘期內(nèi)(6月12-18日)測(cè)定植株莖稈液流速率。每種灌水方式隨機(jī)挑選2株長(zhǎng)勢(shì)良好無(wú)病害的植株,莖流計(jì)安裝在第5枝節(jié),避免土壤熱反射的干擾。所選莖流計(jì)規(guī)格均滿足黃瓜莖稈直徑要求,確保莖流計(jì)與莖稈緊密接觸,設(shè)置CR1000數(shù)據(jù)采集器(Campbell,USA)每30 min自動(dòng)采集數(shù)據(jù)。
1.3.4 葉綠素?zé)晒饧叭~片溫度
本研究采用多通道調(diào)制熒光儀Monitoring-PAM(WALZ,Germany)在黃瓜成熟采摘期內(nèi)(6月12-18日)連續(xù)監(jiān)測(cè)植株的熒光參數(shù)和葉片溫度。每種灌水方式隨機(jī)挑選2株長(zhǎng)勢(shì)良好無(wú)病害的植株,選取旗葉以下第5片功能葉,在自然光照條件下,測(cè)定實(shí)際光合效率(II),設(shè)置MONI-DA數(shù)據(jù)采集器每10 min自動(dòng)采集數(shù)據(jù)。
1.3.5 光合速率
試驗(yàn)采用GFS-3000便攜式光合測(cè)量?jī)x(WALZ,Germany),在黃瓜成熟采摘期內(nèi)選擇晴朗無(wú)云日測(cè)定葉片光合速率(photosynthetic rate)和氣孔導(dǎo)度(stomatal conductance)。每種灌水方式隨機(jī)挑選3株長(zhǎng)勢(shì)良好無(wú)病害的植株,選取旗葉以下第5片功能葉測(cè)定其中部位置,每片葉片測(cè)量3次取平均值,觀測(cè)時(shí)間為08:00-18:00之間,每隔1.5~2 h測(cè)定一次。
本研究對(duì)溫室高溫環(huán)境進(jìn)行連續(xù)監(jiān)測(cè),結(jié)果顯示不同日期空氣溫度和相對(duì)濕度的變化規(guī)律相似,因此以6月15日實(shí)測(cè)數(shù)據(jù)為例進(jìn)行分析。MSDI灌水方式下溫室高溫環(huán)境變化規(guī)律如圖1所示,包括不同高度的冠層溫度(圖1a)和相對(duì)濕度(圖1b),夜間(18:00至次日06:00)不同高度(0.8、1.3和1.8 m)冠層溫濕度基本相同,之后隨太陽(yáng)輻射增強(qiáng),冠層間溫濕度開(kāi)始產(chǎn)生差異,1.8 m處溫度最高,相對(duì)濕度最低,0.8 m處溫度最低,相對(duì)濕度最高,1.3 m處溫濕度均處于中間水平。在間斷開(kāi)啟微噴灌后(如圖中箭頭所示),不同高度的冠層溫度均比下降,濕度均比增加,不同高度溫濕度變化規(guī)律相似,1.8 m處距離噴頭最近,溫濕度變化幅度大于0.8 m和1.3 m處。
注:圖中箭頭為開(kāi)啟微噴灌時(shí)刻,MSDI 為微噴灌結(jié)合滴灌的灌水方式,下同。
2種灌水方式黃瓜葉片溫度日變化規(guī)律如圖2所示,未開(kāi)啟微噴灌時(shí)段內(nèi),2種灌水方式葉片溫度基本相同。MSDI灌水方式在不同時(shí)刻開(kāi)啟微噴灌后,葉片溫度較SDI方式下降約4 ℃,每次下降持續(xù)時(shí)間約10 min。停止微噴灌后約1~2 h,MSDI灌水方式下葉片溫度恢復(fù)到SDI灌水方式下葉溫水平。
注:SDI 為地表滴灌的灌水方式。
株高和莖粗反映不同生育時(shí)期作物的生長(zhǎng)狀態(tài)[23-24]。2種灌水方式下黃瓜株高和莖粗的變化規(guī)律如圖3所示。苗期(4月6日-5月5日)未開(kāi)啟微噴灌時(shí),2種灌水方式下株高和莖粗基本相同。進(jìn)入開(kāi)花坐果期(5月6日)開(kāi)啟微噴灌,5月8日對(duì)株高進(jìn)行觀測(cè),MSDI灌水方式下作物株高較SDI灌水方式顯著提高了22.5%(<0.05),隨著黃瓜的生長(zhǎng),MSDI灌水方式下黃瓜平均株高高于SDI灌水方式。由于黃瓜莖粗增長(zhǎng)有限,整個(gè)生育期內(nèi)2種灌水方式下黃瓜莖粗差異不顯著,MSDI相比SDI灌水方式可促進(jìn)黃瓜更好的生長(zhǎng),促進(jìn)作物干物質(zhì)的形成。
注:不同大寫字母表示2種灌水方式在0.05水平上差異顯著。
選取黃瓜對(duì)水分敏感的成熟采摘期的莖流速率平均值進(jìn)行對(duì)比分析。從圖4中可以看出,2種灌水方式下黃瓜莖流速率的日變化趨勢(shì)相似,都呈先增大,后減小的趨勢(shì),但在MSDI灌水方式下,當(dāng)開(kāi)啟微噴灌后莖流速率下降明顯,每次持續(xù)下降約30 min,整個(gè)觀測(cè)時(shí)段內(nèi)MSDI灌水方式下植株莖流速率始終高于SDI方式,其原因可能是MSDI灌水方式所選植株莖粗(6.55 mm)比SDI 灌水方式所選植株莖粗(5.97 mm)較大,植株長(zhǎng)勢(shì)更好,造成莖流速率變大。
圖4 2種灌水方式下黃瓜莖流速率日變化規(guī)律
夏季高溫時(shí)時(shí)段,為防止莖流速率過(guò)大所導(dǎo)致的葉片失水嚴(yán)重,作物將關(guān)閉部分氣孔進(jìn)行自我保護(hù)。莖流速率除受到氣孔導(dǎo)度等內(nèi)因的影響,還受氣象因子等外因影響,不同氣象因子對(duì)莖流速率的影響程度不同,2種灌水方式下黃瓜莖流速率與氣象因子的相關(guān)性分析如表1所示。
表1 溫室環(huán)境2種灌水方式下黃瓜莖流速率與氣象因子的相關(guān)性分析
注:**分別表示在0.01 水平上顯著相關(guān),=33;T為空氣溫度;RH為空氣相對(duì)濕度;SR為太陽(yáng)輻射;R為太陽(yáng)凈輻射。
Note: ** represents significantly correlated at 0.01 level, respectively,=33;Tis air temperature; RH is relative humidity; SR is solar radiation;Ris net radiation .
在MSDI和SDI灌水方式下,黃瓜莖流速率與溫室內(nèi)氣象因子具有很高的相關(guān)性,其中莖流速率與空氣溫度(T)、太陽(yáng)輻射(SR)和凈輻射(R)呈極顯著正相關(guān)(<0.01),與相對(duì)濕度(RH)呈極顯著負(fù)相關(guān)(<0.01),表明T、SR、R和RH是影響黃瓜莖流速率的主要因素。進(jìn)一步對(duì)植株莖流速率與溫室氣象因子進(jìn)行回歸分析,結(jié)果如表2所示。
表2 2種灌水方式下黃瓜莖流速率與氣象因子逐步回歸分析
經(jīng)檢驗(yàn),回歸模型顯著性水平均小于0.01,其中,凈輻射(R)和氣溫(T)在MSDI和SDI灌水方式下均入選回歸方程,表明2種灌水方式下,R和T為影響黃瓜莖流速率的主要?dú)庀笠蜃樱吲c莖流速率的回歸系數(shù)均為正值,莖流速率隨R和T的增大而增大。彭致功等[25-26]認(rèn)為凈輻射(R)的影響作用最大,其次分別為RH和T,與本研究結(jié)果相似,其不同可能是本研究采用微噴改變了作物冠層周圍的空氣相對(duì)濕度所致。該結(jié)果表明采用MSDI灌水方式可通過(guò)降低T,增加RH,來(lái)減小黃瓜莖流速率。
圖5為2種灌水方式下黃瓜葉片氣孔導(dǎo)度和光合速率的日變化規(guī)律。2種灌水方式下黃瓜葉片氣孔導(dǎo)度均為先升高后降低的單峰型曲線,如圖5a。MSDI灌水方式下葉片氣孔導(dǎo)度在08:00-10:00急劇上升,而SDI灌水方式下上升較為緩慢,2種灌水方式葉片氣孔導(dǎo)度均在10:00達(dá)到最大值,隨后因溫室內(nèi)氣溫升高,作物為防止葉片失水嚴(yán)重,會(huì)關(guān)閉部分氣孔進(jìn)行自我保護(hù),從而使得氣孔導(dǎo)度迅速下降[27]。氣孔的不均勻關(guān)閉降低了細(xì)胞間隙CO2濃度進(jìn)而降低了植物的光合速率[28]。2種灌水方式下黃瓜葉片光合速率日變化規(guī)律如圖5b所示,葉片光合速率與氣孔導(dǎo)度變化規(guī)律相似,但略滯后于氣孔導(dǎo)度。MSDI灌水方式對(duì)提高黃瓜葉片氣孔導(dǎo)度和光合速率效果明顯,日平均氣孔導(dǎo)度和光合速率分別較SDI灌水方式提高了182.8%和92.4%。
圖5 2種灌水方式下黃瓜氣孔導(dǎo)度和光合速率日變化
夜間葉片處于黑暗環(huán)境,Monitoring PAM測(cè)得光系統(tǒng)II的最大光合效率,它反映了植株潛在最大光能轉(zhuǎn)換效率,在植株未受到任何脅迫條件下該參數(shù)變化很小且不受物種的影響,一般為0.8左右[29];白天葉片吸收太陽(yáng)輻射進(jìn)行光合作用,此階段測(cè)得光系統(tǒng)II的實(shí)際光合效率,反映了光合機(jī)構(gòu)目前的實(shí)際光能轉(zhuǎn)換效率[30]。
圖6 2種灌水方式下黃瓜光系統(tǒng)Ⅱ光合效率的變化(2017-06-15)
從圖6可以看出,MSDI和SDI灌水方式下夜間(19:00至次日05:00)葉片最大光合效率分別約為0.74和0.77,2種灌水方式下葉片最大光合效率幾乎一致,接近正常值0.8,表明2種灌水方式下的葉片均沒(méi)有受到不可逆的高溫?fù)p害[29]。光系統(tǒng)II的實(shí)際光合效率在白天(05:00至19:00)迅速下降,在中午溫室內(nèi)高溫時(shí)達(dá)到最低值。MSDI灌水方式下葉片實(shí)際光能轉(zhuǎn)換效率明顯大于SDI方式,MSDI灌水方式下黃瓜葉片日平均實(shí)際光合效率為0.57,SDI灌水方式下黃瓜葉片日平均實(shí)際光合效率為0.47,采用MSDI灌水方式可緩解溫室高溫對(duì)光系統(tǒng)II實(shí)際光能轉(zhuǎn)換效率的脅迫,改善葉肉細(xì)胞的光合能力。
黃瓜最適生長(zhǎng)溫度為晝溫25 ℃,夜溫15 ℃,40 ℃以上高溫會(huì)引起作物萎蔫,50 ℃高溫會(huì)使作物枯萎[31]。夏季中午光照強(qiáng),溫室內(nèi)易形成高溫環(huán)境,氣溫常達(dá)到40 ℃以上,這一生長(zhǎng)環(huán)境不利于黃瓜正常生長(zhǎng),在溫室高溫環(huán)境時(shí),利用MSDI灌水方式調(diào)節(jié)溫室作物冠層高溫環(huán)境,降低氣溫,增加相對(duì)濕度,對(duì)于促進(jìn)黃瓜生長(zhǎng)效果明顯,其結(jié)果直接體現(xiàn)在黃瓜株高和莖粗上。有研究表明,當(dāng)溫室內(nèi)相對(duì)濕度持續(xù)高于80%~90%易產(chǎn)生病蟲(chóng)害,造成作物減產(chǎn)等相關(guān)問(wèn)題[32-33]。本研究結(jié)果顯示,溫室內(nèi)夜間相對(duì)濕度最高且較為穩(wěn)定,白天隨著太陽(yáng)輻射的增強(qiáng),相對(duì)濕度逐漸降低,于15:00點(diǎn)左右達(dá)到最低值,MSDI灌水方式開(kāi)啟微噴灌時(shí),溫室內(nèi)相對(duì)濕度約45%~65%,開(kāi)啟微噴灌后,相對(duì)濕度均比最大增幅約6%,微噴灌僅小幅提升了每日最低相對(duì)濕度,并不會(huì)造成溫室持續(xù)高濕環(huán)境。
光照過(guò)強(qiáng)、葉溫過(guò)高、水汽壓虧缺造成作物光合速率的下降,其中相對(duì)濕度的降低,部分氣孔關(guān)閉是導(dǎo)致光合速率降低的主要生態(tài)、生理因子[34]。本研究結(jié)果顯示,溫室內(nèi)氣溫和葉溫達(dá)到全天最高值,相對(duì)濕度降至最低時(shí),作物光合速率最低,且葉片氣孔導(dǎo)度處于最低的水平,造成氣孔部分關(guān)閉的原因是作物蒸騰速率過(guò)高,由于溫濕度是影響作物蒸騰速率的重要因素,因此,通過(guò)調(diào)節(jié)溫室內(nèi)溫度和濕度可以降低作物蒸騰速率,減少氣孔關(guān)閉程度,進(jìn)而減小其對(duì)作物光合速率的抑制。
葉綠素?zé)晒饪梢詮谋举|(zhì)上反映作物光合作用過(guò)程的變化,高溫處理的葉片中由于CO2同化能力下降,造成對(duì)葉綠體中三磷酸腺苷(ATP)的需求減少,引起過(guò)剩光能增加,導(dǎo)致最大光合效率和實(shí)際光合效率明顯降低[35-36],同時(shí),李建建等[37]研究表明42℃/27℃(晝/夜溫度)高溫脅迫下會(huì)導(dǎo)致光系統(tǒng)II結(jié)構(gòu)在短期內(nèi)不可恢復(fù)的傷害。本研究結(jié)果顯示,由于MSDI灌水方式可降低葉溫約4 ℃,葉片受高溫影響較小,該灌水方式光系統(tǒng)II的實(shí)際光轉(zhuǎn)換效率明顯高于SDI灌水方式。
綜上所述,MSDI灌水方式較SDI可降低溫室內(nèi)氣溫,增加最低相對(duì)濕度,同時(shí)降低葉片溫度約4 ℃。此外,采用MSDI灌水方式可促進(jìn)黃瓜生長(zhǎng),降低植株莖流速率,明顯提高日平均實(shí)際光合效率,其中,黃瓜葉片日平均氣孔導(dǎo)度和光合速率較SDI灌水方式下提高了182.8%和92.4%。
通過(guò)對(duì)比分析微噴灌結(jié)合滴灌(micro-sprinkler irrigation combined with drip irrigation,MSDI)和地表滴灌(surface drip irrigation,SDI)對(duì)溫室高溫環(huán)境及黃瓜生長(zhǎng)生理特性方面的影響,得到以下結(jié)論:
1)采用MSDI灌水方式可增加溫室內(nèi)相對(duì)濕度,降低氣溫,改善溫室高溫環(huán)境,同時(shí)可降低葉片溫度約4℃。
2)通過(guò)溫室內(nèi)氣象因子與植株莖流速率的相關(guān)性分析及逐步回歸分析表明,凈輻射和氣溫是影響植株莖流速率的主要?dú)庀笠蜃?,MSDI灌水方式通過(guò)降低氣溫,增加空氣相對(duì)濕度,使植株莖流速率下降。
3)MSDI灌水方式有效提高了黃瓜葉片氣孔導(dǎo)度和光合速率,日平均氣孔導(dǎo)度和光合速率分別較SDI灌水方式高182.8%和92.4%。
4)2種灌水方式夜間葉片最大光合效率幾乎一致,約為0.77,白天實(shí)際光能轉(zhuǎn)換效率MSDI灌水方式為0.57,SDI方式0.47。利用MSDI灌水方式可提高葉片實(shí)際光能轉(zhuǎn)換效率,改善葉肉細(xì)胞的光合能力。
[1] 李中華,王國(guó)占,齊飛,等. 我國(guó)設(shè)施農(nóng)業(yè)發(fā)展現(xiàn)狀及發(fā)展思路[J]. 中國(guó)農(nóng)機(jī)化,2012(1):7-10.
Li Zhonghua, Wang Guozhan, Qi Fei. Current situation and thinking of development of protected agriculture in China[J]. Chinese Agricultural Mechanization, 2012(1): 7-10. (in Chinese with English abstract)
[2] 王新坤,李紅. 我國(guó)溫室的研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 排灌機(jī)械工程學(xué)報(bào),2010,28(2):179-184.
Wang Xinkun, Li Hong. Current research status and development trend of greenhouse in China[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(2): 179-184. (in Chinese with Englishabstract)
[3] 孫維拓,陳曉麗,楊其長(zhǎng),等. 水墻封閉溫室夏季降溫特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(8):162-170.
Sun Weituo, Chen Xiaoli, Yang Qichang, et al. Cooling characteristics of closed greenhouse with water-walls in summer[J]. Transactions of the Chinese Society Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 162-170. (in Chinese with English abstract)
[4] 陳傳艷,趙純清,張繼元,等. 溫室吸濕劑噴淋除濕降溫系統(tǒng)的影響因子分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(10):202-207.
Chen Chuanyan, Zhao Chunqing, Zhang Jiyuan, et al. Anaysis of influencing factors of dehumidifying and cooling system with moisture absorbent spraying for greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(10): 202-207. (in Chinese with English abstract)
[5] 王玉彥,黨選民,朱國(guó)鵬. 南方溫室不同時(shí)段遮陽(yáng)降溫效果及對(duì)甜椒生長(zhǎng)發(fā)育和產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005(增刊2):64-66.
Wang Yuyan, Dang Xuanmin, Zhu Guopeng, et al.Sunshading and cooling effects of southern greenhouse under different periods and its influences on growth, development and yield of the sweet pepper[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005 (Suppl.2): 64-66. (in Chinese with English abstract)
[6] 劉佳,崔濤,王朝棟,等. 連棟溫室夏季降溫技術(shù)研究[J]. 農(nóng)機(jī)化研究,2018,40(2):262-268.
Liu Jia, Cui Tao, Wang Chaodong, et al. Cooling technology of multi-span greenhousein summer[J]. Journal of Agricultural Mechanization Research, 2018, 40(2): 262-268. (in Chinese with English abstract)
[7] 趙杰強(qiáng),趙云,吳偉雄. 塑料溫室中濕簾風(fēng)機(jī)通風(fēng)條件下降溫效果研究[J]. 農(nóng)業(yè)工程,2012,2(10):13-15.
Zhao Jieqiang, Zhao Yun, Wu Weixiong. Cooling effects with fan pad ventilated in plastic greenhouse[J]. Agricultural Engineering, 2012, 2(10): 13-15. (in Chinese with English abstract)
[8] Lebourgeois V, Chopart J L, Begue A, et al. Towards using a thermal infrared index combined with water balance modelling to monitor sugarcane irrigation in a tropical environment[J]. Agricultural Water Management, 2010, 97: 75-82.
[9] 趙黎明,李明,鄭殿峰,等. 灌水方式與種植密度對(duì)寒地水稻產(chǎn)量及光合物質(zhì)生產(chǎn)特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(6):159-169.
Zhao Liming, Li Ming, Zheng Dianfeng, et al. Effects of irrigation methods and rice planting densities on yield and photosynthetic characteristics of matter production in cold area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 159-169. (in Chinese with English abstract)
[10] Ravikumar V, Vijayakumar G, Simunekd J, et al. Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model[J]. Agricultural Water Management, 2011, 98: 1431-1440.
[11] 孔清華,李光永,王永紅,等. 地下滴灌施氮及灌水周期對(duì)青椒根系分布及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(增刊2):38-42.
Kong Qinghua, Li Guangyong, Wang Yonghong, et al. Effects of nitrogen application and irrigation cycle on bell pepper root distribution and yield under subsurface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(Suppl.2): 38-42. (in Chinese with English abstract)
[12] 張航,李久生. 華北平原春玉米生長(zhǎng)和產(chǎn)量對(duì)滴灌均勻系數(shù)及灌水量的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(11):176-182.
Zhang Hang, Li Jiusheng. Response of growth and yield of spring corn to drip irrigation uniformity and amount in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 176-182. (in Chinese with English abstract)
[13] 劉海軍,康躍虎,劉士平. 噴灌對(duì)冬小麥生長(zhǎng)環(huán)境的調(diào)節(jié)及其對(duì)水分利用效率影響的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(6):46-51.
Liu Haijun, Kang Yuehu, Liu Shiping. Regulation of field environmental condition by sprinkler irrigation and its effect on water use efficiency of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(6): 46-51. (in Chinese with English abstract)
[14] 杜堯東,王建,劉作新,等. 春小麥田噴灌的水量分布及小氣候效應(yīng)[J]. 應(yīng)用生態(tài)學(xué)報(bào),2001,12(3): 398-400.
Du Yaodong, Wang Jian, Liu Zuoxin, et al. Water distribution and microclimatic effects of sprinkler irrigation on spring wheat field[J]. Chinese Journal of Applied Ecology, 2001, 12(3): 398-400. (in Chinese with English abstract)
[15] 楊曉光,陳阜,宮飛,等. 噴灌條件下冬小麥生理特征及生態(tài)環(huán)境特點(diǎn)的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2000,16(3):35-37. Yang Xiaoguang, Chen Fu, Gong Fei, et al. Physiological and ecological characteristics of winter wheat on the condition of sprinkle irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(3): 35-37. (in Chinese with English abstract)
[16] Tolk J A, Howell T A, Steiner J L, et al. Role of transpiration suppression by evaporation of intercepted water in improving irrigation efficiency[J]. Irrigation Science, 1995, 16(2):89-95.
[17] Salmeron M, Urrego Y F, Isla R. Effect of non-uniform sprinkler irrigation and plant density on simulated maize yield[J]. Agricultural Water Management, 2012, 113: 1-9.
[18] 趙淑梅,山口智治,周清,等. 現(xiàn)代溫室濕簾風(fēng)機(jī)降溫系統(tǒng)的研究[J]. 農(nóng)機(jī)化研究,2007(9):147-152.
Zhao Shumei, Tomoharu Yaguchi, Zhou Qing, et al. Study on pad and fan cooling system in modern greenhouse[J]. Journal of Agricultural Mechanization Research, 2007(9): 147-152. (in Chinese with English abstract)
[19] 覃建美,余寶泉,陳全有. 節(jié)水灌溉系統(tǒng)在溫室花卉生產(chǎn)上的應(yīng)用研究[J]. 現(xiàn)代農(nóng)業(yè)科技,2007(16):14-16.
Tan Jianmei, Yu Baoquan, Chen Quanyou. Application of water saving irrigation system in flower production in greenhouse[J]. Modern Agricultural Science and Technology, 2007(16): 14-16. (in Chinese with English abstract)
[20] Hebbar S S, Ramachandrappa B K, Nanjappa H V, et al. Studies on NPK drip fertigation in field growntomato (Lycopersicon esculentum Mill.)[J]. European Journal of Agronomy, 2004, 21(1): 117-127.
[21] 郭文忠,陳青云,高麗紅,等. 設(shè)施蔬菜生產(chǎn)節(jié)水灌溉制度研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(增刊2):24-27.
Guo Wenzhong, Chen Qingyun, Gao Lihong, et al. Present situation and developmental tendency on system of water-saving irrigation of vegetable production in protective cultivation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(Suppl 2): 24-27. (in Chinese with English abstract)
[22] 劉安,劉旭,黃嵐,等. 基于熱平衡法檢測(cè)植物莖流傳感器的標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(增刊2):6-10.
Liu An, Liu Xu, Huang Lan, et al. A calibration method for stem-flow sensor based on heat balance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(Supp.2): 6-10. (in Chinese with English abstract)
[23] 申寶營(yíng),李毅念,趙三琴,等. 暗期補(bǔ)光對(duì)黃瓜幼苗形態(tài)調(diào)節(jié)效果及綜合評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(22):201-208.
Shen Baoying, Li Yinian, Zhao Sanqin, et al. Effect of dark period lighting regulation on cucumber seedling morphology and comprehensive evaluation analysis and comprehensive evaluation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 201-208. (in Chinese with English abstract)
[24] 費(fèi)良軍,汪愛(ài)科,王龍飛,等. 日光溫室基質(zhì)栽培櫻桃西 紅柿滴灌試驗(yàn)研究[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(12):1070-1076.
Fei Liangjun, Wang Aike, Wang Longfei, et al. Experiment on substrate cultivation of cherry tomatoes in sunlight greenhouse with drip irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(12): 1070-1076. (in Chinese with English abstract)
[25] 彭致功,段愛(ài)旺,劉祖貴,等. 日光溫室條件下茄子植株蒸騰規(guī)律的研究[J]. 灌溉排水,2002,21(2):47-50.
Peng Zhigong, Duan Aiwang, Liu Gugui, et al. Research on plant transpiration in eggplant in solar-heated greenhouse[J]. Journal of Irrigation and Drainage, 2002, 21(2): 47-50. (in Chinese with English abstract)
[26] 龔雪文,劉浩,孫景生,等. 日光溫室番茄不同空間尺度蒸散量變化及主控因子分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):166-175.
Gong Xuewen, Liu Hao, Sun Jingsheng, et al. Variation of evapotranspiration in different spatial scales for solar greenhouse tomato and its controlling meteorological factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 166-175. (in Chinese with English abstract)
[27] Zhang Baozhong, Xu Di, Liu Yu, et al. Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China[J]. Agricultural and Forest Meteorology, 2016, 216(5): 1-12.
[28] Franks P J, Farqnhar G D. The mechanical diversity of stomata and its significance in gas-exchange control[J]. Plant Physiology, 2007, 143(1): 78-87.
[29] 林琭,湯昀,張紀(jì)濤,等. 不同水勢(shì)對(duì)黃瓜花后葉片氣體交換及葉綠素?zé)晒鈪?shù)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2015,26(7):2030-2040.
Lin Lu, Tang Yun, Zhang Jitao, et al. Effects of different water potentials on leaf gas exchange and chlorophyll fluorescence parameters of cucumber during post-flowering growth stage[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 2030-2040. (in Chinese with English abstract)
[30] 汪炳良,徐敏,史慶華,等. 高溫脅迫對(duì)早熟花椰菜葉片抗氧化系統(tǒng)和葉綠素及其熒光參數(shù)的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2004,37(8):1245-1250.
Wang Bingliang, Xu Min, Shi Qinghua, et al. Effects of high temperature stress on antioxidant systems, chlorophyll and chlorophyll fluorescence parameters in early cauliflower leaves[J]. Scientia Agricultura Sinica, 2004, 37(8): 1245-1250. (in Chinese with English abstract)
[31] 田婧,郭世榮. 黃瓜的高溫脅迫傷害及其耐熱性研究進(jìn)展[J]. 中國(guó)蔬菜,2012, 18:43-52.
Tian Jing, Guo Shirong. Research progress on high-temperature stress in jury and heat tolerance of cucumher[J]. China Vegetables, 2012, 18: 43-52. (in Chinese with English abstract)
[32] 張洪印. 溫室大棚黃瓜病蟲(chóng)害綜合防治技術(shù)[J]. 南方農(nóng)業(yè),2011,5(4):17-18. Zhang Hongyin. Integrated control technology of cucumber pests and diseases in greenhouse[J]. South China Agriculture, 2011, 5(4): 17-18. (in Chinese with English abstract)
[33] 陳志杰,張淑蓮,梁銀麗,等. 設(shè)施蔬菜病蟲(chóng)綠色防治技術(shù)初探[J]. 西北植物學(xué)報(bào),2003,23(8):1452-1457.
Chen Zhijie, Zhang Shulian, Liang Yingli, et al.Primary investigation on the ecological technologies of prevention and cure on diseases and insect pests in protected vegetable production[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(8): 1452-1457. (in Chinese with English abstract)
[34] 許大全. 光合作用“午睡”現(xiàn)象的生態(tài)、生理與生化[J]. 植物生理學(xué)通訊,1990(6):5-10.
Xu Daquan. Ecology physiology and biochemistry of midday depression of photosynthesis[J]. Plant Physiology Communications, 1990(6): 5-10. (in Chinese with English abstract)
[35] Karim A, Fukamachi H, Hidaka T. Photosynthetic performance of Vigna radiate L. leaves developed at different temperature and irradiance levels[J]. Plant Science, 2003,164(4): 451-458.
[36] Yamada M, Hidaka T, Fukamachi H. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence[J]. Sci Hortic, 1996, 67(1): 39-48.
[37] 李建建,常雅君,郁繼華. 高溫脅迫下黃瓜幼苗的某些光合特性和PSⅡ光化學(xué)活性的變化[J]. 植物生理學(xué)通訊,2007,43(6):1085-1088.
Li Jianjian, Chang Yajun, Yu Jihua. Changes of some photosynthetic properties and photosystem II photochemical activities in cucumber seedlings under high temperature stress[J]. Plant Physiology Journal, 2007, 43(6): 1085-1088. (in Chinese with English abstract)
Effects of micro-sprinkler irrigation combined with drip irrigation on greenhouse high temperature environment and crop growth physiological characteristics
Zhang Chuan1, Zhang Hengnian1, Yan Haofang2, Samuel Joe Acquah2, Xing Deke1
(1.212013,; 2.,212013,)
Micro-sprinkler irrigation combined with drip irrigation(MSDI) refers to the use of crop canopy micro-sprinkler irrigation to improve crop growth environment on the basis of drip irrigation. The differences in greenhouse high temperature environment and crop growth physiological characteristics under two kinds of irrigation modes, MSDI and surface drip irrigation (SDI), were compared and analysed. The field observations of greenhouse high temperature environment and growth physiological characteristics of cucumber under two irrigation modes were conducted in a Venlo-type glass greenhouse in Jiangsu China from February to June 2017. The results show that greenhouse environmental variables like temperature and humidity of the canopy at different heights (0.8, 1.3 and 1.8 m) during night hours (18:00-06:00) are basically the same. However, with the increase of solar radiation during the daytime hours, the air temperature rises whereas the relative humidity falls. The pattern of fluctuation is as follows: The highest air temperature and the lowest relative humidity all occur at 1.8 m level; the highest relative humidity and the lowest air temperature also occur at 0.8 m level; and the air temperature and relative humidity levels at height 1.3 m appeared to be intermediate between that of the 0.8 and 1.8 m. The application of MSDI can increase the relative humidity of the greenhouse, reduce the air temperature and the leaf temperature to about 4 ℃. In terms of crop growth physiology characteristics, MSDI can increase plant height and stem diameterand promote cucumber plant growth. Correlation analysis results showed that the sap flow rate of cucumber plant was significantly positively correlated with air temperature, solar radiation and net radiation (<0.01), and significantly negatively correlated with relative humidity (<0.01). Applying MSDI can reduce the sap flow rate by decreasing the air temperature and increasing the relative humidity. The maximum photosynthetic efficiencies of cucumber under the two irrigation modes were almost the same, with the values of 0.74 (MSDI) and 0.77 (SDI), respectively. However, the daily average photosynthetic efficiencies were significantly different between the two irrigation modes, with the values of 0.57 and 0.47, respectively. This phenomenon indicates that the use of MSDI irrigation method can alleviate the stress of greenhouse high temperature on the actual light energy conversion efficiency of the PSII and improve the photosynthetic capacity of mesophyll cells. Under the two irrigation methods (MSDI and SDI), the stomatal conductance of cucumber leaves increased initially, and then decreased rapidly to a minimum. The photosynthetic rate behaved similarly, but slightly lagged behind the stomatal conductance. The effect of MSDI irrigation on the stomatal conductance and photosynthetic rate of greenhouse cucumber leaves was obvious during the study. The average daily stomatal conductance and photosynthetic rate of cucumber leaves under MSDI mode were higher than SDI mode with 182.8% and 92.4%, respectively. The results have significant importance in reasonable regulation of greenhouse high temperature environment, and in improving greenhouse crop yield.
irrigation; greenhouse; crops;micro-sprinkler irrigation; surface drip irrigation; sap flow; photosynthetic rate; photosynthetic efficiency
10.11975/j.issn.1002-6819.2018.20.011
S275
A
1002-6819(2018)-20-0083-07
2018-05-09
2018-08-30
國(guó)家自然科學(xué)基金項(xiàng)目(51609103,51509107);江蘇省自然科學(xué)基金(BK20150509,BK20140546);
張 川,江蘇大學(xué)農(nóng)業(yè)裝備工程學(xué)院副研究員,博士, 2017年赴荷蘭代爾夫特理工大學(xué)研修,主要從事農(nóng)田水文、節(jié)水灌溉理論與技術(shù)方面的研究。Email:zhangchuan@ujs.edu.cn
張 川,張亨年,閆浩芳,Samuel Joe Acquah,邢德科. 微噴灌結(jié)合滴灌對(duì)溫室高溫環(huán)境和作物生長(zhǎng)生理特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):83-89. doi:10.11975/j.issn.1002-6819.2018.20.011 http://www.tcsae.org
Zhang Chuan, Zhang Hengnian, Yan Haofang, Samuel Joe Acquah, Xing Deke. Effects of micro-sprinkler irrigation combined with drip irrigation on greenhouse high temperature environment and crop growth physiological characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 83-89. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.20.011 http://www.tcsae.org