• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    柱狀Co3O4催化劑的乏風催化燃燒性能

    2018-10-12 09:44:56牛汝月劉鵬程李晉平
    無機化學(xué)學(xué)報 2018年10期
    關(guān)鍵詞:柱狀晉中鵬程

    牛汝月 劉鵬程 李 威 王 爽*,,2 李晉平*,

    (1氣體能源高效清潔利用山西省重點實驗室,太原 030024)

    (2太原理工大學(xué)環(huán)境科學(xué)與工程學(xué)院,晉中 030600)

    0 Introduction

    As is known,methane is difficult to be oxidized due to the strongest C-H bond among hydrocarbons,however,it has been studied extensively over the past decades,and the catalytic combustion is still a challenging technology that can convert methane into carbon dioxide and water at relatively low temperature[1-4].Especially,ventilation airmethane(VAM)ismuch more difficult to be oxidized for its low concentration (0.1%~1.0%(V/V))and fast flow rate[5].Up to now,about 60%~70%methane is emitted to the atmosphere through VAM all over the world,particularly,in China,about 85%~90%of the total coal mine methane emissions mainly comes from VAM each year[6-7].Moreover,the warming potential of methane is higher than that of carbon dioxide.Therefore,the efforts to remove methane from VAM and limit the emission of toxic gases become rather important[8].

    Accordingly,catalysts for methane combustion undergo very demanding conditions:they must resist thermal,mechanical shocks and exhibit high activity.Noble metal-based catalysts,such as supported Pd and Pt catalysts,are well-known to be high activity at low temperature.Unfortunately,they are limited in industrial applications due to their high cost and low thermal stability[9-11].Alternatively,oxide catalysts such as perovskites,hexaaluminates and transition metal oxides catalysts are the promising combustion catalysts with a low cost and relatively high thermal stability in methane combustion[12-15].Compared to other oxide catalysts,cobalt oxide (Co3O4)is regarded as themost efficient catalyst,and many researchers identified that the activity for methane combustion follows the order:Co3O4>CuO>NiO>Fe2O3>Mn2O3>Cr2O3[16-18].

    Generally,themorphologies and the crystal planes of Co3O4nanocrystals have promoting performances in methane combustion.Chen et al.[19]reported that the Co3O4catalysts containing {111}planes exhibit the higher catalytic activity than the {100}planes for the methane combustion,which confirms the effect of crystal planes on the catalytic performance.Moreover,some researches show that the high Co3+/Co2+ratio is favorable to the methane combustion,because it can facilitate desorption of oxygen and in turn assistmethane combustion[20-21].Furthermore,the adsorbed oxygen species play an important role in catalytic oxidation reactions[22-24].For example,Fei et al.[25]suggested that the Co3O4nanotubes have higher catalytic activity than the Co3O4nanoparticles in the methane combustion,because the nanotubes Co3O4possessmuchmore adsorbed oxygen.

    In the current work,a Co3O4rectangular prism catalyst was prepared by a two-step method,and its catalytic activity was evaluated by the temperature of methane combustion in VAM.The relationship between the structure and catalytic performance of the abovementioned catalyst is well studied based on plenty of characterizations such as PXRD,SEM,HRTEM,N2adsorption-desorption,H2-TPR,and XPS.

    1 Experimental

    1.1 M aterials

    All the reagents were obtained from commercial sources and used without further purification.Cobaltギa(chǎn)cetate tetrahydrate (99.5%)was purchased from Sinopharm Chemical Reagent Co.,Ltd.Oxalic acid (99.0%)was purchased from Tianjin Chemical Reagent Co.,Ltd.Hexamethylenetetramine (99.0%)was purchased from Tianjin Beichen Founder Reagent Factory.All used gaseswere high pure gases(99.99%).

    1.2 Preparation of the catalysts

    In a typical synthesis procedure,20mmol of Cobaltギa(chǎn)cetate tetrahydrate was dissolved in 100 mL of distilled water at 40℃.Then 10 mL of an aqueous solution containing 20 mmol of hexamethylenetetramine and 4 mmol of oxalic acid was added dropwise under stirring within two minutes.The pink turbidity solution was refluxed at 95℃for 6 h and a light pink Co-based precursor was obtained.The Co3O4wasmade by heating the precursor at350℃in air for 2 h.

    1.3 Characterization of the catalyst

    The phase purity and crystal structure of the catalysts were examined on a Rigaku Mini FlexⅡbenchtop X-ray diffractometer using Cu Kαradiation(30 kV,15mA,λ=0.154 18 nm)in the 2θrange of 10°~80°with a step sizeof0.01°and a scanning rateof8°·min-1.

    Morphologies of the sampleswere observed by SEM(Hitachi,SU8010,3 kV).The HRTEM measurementwas carried out with FEI Tecnai G2 F20 S-Twin equipment operated at an accelerating voltage of 200 kV.The catalyst powder was ultrasonically dispersed in ethanol and dropped onto a copper grid coated with amorphous carbon film,then dried in air.

    The Brunauer-Emmett-Teller(BET)surface area and pore size distribution of the catalystweremeasured with a Micromeritics TriStarⅡ3020 instrument using adsorption of N2at 77 K.Before each adsorption experiment,the catalystwas heated at 200℃under vacuum for 3 h.Barrett-Joyner-Halenda(BJH)method was used to calculate the pore size distribution from desorption branch of the isotherm.

    The X-ray photoelectron spectroscopy (XPS)test was performed on an ESCALAB 220i-XL spectrometer by using Al Kα(1 486.6 eV)as the X-ray source.The equipment base pressure was 3×10-5Pa,and the sample was characterized at room temperature.Detailed spectra were recorded for the region of Co2p and O1s photoelectronswith a 0.1 eV step.Analysiswas performed by the XPS Peak Fit software,and charging effects were corrected by adjusting binding energy (B.E.)of C1s(284.6 eV).

    The H2-temperature programmed reduction(H2-TPR)was analyzed with a Micromeritics AutoChemⅡ2920 instrument.Prior to H2-TPR experiment,50 mg catalystwas purged in flowing Ar at 200℃for 1 h with a total flow rate of 30 mL·min-1,then cooled down to 50℃in Ar flow.The reduction process was carried out in the temperature range of 50~900 ℃ in H2/Ar(VH2/VAr=10%,30 mL·min-1).The hydrogen consumption was estimated from the area under the peak after taking the thermal conductivity detector response into consideration.Calibration of thermal conductivity detector(TCD)signal has been done with an Ag2O standard (Merck,reagent grade).The data processing has been done by using Origin Pro 8.0 program,which allows the deconvolution of the temperature-programmed reduction(TPR)peaks in well-defined Gaussian-shaped components.

    1.4 Catalytic activity measurement

    The methane combustion on Co3O4rectangular prism catalystwas carried out at atmospheric pressure in a conventional flow system using a fixed-bed quartz micro-reactor(length=400mm,inner diameter=6mm).A gasmixture consisted of CH4,O2and N2(VCH4∶VO2∶VN2=1∶20∶79)was introduced into the quartzmicro-reactor at a total flow rate of 40 mL·g-1·h-1corresponding to a gas hourly space velocity (GHSV)of 16 000 mL·g-1·h-1.When GHSV changed from 16 000 to 112 500 mL·g-1·h-1,the total flow rate was varied from 40 to 150 mL·g-1·h-1.According to different GHSVs,80~150 mg of catalysts (20~40 mesh)were loaded in the quartz tube micro-reactor,respectively.Prior to each measurement,the catalyst was pretreated at 200℃for 1 h with a nitrogen flow of30mL·min-1.Activity datawere obtained at steady state condition from 200 to 450℃while increasing the temperature by 50℃.The effluent gases were analyzed online with a gas chromatograph(ZHONGKEHUIFEN GC-6890A)equipped with a TDX-01 column and a thermal conductivity detector.The methane conversion (XCH4)was calculated according to the following equation:XCH4=(X0-XT)/X0×100%,where X0refers to the volumetric concentration ofmethane in the feed and XTcorresponds to the concentration ofmethane at the given temperature.In all tests,CO2and H2O were the only detected products in the exhaust stream during reaction,and CO was not found in the effluent gases,implying the conversion of methane to carbon dioxide.For comparison,commercial Co3O4was also investigated.

    2 Results and discussion

    2.1 Structural and morphological analysis

    Fig.1a presents the PXRD patterns of as-prepared CoC2O4·2H2O precursors.The presence of peaks at 2θ=18.7°,22.7°,30.1°,35.0°,37.6°,40.4°,43.3°,47.3°,48.4°,and 51.1°could be assigned to the (202),(004),(400),(022),(206),(315),(224),(602),(026)and(130)planes of CoC2O4·2H2O (PDF No.48-1068).In the Fig.1b,the diffraction peaks of Co3O4rectangular prism at 19.0°,31.2°,36.6°,38.5°,44.8°,55.7°,59.4°and 65.3°could be assigned to the (111),(220),(311),(222),(400),(422),(511)and(440)planes of the spinel phase Co3O4(PDFNo.42-1467).In the case of the Co3O4sample,no other peaks can be detected for impurities,which indicate that the sample consists of pure Co3O4phase.

    In order to have a better understanding of the morphological and structural,a detailed microscopy investigation by SEM and high-resolution analysis are performed on both CoC2O4·2H2O precursors and Co3O4catalysts.Fig.2 displays SEM imags of the as-prepared CoC2O4·2H2O at 95 ℃ and the corresponding Co3O4products after calcination.As shown in Fig.2a,most CoC2O4·2H2O are uniform rectangular prismswith smooth surfaces,and the size distribution is in the range of 2~5 μm(Fig.2b).Fig.2(c,d)show the SEM images of the prepared Co3O4catalysts after calcination at 350℃.It is found thatmost of the Co3O4catalysts wellmaintain the rectangular prism shape.Fig.3 shows the HRTEM images of Co3O4catalysts.Seen in Fig.3a,the Co3O4catalyst is formed by the accumulation of small particles of 10~20 nm,ultrasonication results in the breakdown of rectangular prisms into nanoparticles.Their lattice fringes are clear(Fig.3b),which are attributed to(220)planes with a lattice space of 0.278 nm.The dominant exposed plane of Co3O4rectangular prisms is{111}planes,which is the plane normal to the set of(220)planes.

    Fig.1 PXRD patterns of CoC2O4·H2O precursors(a)and Co3O4 catalysts(b)

    Fig.2 SEM images of(a,b)CoC2O4·H2O precursors and(c,d)Co3O4 catalysts

    Fig.3 HRTEM images for Co3O4 catalysts

    2.2 Specific surface area and pore diameter distribution

    To further investigate the specific surface areas and the porous nature of the CoC2O4·2H2O precursors and Co3O4catalysts,Nitrogen adsorption-desorption isotherms of the two samples are shown in Fig.4,and the insets illustrate the corresponding Barrett-Joyner-Halenda(BJH)pore size distribution plots.For Co3O4catalysts,nitrogen adsorption experiment has given a typical type-Ⅳisotherm with a distinct hysteresis loop observed in the relative pressure (P/P0)range of 0.7~1.0,which is the characteristic ofmesoporousmaterials.The BET surface area for the CoC2O4·2H2O precursors and Co3O4catalysts are found to be about 4 and 45 m2·g-1,respectively.The increase of BET surface area may result from the decomposition of theCoC2O4·2H2O precursors.Moreover,the BET surface area of the commercial Co3O4catalyst is measured to be 1 m2·g-1.According to the BJH plot calculated from the nitrogen isotherm,the average pore diameter of Co3O4catalysts is about 14 nm,which indicated that the sample containsmesoscale pores.

    Fig.4 N2 adsorption-desorption isotherms of Co3O4 catalysts and CoC2O4·H2O precursors,and pore diameter distribution(inset)of Co3O4 catalysts

    2.3 X-ray photoelectron spectroscopy(XPS)

    XPS analysis was performed in order to gain the binding energy and the percentages of surface atoms.O1s and Co2p photoelectron spectra for the rectangular prism Co3O4are shown in Fig.5.As indicated in Fig.5a,three peaks have been observed.The peak at~529.7 eV(O2-)is attributed to lattice oxygen species(Olat)of the catalyst.And the peaks at ~531.3(O-)and ~533.0 eV(O2-)areattributed to theadsorptionoxygen species(Oads)[26].According to literatures,higher relative concentration ratio of Olat/Oadsis previously found to be preferable for methane combustion.The ratio of the peak intensities of the surface-adsorbed oxygen species to lattice oxygen is 1.24,thus high activity formethane combustion can be obtained[27-28].

    Two sharp peaks at 795.2 and 780.0 eV correspond to the Co2p1/2and Co2p3/2spin-orbit-split doublet peak of Co3O4spinel,respectively.There is an energy difference of approximately 15.2 eV between them.The same chemical information can be obtained by analyzing the Co2p1/2and Co2p3/2spectra.Therefore,only Co2p3/2peaks in Fig.5b are fitted and de-convoluted into two peaks at 781.8 and 779.8 eV,which are attributed to Co2+and Co3+[28-29],respectively.Co3O4,containingaCo3+/Co2+couple,is favorable tomethane combustion.Moreover,the main oxidation state of Co in the Co3O4rectangular prism is Co3+(the ratio of the peak intensities of Co3+to Co2+is 2.87),accordingly,higher oxidation state of Co species was previously found to be preferable for oxidation reactions over the Co containing catalysts[19,30].

    Fig.5 XPSspectra of O1s(a)and Co2p(b)for Co3O4 catalysts

    2.4 H2 temperature-programmed reduction(H2-TPR)

    To investigate the reducibility of the Co species in Co3O4rectangular prism and commercial Co3O4catalysts,H2-TPR experiments are carried out.The reduction profiles of the samples have been displayed in Fig.6.In this case,the Co3O4rectangular prism contains two reduction peaks,the first peak is at 256℃,which is associated with the reduction of Co3O4to CoO,and the second broad peak at 351℃is correspond to the reduction of CoO to Co.However,the commercial Co3O4catalysts have a wide reduction peak centered at 460℃.The results show that the performance of Co3O4rectangular prism is better than that of commercial Co3O4catalysts.Accordingly,the same oxide species,which has the lower reduction temperature,owing the easier activation of bondmetal-oxygen(Co-O)[31-32].

    Fig.6 H2-TPR profiles of Co3O4 rectangular prism and commercial Co3O4 catalysts

    2.5 Catalytic performance for methane oxidation

    The activity in methane complete oxidation was expressed in terms ofmethane conversion with respect to the reaction temperature for Co3O4.Accordingly,the catalytic activity of methane oxidation is evaluated by the light-off temperature(T10%),the half-conversion temperature(T50%)and the total conversion temperature(T90%),representing the temperature of methane conversions at 10%,50%and 90%,respectively.The T10%,T50%and T90%over the rectangular prism Co3O4catalyst are 236,322 and 428 ℃ at 16 000 mL·g-1·h-1,respectively(Fig.7a).However,the T10%over commercial Co3O4catalyst is 378℃,in addition,the highest methane conversion merely reached to 18.06%at 450℃.Moreover,the methane conversion over the rectangular prism Co3O4catalyst increased with increasing temperature from 200~450 ℃.To convert low-concentration methane effectively by catalytic oxidation in practical application,GHSV isa critical parameter.Thus,the effects ofGHSVs on methane conversion over the Co3O4rectangular prism catalystwere studied.A general change is observed from Fig.7a,that is,methane conversion rates decrease as increasingGHSVs.When the GHSVsare 30 000,60 000,90 000 and 112 500mL·g-1·h-1,themethane conversions are decreased 4.16%,8.54%,15.89%and 20.85%compared to 16 000 mL·g-1·h-1at 450 ℃,respectively.In general,a high GHSV has provided a short residence time and frequent contacts between catalyst and reaction gases,which leads to the decrease in the methane conversions.This result displays that enough contact time is necessary for enhancing the catalytic activity.As seen in Fig.7b,the catalytic stability of the rectangular prism Co3O4catalyst was examined at different GHSVs.After the sampleswere operated at450℃for 20 h under different GHSVs,the methane conversion rates only have slight decreases.For comparison,when the GHSV was 16 000 mL·g-1·h-1,the catalytic stability of the commercial Co3O4catalyst was tested.It can be seen that themethane conversion rates keep at approximately 16%within running stable for 20 h.

    Fig.7 (a)Methane conversion curves of Co3O4 catalysts and commercial Co3O4 catalysts;(b)Long-term stability of samples at450℃under differentGHSVs conditions

    3 Conclusions

    In summary,a novel Co3O4rectangular prism with excellent activity and good stability towards themethane combustion has been synthesized through a two-steps method.The superior catalytic activity can be attributed to the following reasons:firstly,the Co3O4rectangular prism dominantly exposed the{111}crystal planes,which confirmed the effect of crystal planes on the methane combustion performance;Secondly,high surface Co3+content and high content surface adsorbed oxygen both play crucial roles in the methane catalytic oxidation.Owing to its simplicity of synthesis,low cost and excellent methane combustion performance,the novel Co3O4rectangular prism could be a very important and promising heterogeneous catalyst.

    Acknow ledgements:The authors acknowledge the financial support of the Natural Science Foundation of China(Grant No.21671147),Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi,State Key Laboratory of Coal and CBM Co-mining.

    猜你喜歡
    柱狀晉中鵬程
    GLEASON’S PROBLEM ON THE SPACE Fp,q,s(B) IN Cn*
    晉中國家農(nóng)高區(qū)無花果采摘正當時
    硅片上集成高介電調(diào)諧率的柱狀納米晶BaTiO3鐵電薄膜
    A PRIORI BOUNDS AND THE EXISTENCE OF POSITIVE SOLUTIONS FOR WEIGHTED FRACTIONAL SYSTEMS?
    晉中市委統(tǒng)戰(zhàn)部調(diào)研晉中國家農(nóng)高區(qū)(山西農(nóng)谷)
    加快培育百億企業(yè) 建好晉中國家農(nóng)高區(qū)
    在傳統(tǒng)與創(chuàng)新中尋求制衡點
    THE CAUCHY PROBLEM FOR THE TWO LAYER VISOUS SHALLOW WATER EQUATIONS*
    晉中:率先出臺提升鄉(xiāng)村治理能力“25條”
    在K2O—Al2O3—SiO2系致密瓷中原位合成莫來石
    江蘇陶瓷(2017年2期)2017-05-30 10:48:04
    avwww免费| 欧美精品一区二区免费开放| 国产一区二区三区视频了| 欧美 亚洲 国产 日韩一| 国产精品一区二区免费欧美| 久久久久久亚洲精品国产蜜桃av| 制服诱惑二区| 99国产综合亚洲精品| 巨乳人妻的诱惑在线观看| 国产无遮挡羞羞视频在线观看| 热re99久久国产66热| 大码成人一级视频| 1024视频免费在线观看| 亚洲人成77777在线视频| 久久狼人影院| 亚洲国产欧美日韩在线播放| 一级毛片高清免费大全| 亚洲综合色网址| 欧美日韩成人在线一区二区| 狠狠狠狠99中文字幕| 成在线人永久免费视频| 国产一区二区激情短视频| ponron亚洲| 欧美国产精品va在线观看不卡| 欧美中文综合在线视频| 18禁裸乳无遮挡免费网站照片 | 免费一级毛片在线播放高清视频 | 黄网站色视频无遮挡免费观看| av不卡在线播放| 精品第一国产精品| 大片电影免费在线观看免费| 中文字幕人妻熟女乱码| 电影成人av| 国产精品 国内视频| 极品少妇高潮喷水抽搐| 国产精品国产高清国产av | 热re99久久精品国产66热6| 日日摸夜夜添夜夜添小说| 亚洲成国产人片在线观看| a级毛片在线看网站| 欧美老熟妇乱子伦牲交| 啦啦啦免费观看视频1| 午夜影院日韩av| 国产精品影院久久| 国产又爽黄色视频| 91成人精品电影| 悠悠久久av| 妹子高潮喷水视频| 午夜日韩欧美国产| 国产av又大| 国产精品久久久久久人妻精品电影| 高清视频免费观看一区二区| 亚洲国产看品久久| 天天躁狠狠躁夜夜躁狠狠躁| av线在线观看网站| 国产在线一区二区三区精| 精品免费久久久久久久清纯 | 精品国产乱码久久久久久男人| 国产精品二区激情视频| 国产精品香港三级国产av潘金莲| 午夜免费成人在线视频| 12—13女人毛片做爰片一| 建设人人有责人人尽责人人享有的| 免费在线观看视频国产中文字幕亚洲| 午夜成年电影在线免费观看| 两人在一起打扑克的视频| av福利片在线| 大香蕉久久成人网| 桃红色精品国产亚洲av| 一级作爱视频免费观看| 久久性视频一级片| 1024视频免费在线观看| 久久精品成人免费网站| 精品国产一区二区三区久久久樱花| 在线看a的网站| 最近最新中文字幕大全免费视频| 黄色女人牲交| 无遮挡黄片免费观看| 国产真人三级小视频在线观看| 亚洲全国av大片| 18禁观看日本| 午夜精品国产一区二区电影| 美女视频免费永久观看网站| 国产亚洲精品久久久久久毛片 | 无限看片的www在线观看| av国产精品久久久久影院| 最近最新中文字幕大全电影3 | 国产欧美亚洲国产| 欧美午夜高清在线| 精品久久久久久,| 欧美 日韩 精品 国产| 少妇 在线观看| 一边摸一边抽搐一进一出视频| 国产成人精品久久二区二区免费| 国产在线精品亚洲第一网站| 法律面前人人平等表现在哪些方面| 免费在线观看亚洲国产| 日本wwww免费看| 十八禁人妻一区二区| 国产精品久久久久久人妻精品电影| 露出奶头的视频| 久久天堂一区二区三区四区| avwww免费| 亚洲av成人不卡在线观看播放网| 国产精品综合久久久久久久免费 | 国产亚洲一区二区精品| 国产亚洲一区二区精品| 飞空精品影院首页| 18禁观看日本| 精品人妻1区二区| 日本黄色视频三级网站网址 | 久久久久久久午夜电影 | 国产又爽黄色视频| 亚洲成人免费av在线播放| 久久狼人影院| 国产欧美日韩一区二区三| 国产男靠女视频免费网站| 99久久人妻综合| 午夜两性在线视频| 亚洲精品在线美女| 国产男靠女视频免费网站| 动漫黄色视频在线观看| 亚洲精品在线美女| 又黄又爽又免费观看的视频| 天天躁日日躁夜夜躁夜夜| 亚洲一码二码三码区别大吗| 国产一区二区激情短视频| 久久99一区二区三区| 国产亚洲欧美在线一区二区| 国产午夜精品久久久久久| 亚洲精品美女久久av网站| 在线天堂中文资源库| 亚洲精品美女久久久久99蜜臀| 精品乱码久久久久久99久播| 99热只有精品国产| 人人妻人人爽人人添夜夜欢视频| 国产欧美日韩一区二区三| 亚洲视频免费观看视频| 国产精品香港三级国产av潘金莲| 午夜福利一区二区在线看| 国产免费av片在线观看野外av| 人妻 亚洲 视频| 一区福利在线观看| 欧美精品高潮呻吟av久久| 欧美黄色片欧美黄色片| 午夜福利乱码中文字幕| avwww免费| 日本欧美视频一区| 久久亚洲精品不卡| 精品视频人人做人人爽| 另类亚洲欧美激情| videosex国产| 美女高潮喷水抽搐中文字幕| 亚洲av美国av| 亚洲,欧美精品.| 亚洲成av片中文字幕在线观看| 久久国产精品男人的天堂亚洲| 亚洲 国产 在线| 一区二区三区激情视频| 黄网站色视频无遮挡免费观看| 国产亚洲一区二区精品| 老熟妇仑乱视频hdxx| 久久国产乱子伦精品免费另类| 亚洲av成人av| 免费高清在线观看日韩| 一级,二级,三级黄色视频| 成年人黄色毛片网站| 精品久久久久久电影网| 国产精品 欧美亚洲| 看免费av毛片| 国产精品亚洲一级av第二区| 精品电影一区二区在线| 国产高清视频在线播放一区| 亚洲伊人色综图| avwww免费| 国产午夜精品久久久久久| 欧美激情高清一区二区三区| 99riav亚洲国产免费| 男人操女人黄网站| 欧美丝袜亚洲另类 | 久久久久久久午夜电影 | 国产一区在线观看成人免费| 91精品三级在线观看| 国产精品二区激情视频| 美女高潮喷水抽搐中文字幕| 精品国产乱码久久久久久男人| 亚洲精品中文字幕一二三四区| 大香蕉久久成人网| av片东京热男人的天堂| 高清在线国产一区| 丝袜美足系列| 亚洲欧美激情在线| 丝袜在线中文字幕| 午夜福利视频在线观看免费| 国产主播在线观看一区二区| 精品乱码久久久久久99久播| 国产亚洲欧美在线一区二区| 午夜亚洲福利在线播放| 亚洲精品自拍成人| 国产极品粉嫩免费观看在线| 免费av中文字幕在线| 在线观看舔阴道视频| 日本黄色视频三级网站网址 | 国产精品久久视频播放| 在线观看日韩欧美| av网站在线播放免费| 窝窝影院91人妻| 欧美成人午夜精品| 身体一侧抽搐| 麻豆乱淫一区二区| 十八禁高潮呻吟视频| 国产主播在线观看一区二区| 人妻 亚洲 视频| 天堂动漫精品| 90打野战视频偷拍视频| 麻豆av在线久日| 亚洲成国产人片在线观看| 黄色怎么调成土黄色| 欧美精品啪啪一区二区三区| 黄色 视频免费看| 啦啦啦免费观看视频1| 国产91精品成人一区二区三区| 免费高清在线观看日韩| 视频在线观看一区二区三区| 欧美日韩一级在线毛片| 精品欧美一区二区三区在线| 丰满迷人的少妇在线观看| 黑人操中国人逼视频| 国产亚洲一区二区精品| 精品亚洲成a人片在线观看| 欧美激情 高清一区二区三区| 精品国产乱码久久久久久男人| 国产色视频综合| 中出人妻视频一区二区| 欧美久久黑人一区二区| 久久久久国产精品人妻aⅴ院 | 80岁老熟妇乱子伦牲交| 日本黄色日本黄色录像| 亚洲av第一区精品v没综合| 黄片大片在线免费观看| 香蕉国产在线看| 色婷婷av一区二区三区视频| 久久ye,这里只有精品| 天天躁日日躁夜夜躁夜夜| 亚洲国产看品久久| 满18在线观看网站| 99热网站在线观看| 欧美最黄视频在线播放免费 | 国产极品粉嫩免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 欧美性长视频在线观看| 欧美激情久久久久久爽电影 | 久久久久国内视频| 亚洲免费av在线视频| 精品久久久久久久久久免费视频 | x7x7x7水蜜桃| 黑人猛操日本美女一级片| 午夜日韩欧美国产| 亚洲欧美日韩另类电影网站| 人人妻,人人澡人人爽秒播| 亚洲,欧美精品.| 一级,二级,三级黄色视频| 精品国产一区二区久久| av国产精品久久久久影院| 久久久久国产精品人妻aⅴ院 | 久久精品91无色码中文字幕| e午夜精品久久久久久久| 中文字幕av电影在线播放| 麻豆乱淫一区二区| 一区二区日韩欧美中文字幕| 午夜福利免费观看在线| 最近最新免费中文字幕在线| 午夜老司机福利片| 亚洲avbb在线观看| 窝窝影院91人妻| 九色亚洲精品在线播放| 午夜免费成人在线视频| 免费在线观看完整版高清| 亚洲欧美一区二区三区黑人| 人人妻人人澡人人看| 久久人人爽av亚洲精品天堂| 免费在线观看视频国产中文字幕亚洲| 欧美日韩亚洲高清精品| 国产精品久久久人人做人人爽| 精品免费久久久久久久清纯 | 在线十欧美十亚洲十日本专区| 国产精品综合久久久久久久免费 | 久久中文字幕一级| 超色免费av| 欧美中文综合在线视频| 精品卡一卡二卡四卡免费| 免费在线观看影片大全网站| av在线播放免费不卡| 国产精品一区二区在线观看99| cao死你这个sao货| 国产精品美女特级片免费视频播放器 | 亚洲欧美日韩另类电影网站| 搡老岳熟女国产| 国产伦人伦偷精品视频| 国产一区二区三区在线臀色熟女 | 99精品久久久久人妻精品| 国产成人啪精品午夜网站| 欧美乱码精品一区二区三区| 丝袜在线中文字幕| 成年人免费黄色播放视频| 亚洲aⅴ乱码一区二区在线播放 | 丰满饥渴人妻一区二区三| 精品一品国产午夜福利视频| 久久久水蜜桃国产精品网| 最近最新免费中文字幕在线| 人妻久久中文字幕网| 韩国av一区二区三区四区| 中文字幕制服av| 一区二区日韩欧美中文字幕| 热99久久久久精品小说推荐| videosex国产| 午夜精品在线福利| 一进一出抽搐动态| 久久久久精品国产欧美久久久| 777久久人妻少妇嫩草av网站| av线在线观看网站| 91精品三级在线观看| 18在线观看网站| 久久午夜综合久久蜜桃| 757午夜福利合集在线观看| 亚洲伊人色综图| 国产一区二区三区综合在线观看| 欧美亚洲 丝袜 人妻 在线| 黄色丝袜av网址大全| 又黄又爽又免费观看的视频| 久久久国产欧美日韩av| 99精国产麻豆久久婷婷| 美女 人体艺术 gogo| 脱女人内裤的视频| 妹子高潮喷水视频| 亚洲av美国av| 99riav亚洲国产免费| 国产片内射在线| 国产乱人伦免费视频| 巨乳人妻的诱惑在线观看| 精品免费久久久久久久清纯 | 欧美日韩瑟瑟在线播放| 亚洲成人免费av在线播放| 亚洲精品av麻豆狂野| 老司机深夜福利视频在线观看| 十八禁高潮呻吟视频| 久久99一区二区三区| 18禁裸乳无遮挡动漫免费视频| 99国产精品99久久久久| 好男人电影高清在线观看| 极品教师在线免费播放| 最新在线观看一区二区三区| 美国免费a级毛片| 国产男靠女视频免费网站| 黄色视频不卡| 欧美乱妇无乱码| 夜夜躁狠狠躁天天躁| 日韩免费av在线播放| 90打野战视频偷拍视频| 99久久国产精品久久久| 亚洲av片天天在线观看| 好男人电影高清在线观看| 国产三级黄色录像| 精品熟女少妇八av免费久了| 欧美日韩国产mv在线观看视频| 新久久久久国产一级毛片| 午夜亚洲福利在线播放| 日韩欧美在线二视频 | 女人久久www免费人成看片| 国产色视频综合| 淫妇啪啪啪对白视频| 女人被躁到高潮嗷嗷叫费观| 免费高清在线观看日韩| 热99re8久久精品国产| 欧美日韩国产mv在线观看视频| 无遮挡黄片免费观看| 一级片免费观看大全| 色尼玛亚洲综合影院| 久久久精品区二区三区| 久久久久精品人妻al黑| 亚洲免费av在线视频| 国产精品乱码一区二三区的特点 | 欧美乱妇无乱码| 脱女人内裤的视频| 亚洲 国产 在线| 极品教师在线免费播放| 亚洲精品乱久久久久久| 亚洲午夜精品一区,二区,三区| 一a级毛片在线观看| 午夜福利在线观看吧| 欧美大码av| 亚洲精品中文字幕在线视频| 90打野战视频偷拍视频| 久久国产精品人妻蜜桃| 999久久久精品免费观看国产| 久久久久久久午夜电影 | 亚洲五月婷婷丁香| 久久精品国产综合久久久| videos熟女内射| 男女下面插进去视频免费观看| 色综合欧美亚洲国产小说| 侵犯人妻中文字幕一二三四区| 80岁老熟妇乱子伦牲交| 国产精品偷伦视频观看了| 最近最新中文字幕大全电影3 | 精品久久久久久久久久免费视频 | 最新美女视频免费是黄的| 久久国产精品影院| 午夜免费观看网址| 成人手机av| 人人澡人人妻人| 欧美+亚洲+日韩+国产| 叶爱在线成人免费视频播放| 成人18禁在线播放| 免费日韩欧美在线观看| 久久久国产欧美日韩av| 亚洲精华国产精华精| 亚洲 欧美一区二区三区| 日韩成人在线观看一区二区三区| 交换朋友夫妻互换小说| 久久人人爽av亚洲精品天堂| 男人舔女人的私密视频| 国产精品久久久久久人妻精品电影| 国产aⅴ精品一区二区三区波| 又紧又爽又黄一区二区| 亚洲熟妇中文字幕五十中出 | 1024视频免费在线观看| 亚洲欧美日韩高清在线视频| 女人高潮潮喷娇喘18禁视频| 欧美精品人与动牲交sv欧美| 免费观看精品视频网站| videos熟女内射| 亚洲五月天丁香| 亚洲精品av麻豆狂野| 国产在线观看jvid| 超色免费av| 亚洲色图综合在线观看| videos熟女内射| 亚洲五月天丁香| 日日夜夜操网爽| 在线观看一区二区三区激情| 色精品久久人妻99蜜桃| 国精品久久久久久国模美| tube8黄色片| 中国美女看黄片| 亚洲精品av麻豆狂野| 热99久久久久精品小说推荐| 国产成人影院久久av| 午夜日韩欧美国产| 久久精品aⅴ一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品亚洲精品国产色婷小说| 99精品欧美一区二区三区四区| 操出白浆在线播放| 又紧又爽又黄一区二区| 欧美激情极品国产一区二区三区| 亚洲少妇的诱惑av| 又大又爽又粗| 9191精品国产免费久久| 亚洲视频免费观看视频| 日韩一卡2卡3卡4卡2021年| 美女国产高潮福利片在线看| 国产欧美日韩精品亚洲av| 91麻豆av在线| 热re99久久精品国产66热6| 露出奶头的视频| svipshipincom国产片| 天堂俺去俺来也www色官网| 国产精品一区二区在线观看99| 亚洲avbb在线观看| 日韩免费av在线播放| 老鸭窝网址在线观看| 免费一级毛片在线播放高清视频 | 18禁黄网站禁片午夜丰满| 在线十欧美十亚洲十日本专区| 捣出白浆h1v1| 国产精品免费大片| 妹子高潮喷水视频| 日本a在线网址| 一级毛片精品| 久久天堂一区二区三区四区| x7x7x7水蜜桃| 老汉色∧v一级毛片| 一级片免费观看大全| 黑人操中国人逼视频| 99精品欧美一区二区三区四区| 视频在线观看一区二区三区| 高清av免费在线| 好男人电影高清在线观看| 色94色欧美一区二区| 日韩一卡2卡3卡4卡2021年| 久热爱精品视频在线9| 黄色视频,在线免费观看| 久久国产精品人妻蜜桃| 日韩成人在线观看一区二区三区| 国产欧美日韩一区二区精品| 水蜜桃什么品种好| 露出奶头的视频| 亚洲在线自拍视频| 久久狼人影院| 精品一区二区三区四区五区乱码| 中文亚洲av片在线观看爽 | 亚洲在线自拍视频| 精品人妻在线不人妻| 国产精品亚洲av一区麻豆| 久久精品国产a三级三级三级| 91国产中文字幕| 9热在线视频观看99| 亚洲中文av在线| 精品第一国产精品| 国产精品国产av在线观看| 在线av久久热| 久久久久久久国产电影| 一夜夜www| 国产免费男女视频| 99精国产麻豆久久婷婷| 啦啦啦视频在线资源免费观看| 午夜福利,免费看| 国产高清videossex| 两个人免费观看高清视频| 国产亚洲欧美98| 日韩欧美国产一区二区入口| 一区二区三区精品91| 岛国在线观看网站| 女人久久www免费人成看片| www.熟女人妻精品国产| 91成人精品电影| 欧美色视频一区免费| 精品福利观看| 大陆偷拍与自拍| 中文字幕av电影在线播放| 日韩三级视频一区二区三区| 看片在线看免费视频| 国产免费现黄频在线看| 精品高清国产在线一区| 午夜福利,免费看| 校园春色视频在线观看| 无遮挡黄片免费观看| 国产区一区二久久| 丝瓜视频免费看黄片| 青草久久国产| 亚洲午夜精品一区,二区,三区| 黑丝袜美女国产一区| 女人爽到高潮嗷嗷叫在线视频| 99国产综合亚洲精品| 亚洲欧美一区二区三区久久| 国产精品一区二区在线观看99| 日日夜夜操网爽| 亚洲精品美女久久久久99蜜臀| 黄色怎么调成土黄色| a级片在线免费高清观看视频| 欧美另类亚洲清纯唯美| 亚洲欧美色中文字幕在线| 免费不卡黄色视频| 久久久久久久国产电影| 如日韩欧美国产精品一区二区三区| 亚洲精品成人av观看孕妇| 亚洲五月天丁香| 下体分泌物呈黄色| 高清黄色对白视频在线免费看| 亚洲专区字幕在线| 美女高潮到喷水免费观看| 高潮久久久久久久久久久不卡| 国产av一区二区精品久久| 日韩一卡2卡3卡4卡2021年| 老司机靠b影院| 又大又爽又粗| 精品国产超薄肉色丝袜足j| 黄片大片在线免费观看| 亚洲欧美激情在线| 亚洲人成电影观看| 一级a爱视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 黄片大片在线免费观看| 欧美日韩精品网址| 精品福利永久在线观看| 高清欧美精品videossex| 岛国毛片在线播放| 久久影院123| 亚洲视频免费观看视频| 一级片'在线观看视频| 免费看a级黄色片| 日本一区二区免费在线视频| 亚洲成人免费电影在线观看| av网站免费在线观看视频| 老熟妇乱子伦视频在线观看| 亚洲av日韩在线播放| 不卡av一区二区三区| 久久精品国产亚洲av高清一级| 精品久久久精品久久久| 欧美激情极品国产一区二区三区| 黄片播放在线免费| 亚洲av美国av| 一级毛片女人18水好多| 亚洲熟妇中文字幕五十中出 | 久久精品国产99精品国产亚洲性色 | 日日夜夜操网爽| 国产精品二区激情视频| 久久国产精品人妻蜜桃| 91麻豆精品激情在线观看国产 | 国产精品亚洲av一区麻豆| 国产一区有黄有色的免费视频| 久久精品国产99精品国产亚洲性色 | 黄网站色视频无遮挡免费观看| 亚洲精华国产精华精| 精品福利观看| 夜夜爽天天搞| 国产精品国产高清国产av | 欧美激情久久久久久爽电影 | 少妇猛男粗大的猛烈进出视频| 久久久国产精品麻豆| 国产精品乱码一区二三区的特点 | 美女福利国产在线| 午夜福利免费观看在线| 9191精品国产免费久久|