• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Robust Reserve Scheduling Method Considering Asymmetrical Wind Power Distribution

    2018-09-28 10:58:36GuanzhongWangQiaoyanBianMemberIEEEHuanhaiXinMemberIEEEandZhenWangMemberIEEE
    IEEE/CAA Journal of Automatica Sinica 2018年5期

    Guanzhong Wang,Qiaoyan Bian,Member,IEEE,Huanhai Xin,Member,IEEE,and Zhen Wang,Member,IEEE

    Abstract—Nowadays,limited predictability and controllability of wind power are regarded as some bottlenecks to wind generation integration with the power system.This paper introduces a robust reserve scheduling method,where the spinning reserve allocation among conventionalunits is considered as well.The method applies to asymmetrical wind power distribution,and offers control on the degree of solution’s conservatism by changing the robustness budget.Meanwhile,distributional information of wind power is represented by mean value and asymmetrical bounds.Furthermore,the model is converted into a deterministic programming problem with dual theory.Case studies for asymmetrically distributed wind power illustrate its effectiveness.

    I.INTRODUCTION

    B Y the end of 2013,the installed wind capacity in China has been the largest in the world,and the wind has become the third-largestelectricalpower source in China[1].On the other hand,limited predictability and controllability of wind generation due to its intermittent characteristics still affect the quality of its power supply[2].To enhance the reliability of power system operation under fl uctuant load and wind power,spinning reserve(SR)provided by thermal generators needs to be scheduled.As the penetration of wind generation increases rapidly,it is of great importance to explore more reliable and economic strategies to address wind power uncertainty in reserve scheduling problem[3].

    The reserve scheduling with wind generation integration has been well studied in many literatures,in which those methodologies can be classified into three categories:the deterministic reserve margin methods(DRM),the stochastic optimization(SO)and the robust optimization(RO).As of DRM,the reserve capability is usually evaluated based on the possible largest forecast error of real-time wind power output[4],[5].However,it is very diffi cult to determine the representative operation condition for DRM-based decision-making.As an improvement,SO can consider more complicated operating conditions than DRM with certain assumption of wind power probability distribution given.For instance,in[6]a Beta function is used to fit the distribution of real-time output of wind farms;in[7]a chance-constrained optimization model is proposed to compute the reserve requirement;Weibull distribution of wind speed is used to obtain the probability distribution of wind generation output in[8].However,there exist two SO’s disadvantages:1)SO problem above usually is a non-convex optimization problem which poses optimal solution diffi culty[7];2)accurate evaluation of probability distribution is hard in some real situations[9].

    From another aspect,in recent years the RO-based approaches have attracted considerable attention for their probability distribution-free advantages[10]-[25].As a branch of RO methods,the robust linear optimization(RLO)is a convex optimization and can well control the degree of solution’s conservatism[10]-[15].The method of RLO has experienced severalevolutions since Soysterfirstdeveloped the RO method in 1973[12].To address the RO’s over-conservatism problem,Ben-Tal and Nemirovski introduced a robust linear optimization,where the rows of the constraintmatrix belong to some ellipsoid uncertainty sets and the robustcounterpartis a secondorder cone programming[13].To overcome the numerical calculation difficulty,an improved RLO method was proposed in[14],in which a linear robust counterpart is developed.However,all above RLO methods considering distributional information assume that the uncertainty of random variables is symmetrical with respect to the mean value.To handle the uncertainty asymmetry,Kang further proposed an RLO method called Kang’s robustlinear optimization(KRLO)[15].

    To our best knowledge,the existing RLO-based reserve scheduling methods have not included the research on asymmetrical wind power with respect to its mean value,e.g.,[26]uses wind power interval without mean value;[27] considers symmetrical wind power distributional information,which indicates the up-spinning reserves and the down-spinning reserves may have the same distribution interval.However,wind power may be asymmetrical distributed in some cases[6]-[9].In this paper,a robust reserve scheduling method is introduced to pursue the minimum spinning reserve cost,in which spinning reserve allocation as an additional AGC (automatic generation control)functionality is achieved by a linearization decision rule.This KRLO-based method applies to asymmetrical wind power distribution,and can control the degree of solution’s conservatism by an adjustable robustness budget.Meanwhile,the wind power uncertainty is represented by an asymmetrical uncertainty set of KRLO with given mean value and maximum/minimum limits.The robust counterpart handling of KRLO,which is based on dualtheory,can convert the proposed model into deterministic formulations.

    The rest of the paper is organized as follows.In Section II,the mathematical formulation of reserve scheduling is introduced.The KRLO method and the solution framework are presented in Section III.Numericalexamples are provided in Section IV.And Section V concludes the paper.

    II.MATHEMATICAL FORMULATION

    A.Problem Description

    The following assumptions are made for problem formulation:1)only wind power uncertainty is considered and bus loads are regarded as well-forecasted;2)each wind generator is connected to the transmission network from a single bus;3)wind powercan be asymmetrically distributed;4)a standard DC power flow is used[28];5)unit commitment solution has been solved in advance.The firstand second assumptions are common in the reserve scheduling problem.The third assumption is more practical compared with those symmetricaldistribution cases.The fourth is based on a fact that in a transmission network the active power is mainly phase angle related and reactive poweris voltage magnitude related.Under normal condition,voltage magnitude variation is small and a DC power flow can be considered in transmission network[28].The last assumption ensures that the state of units has been determined before reserve scheduling.

    Spinning reserve serving to AGC is allocated to each participating generator according to some distribution vector,ddd=[d1,...,dn]T,Pidi=1[29].In this paper,the distribution vector ddd is to be determined for AGC service in reserve scheduling stage.The existing AGC loop is illustrated in Fig.1,in which frequency regulation reserves are allocated based on the KRLO method.

    Fig.1. Schematic diagram illustrating the AGC functionality required for the proposed reserve scheduling method.

    B.Reserve Scheduling Model

    The reserve scheduling aims to reduce the procurementcost of generation and reserves.The following linear costobjective function is adopted[26],

    where CCCg,CCCup,CCCdown∈Rnare the costcoefficientvectors of generation,up-spinning reserves,and down-spinning reserves,respectively.PPPGdenotes the generation dispatch results;RRRup,RRRdown∈Rnare respectively up and down spinning reserves to be determined;N is the number of nodes in the power system.Notice that,a few elements in the vectors may be zero,i.e.,if there are no generators atnode i(i<N),the i th element of PPPGis equal to zero.Constraints are as follows:1)Nodal power balance:

    where BBB ∈ Rn×ndenotes the nodal admittance matrix of transmission network;θ∈ Rnrepresents the phase angle vector;gggsand gggfcorrespond to the scheduled output vectors of output-fixed units and spinning reserve units,respectively,and gggs+gggf=PPPG;Δgggfrepresents the power compensation for the real-time mismatch;pppwand pppddenote the wind power vector and the load vector,respectively.

    2)Wind power limits:

    Responding to the time scale and practical demand in engineering,the random variable PPPwcan be divided into two parts:the forecasted mean value and the uncertain deviation:

    whereμwrepresents the mean value of wind power;Δpppwdenotes the uncertain deviation between the real-time output and the mean value.Moreover,-ωB≤ΔPPPw≤ωF,in which

    whereωFand-ωBdenote the upper and lower limits of deviation respectively.IfωB/=ωF,the wind power distribution is called asymmetrical.

    3)Generation limits:

    4)Spinning reserve allocation:

    where 111 denotes a vector where all the elements are one;the element of ddd is zero if corresponding to an output-fixed unit,otherwise,it is a decision variable corresponding to an SR unit;the linearization decision rule in[11]is introduced to demonstrate the reserve allocation for the wind power deviation(7a);constraints(7b)and(7c)indicate that SR should be within the ramp rate limits,which correspond to the limitofgeneration compensation;moreover,the lastconstraint(7d)ensures the power mismatch can be fully compensated.

    5)Transmission capability constraints:

    where FFF is the branch power flow vector;TTT denotes the admittance matrix of network branches[30];fffmaxdenotes the deterministic transmission capacity limits.Since the uncertain wind power is included in constraints(2)that share the same nodal phase angle vectorθwith(8),the branch power flow vector FFF is also uncertain.Constraints(8)and(9)can guarantee that the standard transmission limits will be respected under uncertain wind generation.

    In the model,decision variables are PPPG,RRRup,RRRdownand ddd;uncertain vector isΔpppw;Δgggfandθare adjustable variables;the rest are parameters.

    Considering SR allocation and transmission capability constraints,the reserve scheduling with uncertain wind power,as an additional AGC functionality[30],is provided.The operating controller may monitor the deviation of the wind power and use the distribution vector ddd(see Fig.1),as a lookup table,to allocate the SR.

    The reserve scheduling problem in(1)-(9)is a special linearprogramming problem with wind poweruncertainty embedded,which will be handled by the tractable reformulation below.

    III.TRACTABLE REFORMULATION

    A.KRLO With Asymmetric Data Uncertainty

    For a general linear optimization model considering uncertain data:

    where xxx∈Rnis the decision variable;uu,,,lll ∈Rndenote the upper and lower bounds of xxx;ccc∈Rnis the coefficient vector;bbb∈Rmis a deterministic vector.And we assume that uncertain data only affects the elements in matrix A∈Rm×n[15].

    RLO was proposed to find a solution of(10)immune to the uncertain data in[14].RLO methods are based on the following notation.The elements of A are denoted byi=1,...,m,j=1,...,n;the mean value of aijis;moreover,the uncertain data in different inequality constraints are assumed to be independent of each other.Letrepresents the set of uncertain data in row i of matrix A,and|Ji|represents the number of elements in set Ji.

    Studies in[14]and[26]are both based on the assumption that=,which means the uncertain data are symmetrically distributed.Although the uncertainty set and robust counterpart in[14]and[26]could be used in reserve scheduling with uncertain wind power,they cannot be applied when the wind power is asymmetrically distributed[6]-[9].

    To handle the asymmetricaluncertainty where/=,we introduce the KRLO uncertainty set with a robustness budget Γi(Γ ≤ |Ji|)[15],which can be defined as:

    where aaaidenotes the uncertain data vector in row i of matrix A,i=1,...,m;βikdepends on the robustness budgetΓi,which serves to adjust the conservative level of ?(Γi),i.e.,the larger the value of Γiis,the more robust ?(Γi)will be.Obviously,?(Γi)could also denote symmetric uncertainty when=.

    With dual theory,the robust counterpart of(10)and(11)can be given in(12):

    where ziand pik(i=1,...,m,?k ∈ Ji)are auxiliary variables with no actualphysicalmeaning[15].The robustcounterpart(12)is a determined linear programming.By increasing Γifrom Γi1to Γi2(Γi1≤ Γi2),the conservativeness level of the solution withΓi1will be lower than that withΓi2.

    By introducing the robust counterpart,the nominal linear programming is converted into a deterministic formulation.The robust counterpart(12)has the same optimal solution with the nominal linear programming(10)when the solution is immune to the uncertainty of(11),which is proved in[15].

    B.Robust Reserve Scheduling

    This section serves mainly to achieve the decoupling between the decision variables and uncertain variables in the equality constraints(2),and convert the optimization model into the general form(10).

    1)Variables Simplification

    Nodal phase angle vectorθserves as a redundant variable and can be eliminated only by substituting the equality constraints(8)to the power balance constraints(2).We use the linear sensitivity matrix between branch power flow and nodal injection power[11]in further detail to take the place of-BBB T-1.Then,the equality of nodal injection power and branch power flow is obtained:

    where S denotes the linear sensitivity matrix.

    The power balance constraint covered in equality(13)can be formulated as

    where IB,UB,WB and LB respectively denote the sets of output-fixed unit buses,spinning reserve unit buses,wind generator buses and load buses,respectively.

    Further,by substituting equality constraints(13)to the transmission limit constraints(9),inequality constraints with uncertain wind power are obtained:

    So far,the equality constraint with uncertain variables(2)is converted into the equality(14)and inequality(15)without nodal phase angle vectorθ.

    2)Deterministic Constraints

    Notice thatthere are no equalities with uncertain data in(12)and there are uncertain variables in equality(14).Therefore,to eliminate the uncertain wind power in(14),we substitute constraints(4),(7a)and(7d)to(14).And then,the equality with respect to the system power balance under wind power forecast is obtained:

    3)Inequality Constraints With Uncertain Wind Power

    By integrating constraints(6a)-(6b),(7a)-(7d)and(15),we get the following inequality constraints with the only uncertain vectorΔpppw:

    The uncertainty set of deviationΔpppwcan be written as follows:

    where the robustness budgetΓshould not be greater than the number of wind generators.According to the KRLO theory,constraints(17)-(19)can be converted into a robust counterpart similar to(12).

    Thus,the reserve scheduling model(1)-(9)can be further converted into a deterministic programming problem that consists of linear equality/inequality constraints.

    C.Algorithm Complexity Analysis

    The optimization problem can be transformed into the robustcounterpart(12)automatically via the MATLAB interface YALMIP[30].The algorithm for the problem could be any common linear programming algorithm,which is embedded in many solvers,such as the CPLEX[31].Therefore,the algorithm in this paper is of polynomial time complexity and fast enough when wind generation changes.

    IV.CASE STUDOES

    In this section,a simulation analysis of varying robustness budget and ramp rate will be conducted with asymmetrical wind power distribution.In addition,this section also presents a comparison between KRLO method and an adjustable robust method with symmetrical wind power distribution.

    A.Revised Garver’s 6-bus Test System

    The revised Garver’s 6-bus system[10]is used to verify the effectiveness of the introduced approach.As shown in Fig.2,four wind farms are connected to the power grid from different buses.Parameters of the load(L1-L5),generators,wind farms,branches,and the cost coefficients are shown in Tables I-III,respectively.All of the thermal generators are engaged in the reserve allocation;pppddenotes the load;gggminand gggmaxdenote the lower and upper limits of units;nijdenotes the number of transmission lines between node i and j;xijdenotes the imaginary partofadmittance of each branch;fijcorresponds to the active power limit of one line between node i and j.

    Fig.2.Configuration of modified Garver’s network.

    TABLE I SYSTEM BUS DATA(MW-1)

    TABLE IISYSTEM BRANCH DATA

    TABLE IIICONVENTIONAL GENENATOR COSTS($/MW)

    The optimization is solved by the solver CPLEX in the interface YALMIP of MATLAB.

    1)Effect of Robustness Budget

    This case investigates the effect of the robustness budget.Fixed ramp rate parameterηis used to make this simulation.Results of Table IV show the variation of the total cost,and the total up/down spinning reserves withη=1/6 orη=1/4 when the robustness budgetdecreases.Respectively,Fig.3 and Fig.4 show the variation of the up/down spinning reserves provided by each participating unit withη=1/6 when the robustness budget increases.

    As is seen in Table IV,the total cost of the generation and reserves with a fixedηreduces when the robustness budgetΓdecreases.The reason for the results is that the decreasing value ofΓleads to a lower fluctuation of wind power considered in the problem.In Fig.3 and Fig.4,unit 3 provides the largestreserve capacity for uncertain wind power in the 6-bus system,because the reserve capacity limit of unit 3 is much larger than those of other units and that reserve capacity limit of unit 1 is reached.

    Fig.3.Down-spinning reserves provided by each unit(η=1/6).

    Fig.4. Up-spinning reserves provided by each unit(η=1/6).

    2)Effect of Ramp Rate

    This case considers the effect of the ramp rate.Fig.5 and Fig.6 show the up/down spinning reserves provided by each participating unit withη=1/4,respectively.

    It can be seen from the comparison betweenη=1/6 and η=1/4 that a bigger value ofη,which corresponds to a larger ramp rate provided by participating units,will reduce the total cost in Table IV,and increase the reserves provided by unit1 in Fig.5 and Fig.6.The reason is thata larger ramp rate ensures the power mismatch can be compensated more by the optimal reserves purchased from unit 1,which is an affordable approach in this test system.

    TABLE IV CONVENTIONAL GENENATOR COSTS($/MW)

    Fig.5.Down-spinning reserves provided by each unit(η=1/4).

    Fig.6. Up-spinning reserves provided by each unit(η=1/4).

    In addition,the total up/down spinning reserves withη=1/6 are equalto those withη=1/4 in Table IV.The reason is thattotalreserves are determined by the worstcase fluctuation.As is seen in the powersystem,the totaldown spinning reserve required for the worst case is 95 MW where the robustness budget is 4(the number of wind generators),which presents the probable maximum deviation between the real-time output and the forecast output(the mean value).In other words,total reserves are determined by the parameterΓ,but the distribution vector can reflect the influence of other factors,such as ramp rate.

    3)Comparison With an Adjustable Robust Method

    This case investigates the differences between the KRLO method and the adjustable robust optimization(ARO)method of[26]with symmetric wind power.Based on the method in[26],each deviation of the wind generation belongs to an uncertain interval without robustness budget,i.e.,∈

    By setting the wwwFequal to wwwBin Table I,symmetric wind power distribution is considered.Table V indicates that the solution obtained via the KRLO method is the same as the ARO method’s solution,when the robustness budget is 4.In conclusion,KRLO method applies to both symmetric and asymmetric uncertainty,and could control the solution’s conservatism only by changing the robustness budget;ARO method could also control the solution’s conservatism via changing the bounds of each deviation interval.

    TABLE V TOTAL COST AND RESERVES(η=1/6)

    B.IEEE 39-bus System

    The IEEE 39-bus system is used to test the scalability of the method.Withoutloss of generality,itis assumed thatthree wind farms are connected with the test system at bus 16,23 and 26,respectively.The data of wind farms are listed in Table VI.The generators atbus 30,31,35 and 38 are assumed to provide SR and the power outputs of the other units are fixed.All other system data can be referred in[32].

    TABLE VI WIND FARM DATA

    The total generation and reserve cost,total up spinning reserves and down spinning reserves are shown in Table VII.It can be seen that the cost and reserves increase with parameter Γbecoming larger.The reason is also that a larger value of Γmeans larger deviation of wind power considered in the reserve scheduling,then more SR will be purchased.

    TABLE VII TOTAL COST AND RESERVE REQUIREMENT(η=1/6)

    The allocations of up/down spinning reserves are shown in Fig.7 and Fig.8.In Fig.7,unit1 provides the maximum down spinning reserves,and the reserves increase with robustness budget being larger.The same situation occurs in Fig.8.

    By comparison between the revised Garver’s 6-bus system and IEEE 39-bus system,the scalability of the method is illustrated.

    Fig.7.Down-spinning reserves provided by each unit(η=1/6).

    Fig.8. Up-spinning reserves provided by each unit(η=1/6).

    V.CONCLUSIONS

    A robust method is proposed in this paper,as an analysis tool for reserve scheduling considering asymmetrical wind power distribution.This method can serve as an additional AGC function to allocate the SR with varying solution’s conservatism,and ramp rate.Simulation results verify that the approach is effective.

    Besides,storage system will be helpful for the reserve scheduling problem,which will be our future work.On the other hand,this work is based on linear dual theory that has strong duality property,therefore,the robust counterpart is equal to the original problem.If the problem has non-affine constraints,the robustcounterpartis hard to obtain,which will serve as another future work of us.

    国产精品一国产av| xxxhd国产人妻xxx| 在线免费观看不下载黄p国产| 精品人妻一区二区三区麻豆| 亚洲中文av在线| av在线观看视频网站免费| 午夜久久久在线观看| 99久久综合免费| 精品国产超薄肉色丝袜足j| 一区二区日韩欧美中文字幕| 人体艺术视频欧美日本| 国产精品久久久久久人妻精品电影 | 一级毛片电影观看| 色精品久久人妻99蜜桃| 电影成人av| 制服诱惑二区| 精品国产一区二区久久| 狂野欧美激情性xxxx| 日本av免费视频播放| 亚洲欧美成人综合另类久久久| 亚洲精品乱久久久久久| 亚洲精品视频女| 欧美日韩视频精品一区| 国产 一区精品| 久久女婷五月综合色啪小说| 老司机影院毛片| 色94色欧美一区二区| 国产有黄有色有爽视频| 别揉我奶头~嗯~啊~动态视频 | 久久久久久久久久久免费av| 51午夜福利影视在线观看| 最近最新中文字幕大全免费视频 | 欧美人与善性xxx| 精品久久蜜臀av无| 亚洲一区二区三区欧美精品| 欧美最新免费一区二区三区| 看免费成人av毛片| 五月开心婷婷网| 成人亚洲欧美一区二区av| 国产熟女欧美一区二区| 中文天堂在线官网| a级毛片在线看网站| 大香蕉久久成人网| 99香蕉大伊视频| 少妇人妻久久综合中文| 欧美日韩亚洲国产一区二区在线观看 | 王馨瑶露胸无遮挡在线观看| 十八禁高潮呻吟视频| 人人妻人人澡人人爽人人夜夜| 日本午夜av视频| 久久久久久久精品精品| 久久99精品国语久久久| 国产麻豆69| 久久久久久久久免费视频了| 国产精品免费视频内射| 亚洲免费av在线视频| videosex国产| 欧美xxⅹ黑人| 欧美日韩一区二区视频在线观看视频在线| 精品国产乱码久久久久久男人| 欧美人与性动交α欧美精品济南到| 男女边吃奶边做爰视频| 亚洲婷婷狠狠爱综合网| 在线亚洲精品国产二区图片欧美| 亚洲,欧美,日韩| 最新的欧美精品一区二区| 亚洲综合色网址| 青青草视频在线视频观看| 亚洲欧美日韩另类电影网站| 欧美变态另类bdsm刘玥| 丝袜人妻中文字幕| 国产精品一区二区在线不卡| 麻豆乱淫一区二区| 国产一卡二卡三卡精品 | av卡一久久| 国产日韩欧美在线精品| 色网站视频免费| 99热网站在线观看| 热99国产精品久久久久久7| 久久久国产欧美日韩av| 欧美激情高清一区二区三区 | 国产又爽黄色视频| 亚洲国产欧美一区二区综合| 成人影院久久| 黄色 视频免费看| 亚洲久久久国产精品| 黄片无遮挡物在线观看| 亚洲,一卡二卡三卡| 超碰97精品在线观看| 免费看不卡的av| 1024视频免费在线观看| 综合色丁香网| 老熟女久久久| 一级毛片黄色毛片免费观看视频| 日韩av免费高清视频| 一本大道久久a久久精品| 日本91视频免费播放| 狠狠婷婷综合久久久久久88av| 十分钟在线观看高清视频www| netflix在线观看网站| 新久久久久国产一级毛片| 欧美日韩综合久久久久久| 国产麻豆69| 嫩草影院入口| 欧美在线黄色| 在线观看免费日韩欧美大片| 啦啦啦视频在线资源免费观看| 999久久久国产精品视频| 成人亚洲精品一区在线观看| 日本vs欧美在线观看视频| netflix在线观看网站| 久久久国产欧美日韩av| 美女大奶头黄色视频| 国产精品欧美亚洲77777| 一级a爱视频在线免费观看| 国产午夜精品一二区理论片| 男人操女人黄网站| 人妻人人澡人人爽人人| 国产av一区二区精品久久| 麻豆av在线久日| 久久久久人妻精品一区果冻| 亚洲精品国产av蜜桃| 伦理电影大哥的女人| 久久久精品国产亚洲av高清涩受| 热99国产精品久久久久久7| 日韩电影二区| 久久精品亚洲av国产电影网| 亚洲第一青青草原| 一区二区av电影网| 免费在线观看视频国产中文字幕亚洲 | 国产成人系列免费观看| 久久久久久人妻| 日韩人妻精品一区2区三区| 两性夫妻黄色片| 一级毛片 在线播放| 亚洲美女视频黄频| 色婷婷av一区二区三区视频| 我的亚洲天堂| 精品第一国产精品| 精品少妇内射三级| 人人澡人人妻人| 欧美少妇被猛烈插入视频| 精品久久久久久电影网| 亚洲熟女精品中文字幕| 亚洲欧美精品自产自拍| 亚洲视频免费观看视频| 亚洲欧美激情在线| 香蕉丝袜av| 极品少妇高潮喷水抽搐| 欧美国产精品va在线观看不卡| 亚洲熟女精品中文字幕| 叶爱在线成人免费视频播放| 欧美成人午夜精品| 黑丝袜美女国产一区| 久久ye,这里只有精品| 亚洲精品aⅴ在线观看| 午夜福利乱码中文字幕| 99精国产麻豆久久婷婷| 久久天躁狠狠躁夜夜2o2o | 精品少妇黑人巨大在线播放| 七月丁香在线播放| 最近2019中文字幕mv第一页| 九草在线视频观看| 伦理电影免费视频| 精品国产一区二区三区四区第35| 亚洲精品日韩在线中文字幕| 无限看片的www在线观看| 国产一区二区三区综合在线观看| 十分钟在线观看高清视频www| 午夜福利网站1000一区二区三区| 欧美最新免费一区二区三区| 九草在线视频观看| videos熟女内射| 色婷婷av一区二区三区视频| 久久ye,这里只有精品| 又大又爽又粗| 久久久久精品性色| 成年人午夜在线观看视频| 热re99久久国产66热| 多毛熟女@视频| 国产精品久久久久久人妻精品电影 | 又大又黄又爽视频免费| 亚洲av日韩在线播放| 永久免费av网站大全| 满18在线观看网站| 欧美在线一区亚洲| 男女边摸边吃奶| 婷婷色麻豆天堂久久| 亚洲一区二区三区欧美精品| 久久天躁狠狠躁夜夜2o2o | 亚洲成人av在线免费| 日本黄色日本黄色录像| 久久精品国产亚洲av涩爱| 日韩,欧美,国产一区二区三区| 深夜精品福利| 国产探花极品一区二区| 熟女av电影| 一本一本久久a久久精品综合妖精| 一区福利在线观看| 两个人免费观看高清视频| 80岁老熟妇乱子伦牲交| 久久毛片免费看一区二区三区| 亚洲成人国产一区在线观看 | 在线观看一区二区三区激情| 亚洲第一av免费看| 亚洲人成网站在线观看播放| 国产xxxxx性猛交| avwww免费| 免费看不卡的av| 男女床上黄色一级片免费看| 99国产精品免费福利视频| 国产一区二区三区综合在线观看| videosex国产| 男女之事视频高清在线观看 | 国产精品二区激情视频| 国产精品成人在线| 少妇人妻 视频| 久久久久久久精品精品| 日韩免费高清中文字幕av| 悠悠久久av| 国产精品二区激情视频| 满18在线观看网站| 亚洲欧洲国产日韩| 精品一区在线观看国产| 在线观看国产h片| 欧美中文综合在线视频| 国产免费视频播放在线视频| 亚洲人成77777在线视频| 精品视频人人做人人爽| 男女免费视频国产| 男女床上黄色一级片免费看| 亚洲,欧美,日韩| 国产高清不卡午夜福利| 大香蕉久久成人网| 人人澡人人妻人| 久久久久久人人人人人| 亚洲,欧美精品.| 国产熟女欧美一区二区| 在线观看免费日韩欧美大片| 又大又黄又爽视频免费| 国产男女内射视频| 国产精品 欧美亚洲| 我要看黄色一级片免费的| 国产爽快片一区二区三区| 不卡视频在线观看欧美| 只有这里有精品99| 久久97久久精品| 欧美 日韩 精品 国产| 成人亚洲欧美一区二区av| 日韩大码丰满熟妇| 国产亚洲欧美精品永久| 一级a爱视频在线免费观看| 热99久久久久精品小说推荐| 在线看a的网站| 成人黄色视频免费在线看| 成人漫画全彩无遮挡| 中文字幕高清在线视频| 国产精品99久久99久久久不卡 | 亚洲精品aⅴ在线观看| 免费在线观看黄色视频的| av在线播放精品| 99久久人妻综合| 久久精品aⅴ一区二区三区四区| 免费女性裸体啪啪无遮挡网站| av片东京热男人的天堂| 欧美日韩视频高清一区二区三区二| 国产精品一二三区在线看| 一级爰片在线观看| 纵有疾风起免费观看全集完整版| 欧美另类一区| 9191精品国产免费久久| 欧美日韩亚洲高清精品| 国产精品蜜桃在线观看| 老汉色∧v一级毛片| 国产日韩欧美视频二区| 午夜免费观看性视频| 人成视频在线观看免费观看| 精品一区二区免费观看| 天堂8中文在线网| 老司机靠b影院| 国产一卡二卡三卡精品 | 精品久久久久久电影网| 国产高清国产精品国产三级| 天天躁日日躁夜夜躁夜夜| 日本午夜av视频| 日韩一卡2卡3卡4卡2021年| 亚洲国产中文字幕在线视频| 亚洲,一卡二卡三卡| 国产精品一二三区在线看| 精品人妻在线不人妻| 亚洲精品aⅴ在线观看| 免费不卡黄色视频| 超碰成人久久| 久久久国产欧美日韩av| 亚洲在久久综合| 成人手机av| 伦理电影免费视频| 免费看av在线观看网站| 国产伦理片在线播放av一区| 免费高清在线观看视频在线观看| 国产日韩一区二区三区精品不卡| 国产亚洲一区二区精品| 久久亚洲国产成人精品v| 国产免费福利视频在线观看| 黄片无遮挡物在线观看| 亚洲精品国产一区二区精华液| 老司机在亚洲福利影院| 中文字幕制服av| 九草在线视频观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品国产区一区二| 深夜精品福利| 哪个播放器可以免费观看大片| av又黄又爽大尺度在线免费看| 看非洲黑人一级黄片| 91老司机精品| 中文字幕亚洲精品专区| 久久精品人人爽人人爽视色| 日本wwww免费看| 老司机深夜福利视频在线观看 | 七月丁香在线播放| 中文字幕精品免费在线观看视频| 欧美精品高潮呻吟av久久| 国产免费现黄频在线看| 男女之事视频高清在线观看 | 国产毛片在线视频| 久久久久精品人妻al黑| 亚洲人成电影观看| 久久韩国三级中文字幕| 男人添女人高潮全过程视频| 91国产中文字幕| 国产一区二区 视频在线| 在线亚洲精品国产二区图片欧美| 亚洲在久久综合| 在线观看免费午夜福利视频| 啦啦啦在线免费观看视频4| 国产一级毛片在线| 丝袜美腿诱惑在线| 免费久久久久久久精品成人欧美视频| 久久人人爽人人片av| 午夜福利,免费看| 欧美精品一区二区免费开放| 啦啦啦中文免费视频观看日本| 蜜桃国产av成人99| 亚洲第一区二区三区不卡| 国产人伦9x9x在线观看| 国产精品国产三级国产专区5o| 十八禁高潮呻吟视频| 一本一本久久a久久精品综合妖精| 别揉我奶头~嗯~啊~动态视频 | 精品少妇一区二区三区视频日本电影 | 777米奇影视久久| 国产99久久九九免费精品| 免费黄色在线免费观看| 欧美激情 高清一区二区三区| 欧美日韩福利视频一区二区| 午夜日韩欧美国产| videos熟女内射| 欧美日韩亚洲综合一区二区三区_| 视频区图区小说| 国语对白做爰xxxⅹ性视频网站| 日韩精品免费视频一区二区三区| 成人毛片60女人毛片免费| 一级毛片 在线播放| 一边摸一边抽搐一进一出视频| 少妇被粗大的猛进出69影院| 日韩大码丰满熟妇| 久久99热这里只频精品6学生| 在线观看人妻少妇| 国产成人精品无人区| 国产视频首页在线观看| 老司机靠b影院| 国产精品av久久久久免费| 精品一区在线观看国产| 亚洲av在线观看美女高潮| 纵有疾风起免费观看全集完整版| 久久久久精品国产欧美久久久 | 看十八女毛片水多多多| 久久久国产一区二区| 欧美人与性动交α欧美软件| 少妇被粗大的猛进出69影院| 美女主播在线视频| 亚洲四区av| 欧美黄色片欧美黄色片| 日日撸夜夜添| 一二三四在线观看免费中文在| 国产探花极品一区二区| 桃花免费在线播放| 免费女性裸体啪啪无遮挡网站| 波野结衣二区三区在线| 成人毛片60女人毛片免费| 亚洲av男天堂| 久久97久久精品| 9热在线视频观看99| 乱人伦中国视频| av有码第一页| 青草久久国产| 搡老乐熟女国产| 亚洲一区中文字幕在线| 无遮挡黄片免费观看| 最近中文字幕2019免费版| 爱豆传媒免费全集在线观看| 一本大道久久a久久精品| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩精品网址| 亚洲国产精品国产精品| 天天添夜夜摸| 国产男女内射视频| 国产亚洲av高清不卡| 免费看不卡的av| 亚洲熟女精品中文字幕| 国产99久久九九免费精品| 国产亚洲精品第一综合不卡| 天堂中文最新版在线下载| 国产亚洲最大av| 我要看黄色一级片免费的| 色播在线永久视频| 国产亚洲一区二区精品| 青青草视频在线视频观看| 午夜老司机福利片| 人人妻人人添人人爽欧美一区卜| 国产精品熟女久久久久浪| 777米奇影视久久| 久久这里只有精品19| netflix在线观看网站| 超碰97精品在线观看| 免费黄频网站在线观看国产| 制服丝袜香蕉在线| 母亲3免费完整高清在线观看| 国产精品秋霞免费鲁丝片| 两个人看的免费小视频| 日韩中文字幕欧美一区二区 | 日本爱情动作片www.在线观看| 黄色 视频免费看| 五月开心婷婷网| 久久这里只有精品19| 午夜日韩欧美国产| 另类精品久久| 日韩 欧美 亚洲 中文字幕| 91精品三级在线观看| 免费高清在线观看视频在线观看| 欧美另类一区| 少妇 在线观看| 国产精品国产av在线观看| 亚洲人成77777在线视频| 美女扒开内裤让男人捅视频| 青春草国产在线视频| 国产免费视频播放在线视频| 国产男女超爽视频在线观看| 夫妻午夜视频| 中文字幕制服av| 欧美在线一区亚洲| 国产成人免费无遮挡视频| 久久精品国产a三级三级三级| 国产精品一区二区在线观看99| 丰满乱子伦码专区| 欧美精品亚洲一区二区| 黄色怎么调成土黄色| 欧美成人午夜精品| 人人妻人人爽人人添夜夜欢视频| 大香蕉久久成人网| 国产97色在线日韩免费| 少妇人妻精品综合一区二区| 国产精品久久久人人做人人爽| 一区二区三区精品91| 午夜免费鲁丝| 亚洲伊人色综图| 天天躁夜夜躁狠狠久久av| 久久青草综合色| 国产日韩欧美亚洲二区| 日韩一本色道免费dvd| 丁香六月欧美| 成人毛片60女人毛片免费| 无限看片的www在线观看| 欧美日韩亚洲高清精品| 51午夜福利影视在线观看| 中文字幕高清在线视频| 午夜免费观看性视频| 性少妇av在线| 亚洲精品在线美女| 午夜福利网站1000一区二区三区| 啦啦啦视频在线资源免费观看| 精品视频人人做人人爽| 国产极品粉嫩免费观看在线| 一二三四在线观看免费中文在| 色94色欧美一区二区| 久久久久久久久免费视频了| 国产在线一区二区三区精| 亚洲精品视频女| 午夜福利影视在线免费观看| a级片在线免费高清观看视频| 国产一区二区三区av在线| 好男人视频免费观看在线| 亚洲人成网站在线观看播放| 十八禁人妻一区二区| 黄色毛片三级朝国网站| 欧美老熟妇乱子伦牲交| 午夜激情久久久久久久| 熟妇人妻不卡中文字幕| 免费人妻精品一区二区三区视频| 亚洲欧美日韩另类电影网站| 亚洲三区欧美一区| 性高湖久久久久久久久免费观看| 激情五月婷婷亚洲| 男人舔女人的私密视频| 亚洲成色77777| 黑人猛操日本美女一级片| 亚洲精品一区蜜桃| 一区在线观看完整版| 久久人人爽人人片av| kizo精华| 国产欧美日韩综合在线一区二区| 麻豆乱淫一区二区| 亚洲成av片中文字幕在线观看| 日韩伦理黄色片| 9热在线视频观看99| 国产熟女欧美一区二区| 国产成人av激情在线播放| 午夜福利乱码中文字幕| 久久久久视频综合| 自线自在国产av| 制服诱惑二区| 97人妻天天添夜夜摸| 欧美激情高清一区二区三区 | 国产一级毛片在线| 交换朋友夫妻互换小说| 亚洲色图综合在线观看| 巨乳人妻的诱惑在线观看| 在线观看免费午夜福利视频| www日本在线高清视频| av有码第一页| 国产成人啪精品午夜网站| 亚洲专区中文字幕在线 | 91精品伊人久久大香线蕉| 亚洲精品久久成人aⅴ小说| 精品一区二区免费观看| 秋霞在线观看毛片| 丝袜美腿诱惑在线| 看免费av毛片| 人妻 亚洲 视频| 狂野欧美激情性xxxx| 乱人伦中国视频| 欧美日韩一级在线毛片| 如何舔出高潮| 91aial.com中文字幕在线观看| 欧美成人午夜精品| 男的添女的下面高潮视频| 高清欧美精品videossex| 色网站视频免费| 国产1区2区3区精品| 亚洲国产日韩一区二区| 91老司机精品| 亚洲男人天堂网一区| 欧美精品av麻豆av| 80岁老熟妇乱子伦牲交| 国产男女内射视频| 久久狼人影院| 午夜久久久在线观看| 91国产中文字幕| 成人18禁高潮啪啪吃奶动态图| 丝瓜视频免费看黄片| 欧美日韩福利视频一区二区| 亚洲成人一二三区av| av在线观看视频网站免费| 日本欧美国产在线视频| 男女之事视频高清在线观看 | 欧美日韩亚洲综合一区二区三区_| av国产精品久久久久影院| 亚洲成av片中文字幕在线观看| 中国国产av一级| 国产又色又爽无遮挡免| 男女边吃奶边做爰视频| 日韩精品免费视频一区二区三区| 亚洲成国产人片在线观看| 新久久久久国产一级毛片| 精品一区二区三区四区五区乱码 | 精品一区二区三区av网在线观看 | 麻豆乱淫一区二区| 1024视频免费在线观看| 一级毛片我不卡| 亚洲成人av在线免费| 美女福利国产在线| 日韩熟女老妇一区二区性免费视频| 亚洲精品久久午夜乱码| 高清视频免费观看一区二区| 人人妻人人添人人爽欧美一区卜| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区三区| 亚洲国产精品999| 日韩成人av中文字幕在线观看| 欧美人与善性xxx| xxxhd国产人妻xxx| 看免费成人av毛片| 精品卡一卡二卡四卡免费| 国产av精品麻豆| 又黄又粗又硬又大视频| 精品福利永久在线观看| 热re99久久国产66热| 大陆偷拍与自拍| 亚洲自偷自拍图片 自拍| 欧美最新免费一区二区三区| 日韩免费高清中文字幕av| 制服丝袜香蕉在线| 最近手机中文字幕大全| 久久国产精品大桥未久av| 咕卡用的链子| 狠狠婷婷综合久久久久久88av| 中文字幕高清在线视频| 国产成人精品在线电影| 亚洲精品国产av成人精品| 大话2 男鬼变身卡| 超碰成人久久| 亚洲精品aⅴ在线观看| 久久久久国产精品人妻一区二区| 大香蕉久久成人网|