• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于干擾觀測器的導(dǎo)引頭穩(wěn)定平臺滑??刂?/h1>
    2018-09-27 11:37:14雷虎民王業(yè)興卜祥偉王華吉
    關(guān)鍵詞:跟蹤器導(dǎo)引頭微分

    雷虎民, 王業(yè)興, 卜祥偉, 王華吉

    (空軍工程大學(xué)防空反導(dǎo)學(xué)院, 陜西 西安 710051)

    0 引 言

    導(dǎo)引頭作為精確制導(dǎo)武器的核心部件,很大程度上決定了制導(dǎo)精度的高低[1]。對框架式導(dǎo)引頭來說,導(dǎo)引頭伺服系統(tǒng)的控制對象是天線穩(wěn)定平臺,在進行目標攔截的過程中,彈體的角速度、氣流擾動以及末端彈體的高過載等外部干擾會以多種方式耦合到穩(wěn)定平臺上,影響導(dǎo)引頭的視線穩(wěn)定和跟蹤精度[2]。在民用領(lǐng)域,穩(wěn)定平臺在無人機航拍、車載系統(tǒng)中、民用航空領(lǐng)域中也得到廣泛應(yīng)用[3-4]。因此,提高穩(wěn)定平臺的隔離度性能及跟蹤精度不僅對提高導(dǎo)彈攔截目標精度,也對軍民融合以及促進其在民用發(fā)展領(lǐng)域的發(fā)展十分重要的現(xiàn)實意義[5]。

    為了提高導(dǎo)引頭天線穩(wěn)定平臺的精度和抗彈體干擾能力,諸多控制算法被用到導(dǎo)引頭伺服控制系統(tǒng)中。文獻[6]將Stribeck摩擦模型引入了導(dǎo)引頭穩(wěn)定平臺動力學(xué)建模中,并采用基于反向傳播(back propagation, BP)神經(jīng)網(wǎng)絡(luò)的比例積分微分(proportion integration differentiation,PID)控制方法來提高穩(wěn)定平臺的隔離度性能,這種控制方法實現(xiàn)了PID參數(shù)的在線調(diào)節(jié),但算法避免不了PID算法的解決非線性問題局限性。文獻[7]采用基于滑模擴張狀態(tài)觀測器的滑??刂品椒▉硪种品蔷€性干擾,將不確定擾動項作為擴展狀態(tài)補償?shù)娇刂戚斎攵?大大增強了系統(tǒng)的魯棒性,擾動在0.1 s的時間內(nèi)被消除,但其動力學(xué)建模未考慮速度干擾到力矩干擾的轉(zhuǎn)化形式,建模不夠完整,對干擾問題考慮不足。文獻[8]設(shè)計了新型的自抗擾控制器,采用微分跟蹤器、擴張狀態(tài)觀測器、非線性狀態(tài)誤差反饋控制率以及擾動估計補償4大模塊,并驗證了控制器的控制效果優(yōu)于傳統(tǒng)的PID控制,但對于文中的狀態(tài)方程中存在多于一個不確定項的情況,通常的擴張狀態(tài)觀測器無法直接進行設(shè)計。文獻[9]引入Stribeck摩擦力模型,采用基于微分跟蹤器與擴張狀態(tài)觀測器相結(jié)合的自抗擾控制技術(shù)對高精度伺服系統(tǒng)進行控制,并設(shè)計了反饋控制率對誤差進行控制,取得了比較好的控制效果,但是文中的線性微分跟蹤器跟蹤精度一般。文獻[10]對永磁電機混沌系統(tǒng)采用坐標變換方法來減少干擾項的個數(shù),用擴張狀態(tài)觀測器進行干擾估計,并采用自適應(yīng)滑??刂频姆椒ūWC系統(tǒng)快速收斂到零點,保證了算法的魯棒性,但其算法的控制量抖振過大。

    由于導(dǎo)引頭穩(wěn)定平臺在跟蹤目標時,會受到各種未知的擾動,保證穩(wěn)定平臺對彈體擾動的隔離度是對導(dǎo)引頭伺服系統(tǒng)研究的熱點問題,本文建立了穩(wěn)定平臺動力學(xué)模型并在此基礎(chǔ)上進行控制系統(tǒng)設(shè)計。本文的創(chuàng)新點主要有:①采用坐標轉(zhuǎn)換的方法將不確定項合并,方便進行控制器設(shè)計;②并用改進微分跟蹤器對不確定項求導(dǎo),以保證坐標轉(zhuǎn)換可行性和補償?shù)木_性;③采用基于改進微分跟蹤器的非線性干擾觀測器對系統(tǒng)的總擾動進行精確估計,較傳統(tǒng)狀態(tài)觀測器估計更精確;④采用二階滑??刂扑惴?削減了滑??刂频亩墩瘳F(xiàn)象。

    1 系統(tǒng)穩(wěn)定平臺描述

    1.1 導(dǎo)引頭穩(wěn)定平臺動力學(xué)建模

    導(dǎo)引頭穩(wěn)定平臺是導(dǎo)引頭伺服系統(tǒng)的實際控制對象,而伺服電機是伺服系統(tǒng)的執(zhí)行機構(gòu)。由于伺服系統(tǒng)俯仰與偏航通道特性近似,且耦合不強[5],本文僅對俯仰通道進行動力學(xué)建模,下面根據(jù)電機的力矩平衡方程和電流方程進行動力學(xué)建模。直流力矩電機和平臺負載的等效電路圖如圖1所示。

    圖1 電機與平臺負載傳動模型Fig.1 Motor and platform load drive model

    (1)

    Tc=Cmia

    (2)

    由電機動力學(xué)原理可知:

    (3)

    1.2 導(dǎo)引頭干擾力矩模型

    導(dǎo)引頭干擾力矩分為摩擦力矩Tf、質(zhì)量不平衡力矩Tb、電纜柔性力矩Te,即

    Tturb=Tf+Tb+Te

    (4)

    考慮到在工程實際中,質(zhì)量不平衡力矩可以通過在制造時配平質(zhì)量來削減[5],電纜柔性力矩則可以通過合理的布線來減小,鑒于其力矩很小,故忽略不進行分析。而摩擦力的大小與其軸承間、密封件間的預(yù)緊力直接相關(guān),從而導(dǎo)致系統(tǒng)中不可避免地存在較大摩擦[11]。因此,將電機動力學(xué)方程簡化為

    (5)

    由于Stribeck摩擦力矩模型廣泛的適用性等諸多優(yōu)點[12],摩擦曲線如圖2所示。因此本文中選取作為摩擦力模型,其數(shù)學(xué)表達式為

    (6)

    式中,Fc、Fs分別代表滑動摩擦力矩和最大靜摩擦力矩;vs代表Stribeck速度;Bv代表粘滯摩擦系數(shù);v代表相對運動速度。

    圖2 Stribeck摩擦曲線Fig.2 Friction force with Stribeck effect

    1.3 穩(wěn)定平臺數(shù)學(xué)模型及坐標轉(zhuǎn)換

    結(jié)合文獻[12-13],通過動力學(xué)建模得到的穩(wěn)定回路結(jié)構(gòu)圖如圖3所示。

    圖3 穩(wěn)定回路框圖Fig.3 Stabilized loop block diagram

    結(jié)合式(1)、式(2)、式(5)和式(6),得到穩(wěn)定回路的數(shù)學(xué)模型為

    (7)

    為便于控制算法設(shè)計,提出Stribeck摩擦中的線性項,進而得到如下數(shù)學(xué)模型:

    (8)

    (9)

    由于式(8)中存在兩項不確定干擾項,采用坐標轉(zhuǎn)換的方法對式(8)進行轉(zhuǎn)換,即對不確定項進行歸一化處理,將式中兩個不確定項合并為一個不確定項,方便進行控制器設(shè)計。

    (10)

    式中,Δ為系統(tǒng)總的干擾項,表達式為

    (11)

    實際上,系統(tǒng)的干擾項可以分為兩部分,即不確定導(dǎo)數(shù)項Δ1以及不確定項Δ2,其中

    (12)

    2 基于非線性干擾觀測器的滑??刂坡稍O(shè)計

    圖4 基于非線性干擾觀測器的滑模控制結(jié)構(gòu)圖Fig.4 Structure of the sliding mode control based onnonlinear disturbance observer

    由于經(jīng)過坐標變換后,x1=y1,所以圖4中的x1直接反饋到控制器中,從而進行控制器設(shè)計。

    2.1 改進型微分跟蹤器設(shè)計

    第1節(jié)的數(shù)學(xué)模型中,存在一個不可導(dǎo)的導(dǎo)數(shù)項Δ1,針對這一干擾項,采用非線性微分跟蹤器進行平滑估計。

    本文采用新型微分跟蹤器對Δ1進行估計,其形式如下:

    (13)

    式中,R,ai(i=1,2,…,n)∈R+為待設(shè)計參數(shù),則存在φ>0與ιφ>n使得

    ,i=1,2,…,n

    (14)

    式中,O((1/R)ι φ-i+1)表示ζi與υ(i-1)(t)的近似程度是(1/R)ι φ-i+1階的。其中,φ=(1-?)/?,?∈(0,min{ι/(ι+n),1/2}),n≥2。

    本文設(shè)計微分跟蹤器的改進之處為,將切換函數(shù)由sign函數(shù)改進為tanh函數(shù),實現(xiàn)了切換點處較為平滑的切換。

    該微分跟蹤器是有限時間收斂且穩(wěn)定的。證明參考文獻[14]。

    2.2 基于改進型微分跟蹤器的非線性干擾觀測器設(shè)計

    考慮如下不確定動力學(xué)系統(tǒng)

    (15)

    式中,v∈R為系統(tǒng)狀態(tài)變量;F(v)與G(v)≠0為連續(xù)函數(shù);u∈R為控制輸入;d∈R為不確定項。

    定理1為實現(xiàn)對不確定項Δ的準確估計,基于設(shè)計的新型微分跟蹤器,設(shè)計非線性干擾觀測器如下形式:

    (16)

    (17)

    證明分以下兩種情況證明。

    ≠0

    (18)

    進一步有

    →+∞

    (19)

    (20)

    取n=2,則式(13)變?yōu)?/p>

    (21)

    證畢

    由以上證明可知,通過選取合適的參數(shù)值可使估計誤差收斂。

    2.3 二階滑??刂破髟O(shè)計

    由于滑模控制具有良好的魯棒性,其強魯棒性恰恰滿足了天線穩(wěn)定平臺的高隔離度要求[16]。而普通滑??刂圃诨C娓浇菀桩a(chǎn)生抖振現(xiàn)象,為了抑制導(dǎo)引頭天線穩(wěn)定平臺的高頻抖振,設(shè)計二階滑模控制器如下:

    定義滑模面s為

    (22)

    式中,e=x-xd為角度跟蹤誤差,x為實際角度,xd為角度指令信號;c為常數(shù),c>0。

    對式(22)求導(dǎo),并代入式(10)得

    (23)

    設(shè)計如下控制律:

    (24)

    將式(23)代入式(24)可得

    (25)

    (26)

    下面證明控制算法的穩(wěn)定性。

    由于觀測器的誤差觀測量和狀態(tài)觀測量收斂性已經(jīng)得到證明,因此在此只證明滑??刂扑惴ǚ€(wěn)定性。

    證明選取Lyapunov函數(shù)為

    (27)

    對Lyapunov函數(shù)求導(dǎo),得

    (28)

    (29)

    證畢

    3 仿真研究

    為驗證所提方法的有效性和優(yōu)越性,下面進行仿真實驗驗證。將設(shè)計的算法與PID控制以及反演控制進行比較。其中,反演控制的控制方案見文獻[17]。

    系統(tǒng)主要參數(shù)如表1和表2所示。

    表1 模型參數(shù)

    表2 控制器及觀測器參數(shù)

    3.1 微分跟蹤器估計效果仿真

    本文設(shè)計的微分跟蹤器起到了兩次微分的作用,微分跟蹤器的輸入為狀態(tài)方程的兩個狀態(tài)量。首先,微分跟蹤器對狀態(tài)量x1求導(dǎo),得到其導(dǎo)數(shù)值,然后通過計算得到干擾項,后將計算得到的干擾項再次通過微分跟蹤器,進而得到干擾項的導(dǎo)數(shù)。通常,通過微分跟蹤器對輸入的跟蹤效果來判斷其對導(dǎo)數(shù)值的估計效果[17-18]。圖5為微分跟蹤器對角速度的跟蹤效果圖,通過圖5可以看出,微分跟蹤器可以很好地跟蹤角速度輸出值,即使在速度過零點的位置,微分跟蹤器也可以實現(xiàn)對角速度值的準確估計,進而可以得到,本文設(shè)計的微分跟蹤器對干擾微分值估計效果良好。

    圖5 微分跟蹤器估計效果Fig.5 Estimation of differential tracker

    3.2 非線性干擾觀測器估計效果仿真

    由圖5可知,微分跟蹤器可以實現(xiàn)良好的跟蹤效果,因此將微分跟蹤器的導(dǎo)數(shù)輸出量及摩擦力作為實際輸出量,從而計算出總的實際干擾項。

    圖6為觀測器干擾估計值。

    圖6 觀測器干擾估計值Fig.6 Disturbance estimated by observer

    通過圖6可以看出,觀測器的干擾估計值在速度過零點處存在少量超調(diào),但能很快調(diào)節(jié)至穩(wěn)態(tài)跟蹤,觀測器的干擾估計值可以很好地跟蹤實際干擾值。

    3.3 速度跟蹤效果仿真

    圖7為系統(tǒng)加入1 Hz的正弦速度干擾時跟蹤1 Hz正弦參考信號的系統(tǒng)響應(yīng)曲線。從圖7中可以看出, Stribeck效應(yīng)在速度過零點處對速度跟蹤效果影響比較大。在導(dǎo)引頭天線穩(wěn)定平臺速度過零點時,負載中摩擦力在速度過零點處的強非線性,嚴重影響導(dǎo)引頭天線的跟蹤精度。圖8為跟蹤誤差曲線。從圖8可以看出,PID、反演控制和本文設(shè)計的控制方法在過零點處由擾動引起的速度誤差最大值分別為0.1、0.05、0.03,同時可以看出,相比于PID控制,本文設(shè)計的控制方法調(diào)節(jié)時間更短。

    圖7 角速度跟蹤曲線對比Fig.7 Comparison of angular rate tracking

    圖8 角速度跟蹤誤差曲線對比Fig.8 Comparison angular rate tracking error

    從圖8還可以看出,進行仿真的3種控制方法均可以將擾動削減96%以上,本文設(shè)計的控制方法在遠離速度過零點位置時可以將擾動削減至零,體現(xiàn)出更好的穩(wěn)態(tài)性能。

    圖9為控制輸入曲線的對比。從圖9可以看出,本文設(shè)計的控制方法所需要的控制量少于PID和反演控制所需的控制量,控制更高效,且控制量在速度過零點位置附近較前兩者更為平滑。

    圖9 控制輸入曲線對比Fig.9 Comparison of controller input

    因此,本文設(shè)計的方法在速度過零點處和在其他位置時,都優(yōu)于另外兩種控制方法。

    結(jié)合速度誤差曲線和控制輸入曲線,可以分析得出:PID控制方法原理比較簡單,對于文中復(fù)雜擾動的抑制效果一般,反演控制方法在速度過零點附近調(diào)節(jié)時間較快,但存在一定的跟蹤誤差。本文的控制策略則起到了對擾動進行精確補償?shù)淖饔?由于干擾估計效果直接影響控制效果,更小的估計誤差是本文方法具有更強的魯棒性和跟蹤精度的關(guān)鍵因素。

    4 結(jié) 論

    針對導(dǎo)引頭穩(wěn)定平臺在速度過零點時的非線性擾動問題,設(shè)計了基于干擾觀測器的滑??刂扑惴?取得了優(yōu)于PID和反演控制的控制效果,具有很強的魯棒性和很高的控制精度。

    (1) 改進的微分跟蹤器能夠準確對干擾項導(dǎo)數(shù)進行估計,從而使干擾項合并,方便了控制器的設(shè)計;

    (2) 基于改進微分跟蹤器的干擾觀測器實現(xiàn)了系統(tǒng)擾動觀測量的實時估計,使系統(tǒng)能夠?qū)_動進行精確補償;

    (3) 設(shè)計的二階滑??刂扑惴ūWC了系統(tǒng)的穩(wěn)定性,減少了系統(tǒng)的抖振,并提高了控制效率;

    (4) 算法能夠很好地提升了導(dǎo)引頭天線穩(wěn)定平臺對彈體運動的隔離度,并能夠克服非線性摩擦干擾的不良影響。

    猜你喜歡
    跟蹤器導(dǎo)引頭微分
    光伏跟蹤器陣列跟蹤精度的測算方法研究
    太陽能(2022年3期)2022-03-29 05:15:50
    擬微分算子在Hp(ω)上的有界性
    淺析一種風光儲一體化跟蹤器
    太陽能(2020年3期)2020-04-08 03:27:10
    上下解反向的脈沖微分包含解的存在性
    超長待機的自行車位置跟蹤器
    雙向多軌跡判定方法在目標跟蹤中的應(yīng)用研究
    借助微分探求連續(xù)函數(shù)的極值點
    全極化雷達導(dǎo)引頭抗干擾技術(shù)
    半捷聯(lián)雷達導(dǎo)引頭視線角速度提取
    對不定積分湊微分解法的再認識

    阿拉善左旗| 拉孜县| 房产| 九江县| 公主岭市| 长宁县| 大厂| 保康县| 龙江县| 明溪县| 泽普县| 云和县| 三门峡市| 越西县| 北票市| 左云县| 星子县| 陇川县| 富源县| 安图县| 那坡县| 驻马店市| 乌什县| 工布江达县| 绥芬河市| 舟曲县| 沁阳市| 于田县| 曲靖市| 岳池县| 福鼎市| 神池县| 梁平县| 清河县| 乌鲁木齐市| 黄浦区| 蒲江县| 张家港市| 资阳市| 大石桥市| 竹北市|